
Delta-stepping SSSP: from Vertices and Edges to
GraphBLAS Implementations

Upasana Sridhar, Mark Blanco, Rahul Mayuranath,
Daniele G. Spampinato, Tze Meng Low

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA, USA

{upasanas, markb1, frahulma}@andrew.cmu.edu, {spampinato, lowt}@cmu.edu

Scott McMillan
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

smcmillan@sei.cmu.edu

Abstract—GraphBLAS is an interface for implementing graph
algorithms. Algorithms implemented using the GraphBLAS
interface are cast in terms of linear algebra-like operations.
However, many graph algorithms are canonically described in
terms of operations on vertices and/or edges. Despite the known
duality between these two representations, the differences in the
way algorithms are described using the two approaches can pose
considerable difficulties in the adoption of the GraphBLAS as
standard interface for development. This paper investigates a
systematic approach for translating a graph algorithm described
in the canonical vertex and edge representation into an imple-
mentation that leverages the GraphBLAS interface. We present
a two-step approach to this problem. First, we express common
vertex- and edge-centric design patterns using a linear algebraic
language. Second, we map this intermediate representation to the
GraphBLAS interface. We illustrate our approach by translating
the delta-stepping single source shortest path algorithm from
its canonical description to a GraphBLAS implementation, and
highlight lessons learned when implementing using GraphBLAS.

Index Terms—graph algorithms, linear algebra, adjacency ma-
trices, edge-centric, vertex-centric, delta-stepping, single source
shortest path

I. INTRODUCTION

A graph G = (V,E) is traditionally defined as a collection

of vertices (V) and edges (E) that represent relationships

between pairs of vertices. As such, many graph algorithms

are described in terms of operations on the vertices and/or

edges. Algorithms that can be described as independent oper-

ations over the vertices are often referred to as vertex-centric

algorithms, while edge-centric algorithms are algorithms cast

in terms of operations on the edges. Several graph-processing

frameworks [1]–[5] have been designed to support either

vertex- or edge-centric algorithms.

The GraphBLAS [6], [7] is a community effort to provide

a standardized application programming interface (API) based

on the language of linear algebra for the implementation of

graph algorithms. This standardized interface allows for a

separation of concerns between algorithm writers and library

developers. By expressing algorithms in terms of GraphBLAS

building blocks, algorithm developers can focus on the use

and development of graph algorithms without worrying about

performance-driven details of the implementation. Library

developers also benefit from a standardized interface as they

can focus on delivering performance for a specific set of target

functionalities. In addition, the use of linear algebra-like opera-

tions allows library developers to leverage decades of expertise

in high-performance sparse linear algebra to provide high-

performance parallel implementations to the graph community.

However, the adoption of a matrix representation-based

standard API faces considerable challenges considering that

algorithm writers are prone to describing their algorithms in

terms of operations on vertices and edges despite the equiva-

lence of the two representations [8]. This choice is often made

based on the notion that adjacency matrices necessarily lead to

a O(N2) space requirement [9]. On the other hand, while the

GraphBLAS interface describes the operations using matrices

and vectors [10], their implementation takes advantage of the

sparse nature of these objects. This representational dilemma

presents the algorithm developer with a crucial question: how

should an algorithm expressed using vertices and edges be

expressed using linear algebra and implemented in an API

such as the GraphBLAS? While several graph algorithms have

been studied and implemented using the language of linear

algebra [10], many others remain unimplemented. Without a

systematic approach to the translation problem, it is unclear if

this lack of algorithmic implementation is a matter of effort or

if there are fundamental restrictions with the implementation

API.

This paper represents a first attempt at the definition of

a systematic methodology for translating graph algorithms

expressed using operations on vertices and edges into a linear

algebraic formulation implementable using the GraphBLAS

API. The approach we propose operates in two steps: First,

we convert the vertex- and edge-based operations in the input

algorithm into their matrix-based counterpart using a prede-

fined set of mappings between commonly-used vertex- and

edge-based data access patterns, data structures, and operations

and their linear algebraic equivalents. Second, we translate

the newly obtained linear algebraic entities into GraphBLAS

data structures and function calls. We demonstrate our ap-

proach using the delta-stepping single source shortest path (Δ-

stepping) algorithm [11], one of the algorithms in the Graph

Analysis Benchmark (GAP) suite [12]. We also report our

241

2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-5386-5555-9/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPSW.2019.00047

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:42:33 UTC from IEEE Xplore. Restrictions apply.

implementation experience with using the GraphBLAS C and

C++ APIs. Finally, we highlight opportunities for improvement

in performance and parallelism.

II. PRELIMINARIES

A graph can be represented in GraphBLAS using either

its adjacency or its incidence matrix. As both representations

contain the same information, we restrict ourselves to only

uses of adjacency matrices. From this, we identify linear al-

gebraic constructs relevant to our approach: matrices, vectors,

and operations on these constructs. We use these to formulate

operations on sets, vertices, and edges as used in traditional

graph algorithms in the language of linear algebra.

A. Adjacency matrices

An adjacency matrix representation of the graph G = (V,E)
is a |V | × |V | matrix AG . An edge between vi and vj where

vi, vj ∈ V is represented as an element in the (i, j)th position

of AG .

Non-empty elements in the ith row represents outgoing

edges from vertex vi, where vi ∈ V , and the ith column

represents the incoming edges into vertex vi. We assume that

our graphs are simple and there are no self-loops. This means

that the diagonal elements of the adjacency matrix AG are

empty.

Notice that storing the graph as an adjacency matrix implic-

itly provides a unique identifier for each vertex. This identifier

can be used to index into particular rows and columns of the

adjacency matrix that correspond to specific vertices. Note also

that assigning unique identifiers to vertices is a technique often

found in traditional graph algorithms to avoid overcounting.

B. Operation on the vertices

Algorithms that solely perform operations from the view-

point of a vertex are vertex-centric algorithms and are often the

target of “think like a vertex” frameworks [13]. In particular,

algorithms that fit this framework typically perform computa-

tion on incoming and outgoing edge values of a particular

vertex. In addition, all vertices in the graph are processed

independently and possibly in parallel.

Recall that incoming edge values to a vertex v are captured

as elements in the vth column of the adjacency matrix. Parti-

tioning the adjacency matrix by columns yields the following:

AG →
(
a0 a1 . . . a|V |−1

)
.

Operations on the incoming edge values can be cast as

operations on the appropriate column vector, i.e.,

(
f0(a0) f1(a1) . . . f|V |−1(a|V |−1)

)
.

Operations on the out-going edge values can be described

using a linear algebraic formulation in a similar manner where

the adjacency matrix is first transposed and then the operations

are applied.

C. Operation on the edges
Algorithms whose operations are performed on all edges

simultaneously are often known as edge-centric algorithms.

Values on edges are captured as the individual entries of the

adjacency matrix. This means that an edge-centric algorithm

will update or use all values of the matrix simultaneously.
An operation that is applied to all edges can be cast in

the language of linear algebra in a number of ways. The first

approach is to treat the operation on all edges similar to how

a scalar element can be multiplied against all elements in the

adjacency matrix, i.e.,

βAG ,

where β is the operation to be applied to each edge. This is

simply a point-wise operation.
The second approach for capturing operation on the edges is

for the situation when the edge values in the adjacency matrix

are the output of a series of linear algebra operations (e.g.

matrix-matrix multiplication) such as in the computation of

the graph’s K-truss [14]:

S = AT
GAG .

In this case, extraneous elements may be created in S that

results in fill-in. Under such a scenario, it is important to apply

a Hadamard, or element-wise, product of the result with the

original AG to eliminate these spurious entries, i.e.,

S = AT
GAG ◦AG .

D. Sets
Sets are often used in graph algorithms to denote groups

of vertices or edges. We denote sets of vertices as vectors of

size |V |, while sets of edges are viewed as matrices of size

|V | × |V |. Members of a set are often denoted by a non-zero

entry at the location of the matrix or vector set corresponding

to the label of the member elements.

E. Filtering
Often, it is necessary to selectively apply an operation to

vertices or edges based on certain criteria. An example of

filtering on vertices is the deactivation of a vertex in a vertex-

centric algorithm.
One possibility of describing the selection is to extract a

subgraph G1 by using selector matrices that are multiplied

against the adjacency matrix of the original graph G from the

right and left [7].
An alternative approach, and the one we select, is to perform

a filtering operation where a binary mask B of the same size

as our graph is first constructed. The Hadamard product is

then performed with the adjacency matrix AG to obtain the

filtered adjacency matrix AG1
. We represent this element-wise

product as follows:

AG1
= B ◦AG
= AG ◦B

Filtering operations can also be performed on sets of ver-

tices in the same manner. Instead of a binary matrix B, a

binary vector b is used instead.

242

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:42:33 UTC from IEEE Xplore. Restrictions apply.

III. DELTA STEPPING SINGLE SOURCE SHORTEST PATH

The goal of all single source shortest path algorithms is to

identify the shortest path, defined as the path with minimum

total weight, from a source vertex s to each of the vertices

v ∈ V , v �= s, from a given graph G = (V,E). The delta-

stepping single source shortest path (Δ-stepping) algorithm

was introduced by Meyer and Sanders [11] as an attempt to

improve parallelism in Dijkstra’s original SSSP algorithm [15].

The Δ-stepping algorithm is a label-correcting algorithm in

which the tentative distances (tent(vi)) from the source vertex

s to all other vertices vi are iteratively updated through the

application of edge relaxation operations.

A. Initialization

Initialization of the Δ-stepping algorithm starts by first

splitting the outgoing edges for all vertices vi ∈ V into two

edge sets: light(vi) and heavy(vi). An edge (vi, vj) that goes

from vertex vi to vertex vj is assigned to the light edge set of

vi if the weight on the edge, δ(vi, vj), is less than or equal to

a predefined threshold Δ. Otherwise, the edge is assigned to

the set heavy(vi). In addition, the tentative distance to vi from

s is set to infinity (∞) for all vi ∈ V . The distance to s from

s is 0.

Mathematically, we can describe the initialization as three

separate operations that are applied on all vertices as follows:

for all vi ∈ V
heavy(vi) = {(vi, vj) ∈ E : δ(vi, vj) > Δ}
light(vi) = {(vi, vj) ∈ E : δ(vi, vj) ≤ Δ}
tent(vi) = ∞

B. Defining buckets

A distinctive feature of the Δ-stepping algorithm is the use

of buckets to hold vertices whose tentative distance from the

source vertex s is within a specific range. Specifically, the

bucket Bi, i ≥ 0 is the set of vertices whose tentative distance

from the source is between iΔ and (i+ 1)Δ, i.e.,

Bi = {v ∈ V : iΔ ≤ tent(v) < (i+ 1)Δ}.
At the start, only the source vertex is assigned to bucket B0

with a distance of 0.

C. Edge relaxation

The algorithm proceeds by first identifying the smallest non-

empty bucket. For a vertex v in that bucket, edge relaxation is

applied on all edges in light(v). Specifically, edge relaxation

performs three tasks:

1) Identifies reachable vertices. Edge relaxation identifies

reachable vertices vj from vertex v where (v, vj) ∈
light(v).

2) Computes new tentative distances. Having identified

reachable vertices from v, edge relaxation also generates

requests to update the tentative distances of the reachable

vertices vj with the new distance tent(v) + δ(v, vj). If

the current tentative distance tent(vj) is greater than

the requested updated distance, the tentative distance of

vertex vj is updated, i.e.,

tent(vj) = min(tent(vj), tent(v) + δ(v, vj)).

3) Reassigns vertices to buckets. As the membership of

vertex v to a particular bucket is determined by the

tentative distance from v to s, updating the tentative

distance of v causes a change to the bucket membership

of v from

B�tent(vj)/Δ� to B�(tent(v)+δ(v,vj))/Δ�.

In practice, Meyer and Sanders [11] proposed to simul-

taneously process all light edges from all vertices in the

current bucket. The result is a set Req of tuples containing the

reachable vertices and their potentially new tentative distances:

Req = {(vj , tent(v)+δ(v, vj)) : v ∈ Bi ∧ (v, vj) ∈ light(v)}.
Doing so simultaneously empties the bucket Bi. Next, each of

these requests is evaluated to determine if tentative distances

of reachable vertices need to be updated. If so, the membership

of the updated vertices are also changed. This second step is

performed by the relax operation:

procedure relax(v, new dist)
if new dist < tent(v)

B�tent(v)/Δ� = B�tent(v)/Δ� − {v}
B�new dist/Δ� = B�new dist/Δ� ∪ {v}
tent(v) = new dist

This process may reintroduce vertices into Bi, which would

then require us to reiterate over the new set of light edges. This

process is repeated until the bucket is empty. At this point in

time, heavy edges are not required to be relaxed as vertices

reachable by traversing a heavy edge will not result in new

vertices being introduced into Bi.

D. Tracking processed vertices

Once the current bucket Bi is emptied, the heavy edges

from all vertices processed previously can then be relaxed.

This requires us to keep track of the vertices that had been in

Bi. This is performed by updating a set S with vertices in Bi:

S = S ∪Bi.

Heavy edges from vertices in S are relaxed in the same

manner as light edges: first a set of requests are generated,

and then the relax operation is applied to each of the generated

requests.

The process is repeated with the next non-empty bucket until

there are no more non-empty buckets. The overall Δ-stepping

algorithm is summarized on the right side of Fig. 1.

While we have only described the sequential algorithm,

the authors proposed for Δ-stepping to be parallelized by

processing all vertices in a processing phase of the current

bucket. A processing phase is defined as the simultaneous

relaxation of all light or heavy edges.

243

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:42:33 UTC from IEEE Xplore. Restrictions apply.

Linear Algebraic Forumlation Meyer & Sanders

A,AH , AL ∈ R
|V |×|V | procedure relax(v, new_dist)

s, i ∈ N if new_dist < tent(v)
Δ ∈ R B�tent(v)/Δ� = B�tent(v)/Δ� − {v}
t, tReq ∈ R

|V | B�new_dist/Δ� = B�new_dist/Δ� ∪ {v}
tBi , S ∈ N

|V | tent(v) = new_dist

AH = A ◦ (A > Δ) heavy(v) = {(v, w) ∈ E: c(v, w) > Δ}
AL = A ◦ (0 < A ≤ Δ) light(v) = {(v, w) ∈ E: c(v, w) ≤ Δ}
t =∞ tent(v) = ∞
t[s] = 0 relax(s, 0)
i = 0 i = 0
while (t ≥ iΔ) �= 0 do while ¬isEmpty(B) do
s = 0 S = ∅
tBi = (iΔ ≤ t < (i+ 1)Δ) // By def. B[i] = {v ∈ V : iΔ ≤ tent(v) < (i+1)Δ}
while tBi �= 0 do while ¬isEmpty(B[i]) do
tReq = AT

L(t ◦ tBi) Req = {(w, tent(v) + δ(v, w)) : v ∈ B[i] ∧ (v, w) ∈ light(v)}
S = ((S + tBi) > 0), tBi = 0 S = S ∪ B[i]; B[i] = ∅
tBi = (iΔ ≤ tReq < (i+ 1)Δ) ◦ (tReq < t) foreach (v, x) ∈ Req do relax(v, x)
t = min(t, tReq)

od od
tReq = AT

H(t ◦ S) Req = {(w, tent(v) + δ(v, w)): v ∈ S ∧ (v, w) ∈ heavy(v)}
t = min(t, tReq) foreach (v, x) ∈ Req do relax(v, x)
i = i+ 1 i = i + 1

od od

Fig. 1. Left: Δ-stepping single source shortest path in the language of linear algebra. Right: The corresponding description using sets of vertices and edges
is placed alongside the linear algebra formulation for ease of comparison.

IV. LINEAR ALGEBRAIC DELTA STEPPING SSSP

The first step in our approach is to translate the vertex and

edge representation of the algorithm into linear algebra-like

operations.

A. Initialization

The Δ-stepping algorithm starts by splitting outgoing edges

for all vertices into two sets, light and heavy, and initializing

the tentative distance for the source vertex s to 0 and all other

vertices to infinity.

Initializing the tentative distance for all vertices can be

described by defining a vector t, such that

t =∞ and t[s] = 0.

To split the edges into two sets, first recall that the ith row

of the adjacency matrix represents outgoing edges from vertex

vi. The light edges for vi are the edges in the ith row whose

weight is less than or equal to the threshold Δ. Since we have

to identify light edges for all vertices, this means that for all

rows in the adjacency matrix, we have to apply an element-

wise check for light edges. This check of the entire adjacency

matrix A can be described as

0 < A ≤ Δ.

Notice that applying the check to all elements yields a binary

matrix instead of a matrix that contains only the light edges

and their weights. It is important to note that the locations of

the 1s in the resulting binary matrix are also the exact locations

of edges that are light edges. Therefore, to obtain the desired

matrix, we can perform a Hadamard product of this binary

matrix against the original matrix A to form AL, i.e.,

AL = A ◦ (0 < A ≤ Δ),

to obtain the matrix with only light edges for all vertices.

The heavy edges can be separated similarly into a matrix

AH with

AH = A ◦ (A > Δ).

B. Defining Buckets

Recall that the definition of the buckets is given by

Bi = {v ∈ V : iΔ ≤ tent(v) < (i+ 1)Δ}.
This means that to identify which vertices are in Bi for a given

i, one should iterate over the vector t, which contains tentative

distances, and select those vertices whose tentative distance are

in the correct range. Again this is a filtering operation where

the filter we want to apply on the vector t is

iΔ ≤ t < (i+ 1)Δ,

for a given i. Applying this filter on the vector t returns a

binary vector tBi
, where

tBi
= (iΔ ≤ t < (i+ 1)Δ),

and the locations of the 1s in tBi are the vertices that are in

the current bucket Bi.

244

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:42:33 UTC from IEEE Xplore. Restrictions apply.

C. Edge relaxation

The bulk of the computation for the Δ-stepping algorithm

is in the relaxation of light and heavy edges. Recall that in this

phase of the algorithm, all light (or heavy) edges are relaxed

simultaneously to create a set of requests, where each request

identifies the reachable vertex and the new tentative distance

from a particular vertex in the current bucket.

Consider light edges from an arbitrary vertex v. The matrix

AL contains all light edges, and the row corresponding to

vertex v (i.e. av) contains the light edges with v as their source

vertex. This means that the row corresponding to vertex v also

indicates the reachable vertices from v.

Notice that the av also contains the weights of the light

edges from v (i.e., δ(v, vj)). In order to compute the new

tentative distance to a reachable vertex vj , the following

operation

new distj = tent(v) + δ(v, vj)

has to be applied to the edge (v, vj). To compute the tentative

distance to all reachable nodes, tent(v) has to be added to all

elements in av .

In the language of linear algebra, this operation on av is

similar to a scaled vector addition or AXPY operation, i.e.,

y = ax+ y,

with two key differences. First, the (min,+) semiring is

used instead of the (+,×) semiring. Second, the result is

written into a new vector instead of overwriting av . Therefore,

computing the set of requests for a particular vector v can be

described as the following linear algebra operation

y︷ ︸︸ ︷
Reqv = t[v]︸︷︷︸

a

+

x︷︸︸︷
av ,

where t is the tentative distance to all vertices. Notice that this

is similar to the linear algebraic formulation of edge-centric

operations, in which each operation is applied point-wise.

Generalizing to relaxing all light edges requires us to apply

the above operation to all rows in AL. This means the set of

requests can be viewed as a |V | × |V | matrix Req that has

been partitioned such that

Req →

⎛
⎜⎝

Req0
...

Req|V |−1

⎞
⎟⎠ =

⎛
⎜⎝

t[0] + a0
...

t[|V | − 1] + a|V |−1

⎞
⎟⎠ ,

where each element in a column in Req represent a new

tentative distance for the corresponding vertex to that column.

Among all possible new tentative distances for a vertex, i.e.,

all values in the same column of Req, only the minimum of

those values could potentially be the new tentative distance.

This means that a reduction operation with the min operator

has to be applied on all elements in the same column. Applying

the min operator to all columns returns a vector tReq of

possibly new tentative distances for all vertices. This is also

equivalent to

tReq = AT
Lt.

However, only out-going edges from vertices in the current

bucket Bi participate in the edge relaxation phase. This means

that a filtering operation has to be applied to the vector

t to filter out vertices that are not in the current bucket.

Mathematically, this filtering can be described as

t ◦ tBi
,

which means the vector of requests is computed via matrix-

vector multiplication over the (min,+) semiring by

tReq = AT
L(t ◦ tBi

).

Finally, edge relaxation updates the membership of vertices

in each bucket if the tentative distance for the vertices has been

updated. This may reintroduce vertices back into bucket Bi.

To identify vertices that are reintroduced, we note that these

vertices must satisfy the following:

1) Their tentative distances were updated in the current

processing phase of relaxation, i.e. (tReq < t), and

2) Their new tentative distance assigns them into bucket

Bi, i.e.

tBi
= (iΔ ≤ tReq < (i+ 1)Δ).

This means that vertices that are reintroduced into bucket Bi

can be identified with

tBi
= (iΔ ≤ tReq < (i+ 1)Δ) ◦ (tReq < t).

After identifying the vertices that are reintroduced, we can

finalize the new tentative distances for all vertices with

t = min(t, tReq).

D. Tracking processed vertices

To ensure that the heavy edge relaxation can proceed with

the appropriate heavy edge sets, it is necessary to keep track of

which vertices were processed in the recently emptied bucket.

From a set operation point of view, this is simply a union

operation. Hence the set S is updated by accumulating tBi
to

S as follows

S = ((S + tBi
) > 0).

The final Δ-stepping algorithm defined using the language

of linear algebra is shown on the left side of Fig. 1.

V. IMPLEMENTATIONS

We implemented our linear algebraic Δ-stepping algorithm

using GraphBLAS APIs in both C and C++. For the C im-

plementation we linked to the SuiteSparse library [16], while

in our C++ implementation we used the GraphBLAS template

library (GBTL) [17]. As these implementations are sequential

in nature, we additionally implemented a parallel version of

the Δ-stepping algorithm in C with OpenMP tasks [18].

245

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:42:33 UTC from IEEE Xplore. Restrictions apply.

A. GraphBLAS implementations with SuiteSparse and GBTL

Implementation of the linear algebraic Δ-stepping algorithm

discussed in Sec. IV using the GraphBLAS C and C++

interfaces was relatively straightforward. The GBTL imple-

mentation is available online [19] while Fig. 2 shows our

implementation using SuiteSparse. To help identify the con-

nections between algorithmic steps and their implementations,

all the operations listed in the linear algebraic formulation

in Fig. 1 are also reported within comments in the code in

Fig. 2. In this section, we introduce the main functions from

the GraphBLAS interface that are required to implement our

linear algebraic Δ-stepping and highlight major caveats when

using them in our implementation.

The first function of interest is

GrB_apply(out, mask, accum, op, in, desc),

which is used in the creation of filters. Specifically, the

function computes into out, the transformation of the values

in in using a unary function op. Optionally, mask can be

used to control which elements are actually stored in out
while accum defines a binary operation to accumulate the

result rather than assigning it. The desc parameters can be

used to set optional flags for controlling further aspects of

the operation, such as whether the output has to be cleared

before storing the new result. Both the vector and the matrix

variants of the GrB_apply function are used in the code

for implementing filtering operations. For instance, Fig. 2,

lines 20–21 show the implementation of the heavy edges

selection AH = A ◦ (A > Δ). This operation requires two

subsequent calls to GrB_apply. The first call implements

the filter (A > Δ), whose output is then used as a mask

by the second call to compute the Hadamard product. Notice

that as above, even if the algorithm only requires a filter

operation (e.g., t ≥ iΔ), GrB_apply has to be used twice to

avoid storing elements where the filtering condition is falsified

(typically false or zero values). For example, Fig. 2, lines 27–

28 implements the filtering operation above. The first call to

GrB_apply creates the filtered output and the second call

uses it as a mask to store only true values.

The next GraphBLAS function used to implement our

algorithm is

GrB_eWiseAdd(out, mask, accum, op, in1, in2, desc),

which applies either a monoid, semiring, or binary operation

op to in1 and in2, element-wise. ‘Add’ in the name refers

to operation on the union of elements from each input vector.

Therefore, GrB_eWiseAdd applies to pairs of input elements

where at least one is defined; if both values are defined, the

operation returns the result; otherwise the single defined value

is used. The parameters mask, accum, and desc have the

same meaning as in GrB_apply. In our context, in addition

to performing element-wise operations such as computing the

minimum of two vectors, we also use GrB_eWiseAdd to

perform filtering when the condition is between two vectors.

For example, in Fig. 2, line 48 GrB_eWiseAdd is used to

compute the condition (tReq < t).

The last GraphBLAS function we use is GrB_vxm(out,
mask, accum, op, v, M, desc) which computes the

(row) vector-matrix multiplication between vector v and ma-

trix M on the semiring op and stores the resulting vector

in out. Also in this case, the parameters mask, accum,

and desc described above can be optionally used. In our

implementation, we use the function as shown in Fig. 2, lines

43 and 60, to compute the relaxation of light and heavy edges

using the vector-matrix operation on the (min,+) semiring.

B. Implementing Filters

The main implementation hurdle we encountered was the

creation of filters for performing the necessary selection of

vertices and edges during the course of the algorithm.

We illustrate a peculiarity in creating a filter within Graph-

BLAS. Recall that one of the filters we required was the filter

tReq < t.

One option of creating this filter is to use the eWiseAdd
function which applies a binary operator on its two input

vectors to create a third vector containing the eventual filter.

An intuitive understanding of tReq < t is that the output should

be a binary vector in which elements are 1 when the inequality

evaluates to true, and 0 otherwise. However, intuition fails us

here. When both input values exist, then the operation behaves

as expected, i.e. returning a 1 (true) or a 0 (false). However,

when one of the input values is not present, the output of

eWiseAdd is the single value that is present. This means

that if a value in t was present and no new requests update

the tentative distance for that particular vertex, the check will

return the value of t, which will evaluate to 1 (true), instead

of the expected 0 (false).

The reason for this behavior is that while the specification

of eWiseAdd allows for the operator to be a binary operator

that is not commutative, the behavior specified for eWiseAdd
assumes that the operator is commutative. This discrepancy

could potentially be a stumbling block to an uninformed

developer.

A software solution to this unintuitive behavior is to apply

tReq as an output mask to the call to eWiseAdd. Since we

are only interested in values that exist in tReq , tReq can be a

mask to prevent unwanted values from being stored. Note that

this solution works because tReq is never zero. If the value

in tReq evaluates to zero and is stored, then the mask will be

incorrect.

An alternative to using eWiseAdd for this particular solu-

tion is to use eWiseMult. However, because this intersects

the index sets of the two inputs, this solution would not work

if one requires the filtering operation to allow new values (e.g.

adding to a set). For example, assume that a tentative distance

has been introduced to tReq that was not present in t, the vector

of tentative distances. In this case, the inequality applied using

eWiseMult will incorrectly return no value (false); however,

as undefined values of t should default to ∞, the correct value

should be true.

246

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:42:33 UTC from IEEE Xplore. Restrictions apply.

1 GrB Info s s s p d e l t a s t e p (c o n s t GrB Matrix A, t y p e t d , GrB Index s r c , GrB Vector ** p a t h s){
2 / / G loba l s c a l a r s :
3 d e l t a =d ;
4 / / D e f i n e o p e r a t o r s , s c a l a r , v e c t o r s , and m a t r i c e s
5 . . .
6
7 / / t [s r c] = 0
8 GrB Vec to r se tE lemen t (t , 0 , s r c) ;
9

10 / / C r e a t e A L and A H based on d e l t a :
11 GrB Matrix Ah , Al , Ab ;
12 GrB Matrix new(&Ah , GrB FP64 , n , m) ;
13 . . .
14
15 / / A L = A . * (A .<= d e l t a)
16 GrB apply (Ab , GrB NULL , GrB NULL , d e l t a l e q , A, GrB NULL) ;
17 GrB apply (Al , Ab , GrB NULL , GrB IDENTITY FP64 , A, GrB NULL) ;
18
19 / / A H = A . * (A .> d e l t a)
20 GrB apply (Ab , GrB NULL , GrB NULL , d e l t a g t , A, GrB NULL) ;
21 GrB apply (Ah , Ab , GrB NULL , GrB IDENTITY FP64 , A, GrB NULL) ;
22
23 / / i n i t i = 0
24 i g l o b a l = 0 ;
25
26 / / Outer lo op : w h i l e (t .>= i * d e l t a) != 0 do
27 GrB Vector apply (tgeq , GrB NULL , GrB NULL , d e l t a i g e q , t , GrB NULL) ;
28 GrB Vector apply (tcomp , tgeq , GrB NULL , GrB IDENTITY BOOL , t , GrB NULL) ;
29 GrB Vec to r nva l s (& t comp s ize , tcomp) ;
30 whi le (t c o m p s i z e > 0) {
31 / / s=0
32 G r B V e c t o r c l e a r (s) ;
33
34 / / t B i = (i * d e l t a .<= t .< (i +1) d e l t a)
35 GrB Vector app ly (tB , GrB NULL , GrB NULL , d e l t a i r a n g e , t , c l e a r d e s c) ;
36 / / t . * t B i
37 GrB Vector app ly (tmasked , tB , GrB NULL , GrB IDENTITY FP64 , t , c l e a r d e s c) ;
38
39 / / I n n e r loop : w h i l e t B i != 0 do
40 GrB Vec to r nva l s (& tm s ize , tmasked) ;
41 whi le (t m s i z e > 0) {
42 / / tReq = A L ’ (min . +) (t . * t B i)
43 GrB vxm (tReq , GrB NULL , GrB NULL , m i n p l u s s r i n g , tmasked , Al , c l e a r d e s c) ;
44 / / s = s + t B i
45 GrB eWiseAdd (s , GrB NULL , GrB NULL , GrB LOR , s , tB , GrB NULL) ;
46
47 / / t B i = (i * d e l t a .<= tReq .< (i +1)* d e l t a) . * (tReq .< t)
48 GrB eWiseAdd (t l e s s , tReq , GrB NULL , GrB LT FP64 , tReq , t , c l e a r d e s c) ;
49 GrB Vector app ly (tB , t l e s s , GrB NULL , d e l t a i r a n g e , tReq , c l e a r d e s c) ;
50
51 / / t = min (t , tReq)
52 GrB eWiseAdd (t , GrB NULL , GrB NULL , GrB MIN FP64 , t , tReq , GrB NULL) ;
53
54 GrB Vector app ly (tmasked , tB , GrB NULL , GrB IDENTITY FP64 , t , c l e a r d e s c) ;
55 GrB Vec to r nva l s (& tm s ize , tmasked) ;
56
57 }
58 / / tReq = A H ’ (min . +) (t . * s)
59 GrB Vector app ly (tmasked , s , GrB NULL , GrB IDENTITY FP64 , t , c l e a r d e s c) ;
60 GrB vxm (tReq , GrB NULL , GrB NULL , m i n p l u s s r i n g , tmasked , Ah , c l e a r d e s c) ;
61
62 / / t = min (t , tReq)
63 GrB eWiseAdd (t , GrB NULL , GrB NULL , GrB MIN FP64 , t , tReq , GrB NULL) ;
64
65 / / i= i +1
66 i g l o b a l ++;
67 GrB apply (tgeq , GrB NULL , GrB NULL , d e l t a i g e q , t , c l e a r d e s c) ;
68 GrB apply (tcomp , tgeq , GrB NULL , GrB IDENTITY BOOL , t , c l e a r d e s c) ;
69 GrB Vec to r nva l s (& t comp s ize , tcomp) ;
70 }
71
72 / / S e t t h e r e t u r n p a t h s
73 (* p a t h s) = &t ;
74 re turn (GrB SUCCESS) ;
75 }

Fig. 2. SuiteSparse implementation of the linear algebraic algorithms in Fig. 1.

247

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:42:33 UTC from IEEE Xplore. Restrictions apply.

VI. PERFORMANCE RESULTS

Our focus in this paper is to demonstrate a systematic

approach for translating vertex- and edge-centric graph algo-

rithms to the language of linear algebra. Nonetheless, in this

section we show the performance of the different GraphBLAS

implementations and highlight possible performance improve-

ments for future GraphBLAS library implementations. Since

GBTL is a reference implementation for the GraphBLAS and

has not been designed with performance in mind, we do not

report performance numbers in this case.

A. Experimental Setup

We used two systems in the testing our implementations of

delta-stepped SSSP. We ran both our sequential SuiteSparse

implementation and our direct C implementation on a system

with an Intel Xeon E5-2667 v3 CPU running at a fixed

frequency of 3.20GHz. For mutithreaded scaling experiments,

we ran on a quad-core Intel i7-7700K CPU running at a

fixed frequency of 4.20GHz. Our sequential implementations

were compiled with GCC version 7.2.1 on the Xeon machine

and our parallel code was compiled with OpenMP and GCC

version 6.4.1 on the i7 machine. Timing on each platform was

performed with calls to the Intel RDTSC assembly instruction.

For all tests, we used real-world graphs collected by the

Stanford Network Analytics Platform (SNAP) [20] and the

GraphChallenge [21]. These input data are symmetric and

undirected graphs with unit edge weights; although our im-

plementations can also operate on directed, weighted graphs.

We ran our implementations with the input parameter Δ = 1.

B. Opportunities for Fusion

Note that most of the function calls in our implementations

are related to implementing filtering operations. As filter-

ing operations are point-wise operations, they are inherently

memory-bounded. By performing loop fusion on these func-

tion calls, the overhead of the function calls and excessive data

movement can be reduced.

We demonstrate these potential savings with our C im-

plementation, where the following fusion opportunities were

exploited:

1) Hadamard product and vector matrix multiplication i.e.

tReq = AT
L(t ◦ tBi

)

were fused together into a single operation.

2) The three vector operations required to compute tBi , s,

and t are fused together as the computation of one of

the three outputs is dependent on at least one of the two

vectors.

The importance of identifying opportunities for fusion is

evident from Fig. 3, which compares the performance of an un-

fused implementation (i.e. SuiteSparse) with one with fusion

and elision of function calls via preprocessor-defined macros.

This approach yielded, on average, a 3.7 times improvement

over the functionally equivalent GraphBLAS implementation

in SuiteSparse.

C. OpenMP Task Based Parallelism

Given that both GBTL and SuiteSparse are sequential im-

plementations, we made an initial attempt to parallelize our C

implementation with OpenMPs task parallelism pragmas to see

possible benefits of parallelism. Unlike the parallelism scheme

proposed by Meyers and Sanders, we parallelized the vector

and filtering operations in the fused sequential implementation.

Specifically, the creation of the light and heavy edges are

independent and were each made into a task. The computation

and filtering of vectors was performed by splitting the vector

into evenly-sized tasks.

Fig. 4 shows the performance of our direct linear algebra to

C approach as parallelized using OpenMP tasks. The perfor-

mance of each increasing number of threads is normalized to

the fused sequential C implementation shown in Fig. 3. The

overall results show an average of 1.44x and 1.5x speedup for

running with two and four threads, respectively.

We note that the performance benefits of multithreading our

C implementation are limited by how much we divide oper-

ations into tasks. In particular, the matrix filtering operations

on AH and AL were noted to consume 35-40% of the run

time of the sequential implementation. Because each matrix

is allocated to a single task, benefits of using more than two

threads do not extend to these costly operations. Parallelizing

within the matrix-vector operations and splitting the filtering

operations for AH and AL into smaller tasks would allow

more threads to participate in the filtering operation, thereby

improving performance and scalability.

VII. DISCUSSION

Notice that the delta-stepping single source shortest path

algorithm is both vertex-centric and edge-centric in nature.

The initialization of the algorithm is vertex-centric in that

the initialization operations are defined as operations on all

vertices. However, the relaxation operation that updates the

tentative distance is an edge-centric operation in that the edge

relaxation operation is applied on light (or heavy) edges. We

believe that the linear algebraic formulation is sufficiently

expressive to describe both kinds of algorithms.

Another interesting point for discussion is that implemen-

tations of the original Dijkstra algorithm often requires the

use of a priority queue so that the vertex with the minimum

tentative distance from the source can be processed in each

iteration. However, Meyers and Sanders showed that by setting

the threshold Δ = 1, the Δ-stepping algorithm is analogous to

the original Dijkstra’s algorithm. One possibility is for other

algorithms that require the use of a priority queue to use

a similar bucket approach. The assumptions and conditions

under which this technique can be used have yet to be defined.

VIII. CONCLUSION

In this paper, we presented an initial attempt at a systematic

approach of translating algorithms that have been described

in terms of operations on edges and vertices to the language

of linear algebra. Specifically, our approach is based on

the identification of common vertex- and edge-based design

248

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:42:33 UTC from IEEE Xplore. Restrictions apply.

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

Graph

Unfused vs. Fused Performance
Fused C impl. SuiteSparse NodesRuntime in milliseconds (ms) Number of Nodes in Graph

Fig. 3. On average a 3.7x improvement in performance is attained by our sequential C implementation over SuiteSparse over a range of graphs by fusing
operations. Graphs are sorted by ascending number of nodes, which is plotted on the second vertical axis.

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

Graph

Task Based Parallel Performance
2 Threads 4 ThreadsSpeedup over Sequential Fused C Impl.

Fig. 4. Performance of the Δ-stepping C implementation on 2 and 4 threads, normalized to sequential performance. Note that the graphs are sorted along
the x-axis in ascending number of nodes.

patterns found in graph algorithms and their translation into

linear algebraic forms. We demonstrated our approach by

applying it to the Δ-stepping algorithm to obtain its Graph-

BLAS implementations. We also discussed implementation

highlights required using both the C and C++ GraphBLAS

APIs, including possible improvements to the implementations

of the underlying API libraries.

We believe that the initial success of the OpenMP task paral-

lelism suggest that much more can be achieved. Specifically,

we believe that an approach to using OpenMP, as has been

demonstrated by frameworks such as SuperMatrix [22] and

Magma [23], can be used within the context of GraphBLAS

to achieve better parallelism and to identify opportunities for

operation fusion.

ACKNOWLEDGEMENT

The authors thank Marcin Zalewski of Northwest Institute

for Advance Computing (NIAC) at Pacific Northwest National

Laboratory for his valuable feedback.
This work was sponsored partly by the DARPA BRASS

program under agreement FA8750-16-2-003, and by the NSF

through award ACI 1550486. This material is based upon

work funded and supported by the Department of Defense

under Contract No. FA8702-15-D-0002 with Carnegie Mellon

University for the operation of the Software Engineering

Institute, a federally funded research and development center.

[DM19-0235]
The content, views and conclusions presented in this doc-

ument are those of the authors and do not necessarily reflect

the position or the policy of the sponsoring agencies.
[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution.

249

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:42:33 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph
processing framework for shared memory,” in Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’13. New
York, NY, USA: ACM, 2013, pp. 135–146. [Online]. Available:
http://doi.acm.org/10.1145/2442516.2442530

[2] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’10. New
York, NY, USA: ACM, 2010, pp. 135–146. [Online]. Available:
http://doi.acm.org/10.1145/1807167.1807184

[3] A. Kyrola, G. E. Blelloch, and C. Guestrin, “GraphChi: Large-scale
graph computation on just a PC.” USENIX, 2012.

[4] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric
graph processing using streaming partitions,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles.
ACM, 2013, pp. 472–488.

[5] C. Voegele, Y.-S. Lu, S. Pai, and K. Pingali, “Parallel triangle counting
and k-truss identification using graph-centric methods,” in High Perfor-
mance Extreme Computing Conference (HPEC), 2017 IEEE. IEEE,
2017, pp. 1–7.

[6] A. Buluc, T. Mattson, S. McMillan, J. Moreira, and C. Yang, “Design
of the GraphBLAS API for C,” in Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2017 IEEE International. IEEE,
2017, pp. 643–652.

[7] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke et al.,
“Mathematical foundations of the GraphBLAS,” arXiv preprint
arXiv:1606.05790, 2016.

[8] D. J. Lehmann, “Algebraic structures for transitive closure,” Theoretical
Computer Science, vol. 4, no. 1, pp. 59–76, 1977.

[9] M. Latapy, “Main-memory triangle computations for very large
(sparse (power-law)) graphs,” Theor. Comput. Sci., vol. 407,
no. 1-3, pp. 458–473, November 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.tcs.2008.07.017

[10] J. Kepner and J. Gilbert, Graph algorithms in the language of linear
algebra. SIAM, 2011.

[11] U. Meyer and P. Sanders, “Delta-stepping: a parallelizable shortest path
algorithm,” Journal of Algorithms, vol. 49, pp. 114–152, 10 2003.

[12] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP
benchmark suite,” CoRR, vol. abs/1508.03619, 2015. [Online].
Available: http://arxiv.org/abs/1508.03619

[13] R. R. McCune, T. Weninger, and G. R. Madey, “Thinking like a
vertex: a survey of vertex-centric frameworks for distributed graph
processing,” CoRR, vol. abs/1507.04405, 2015. [Online]. Available:
http://arxiv.org/abs/1507.04405

[14] T. Meng Low, D. G. Spampinato, A. Kutuluru, U. Sridhar, D. T.
Popovici, F. Franchetti, and S. McMillan, “Linear algebraic formulation
of edge-centric k-truss algorithms with adjacency matrices,” 09 2018,
pp. 1–7.

[15] E. W. Dijkstra, A discipline of programming. Prentice Hall, 1976.

[16] T. A. Davis, “Graph algorithms via suitesparse: GraphBLAS: triangle
counting and k-truss,” in 2018 IEEE High Performance extreme Com-
puting Conference (HPEC). IEEE, 2018, pp. 1–6.

[17] M. Zalewski, P. Zhang, A. Lumsdaine, and S. McMillan, “cmu-sei/gbtl.”
[Online]. Available: https://github.com/cmu-sei/gbtl

[18] OpenMP Architecture Review Board, “OpenMP application program in-
terface,” November 2015. [Online]. Available: http://www.openmp.org/

[19] S. McMillan, “SSSP Algorithms Suite.” [Online]. Available:
https://github.com/cmu-sei/gbtl/blob/master/src/algorithms/sssp.hpp

[20] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, June 2014.

[21] “Graph Challenge,” http://graphchallenge.mit.edu/, 2017.

[22] E. Chan, F. G. Van Zee, P. Bientinesi, E. S. Quintana-Ortı́, G. Quintana-
Ortı́, and R. van de Geijn, “SuperMatrix: A multithreaded run-
time scheduling system for algorithms-by-blocks,” in ACM SIGPLAN
2008 symposium on Principles and practices of parallel programming
(PPoPP’08), 2008, pp. 123–132.

[23] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra on

emerging architectures: The PLASMA and MAGMA projects,” vol. 180,
2009.

250

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 20:42:33 UTC from IEEE Xplore. Restrictions apply.

