
75,000,000,000 Streaming Inserts/Second Using
Hierarchical Hypersparse GraphBLAS Matrices

Jeremy Kepner1,2,3, Tim Davis4, Chansup Byun1,

William Arcand1, David Bestor1, William Bergeron1, Vijay Gadepally1,2, Matthew Hubbell1,

Michael Houle1, Michael Jones1, Anna Klein1, Peter Michaleas1, Lauren Milechin5,

Julie Mullen1, Andrew Prout1, Antonio Rosa1, Siddharth Samsi1, Charles Yee1, Albert Reuther1
1MIT Lincoln Laboratory Supercomputing Center, 2MIT Computer Science & AI Laboratory,

3MIT Mathematics Department, 4Texas A&M, 5MIT Department of Earth, Atmospheric and Planetary Sciences

Abstract—The SuiteSparse GraphBLAS C-library implements
high performance hypersparse matrices with bindings to a variety
of languages (Python, Julia, and Matlab/Octave). GraphBLAS
provides a lightweight in-memory database implementation of
hypersparse matrices that are ideal for analyzing many types of
network data, while providing rigorous mathematical guarantees,
such as linearity. Streaming updates of hypersparse matrices
put enormous pressure on the memory hierarchy. This work
benchmarks an implementation of hierarchical hypersparse ma-
trices that reduces memory pressure and dramatically increases
the update rate into a hypersparse matrices. The parameters
of hierarchical hypersparse matrices rely on controlling the
number of entries in each level in the hierarchy before an
update is cascaded. The parameters are easily tunable to achieve
optimal performance for a variety of applications. Hierarchical
hypersparse matrices achieve over 1,000,000 updates per second
in a single instance. Scaling to 31,000 instances of hierarchical
hypersparse matrices arrays on 1,100 server nodes on the MIT
SuperCloud achieved a sustained update rate of 75,000,000,000
updates per second. This capability allows the MIT SuperCloud
to analyze extremely large streaming network data sets.

I. INTRODUCTION

The global Internet is expected to exceed 100 terabytes per

second (TB/s) by the year 2022 creating significant perfor-

mance challenges for the monitoring necessary to improve,

maintain, and protect the Internet, particularly with the rising

social influence of adversarial botnets encompassing a signifi-

cant fraction of Internet traffic [1]–[3]. Origin-destination traf-

fic matrix databases are fundamental network analysis tool for

a wide range of networks, enabling the observation of temporal

fluctuations of network supernodes, computing background

models, and inferring the presence of unobserved traffic [4]–

[8]. Rapidly constructing these traffic matrix databases is a

significant productivity, scalability, representation, and perfor-

mance challenge [9]–[16].

Our team has developed a high-productivity scalable

platform—the MIT SuperCloud—for providing scientists and

engineers the tools they need to analyze large-scale dynamic

This material is based upon work supported by the Assistant Secretary of
Defense for Research and Engineering under Air Force Contract No. FA8702-
15-D-0001 and National Science Foundation CCF-1533644. Any opinions,
findings, conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the Assistant
Secretary of Defense for Research and Engineering or the National Science
Foundation.

data [17]–[19]. The MIT SuperCloud provides interactive

analysis capabilities accessible from high level programming

environments (Python, Julia, Matlab/Octave) that scale to thou-

sands of processing nodes. Traffic matrices can be manipulated

on the MIT SuperCloud using distributed databases (SciDB

and Apache Accumulo), D4M associative arrays [17], [20],

and now the SuiteSparse GraphBLAS hypersparse matrix

library [21]–[23].

For IP network traffic data, the IP address space requires a

hypersparse matrix (#entries << #rows and #columns) that is

either 232×232 for IPv4 or 264×264 for IPv6. Our prior work

represented traffic matrices using D4M associative arrays us-

ing sorted lists of strings to describe the row and column labels

of an underlying standard sparse matrix [24]. D4M associative

arrays provide maximum flexibility to represent the row and

columns with arbitrary strings and are extremely useful during

the feature discovery stage of algorithm development. For IP

traffic matrices, the row and column labels can be constrained

to integers allowing additional performance to be achieved

using a hypersparse matrix library such as the SuiteSparse

GraphBLAS. In either case, the memory hierarchy presents a

significant performance bottleneck as doing lots of updates to

slow memory is prohibitive. This work benchmarks an imple-

mentation of hierarchical hypersparse matrices that reduces

memory pressure and dramatically increases the update rate

into a hypersparse matrices.

II. HIERARCHICAL HYPERSPARSE MATRICES

The SuiteSparse GraphBLAS library is an OpenMP accel-

erated C implementation of the GraphBLAS.org sparse matrix

standard. Python, Julia, and Matlab/Octave bindings allow

the performance benefits of the SuiteSparse GraphBLAS C

library to be realized in these highly productive programming

environments. Streaming updates to a large hypersparse matrix

can be be accelerated with a hierarchical implementation

optimized to the memory hierarchy (see Fig. 1). Rapid updates

are performed on the smallest hypersparse matrices in the

fastest memory. The strong mathematical properties of the

GraphBLAS allow a hierarchical implementation of hyper-

sparse matrices to be implemented via simple addition. All

creation and organization of hypersparse row and column

indices are handled naturally by the GraphBLAS mathematics.

207

2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-7281-7445-7/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPSW50202.2020.00046

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:36:53 UTC from IEEE Xplore.  Restrictions apply. 



A1
A2 A3 A4 A5

> c1

> c2

> c3

> c4
> c5

A + 

+ 

+ 

+ 
+ 

+ 
Fig. 1. Hierarchical hypersparse matrices store increasing numbers of nonzero entries in each layer (adapted from [24]). If the number of nonzero (stored)
entries in layer Ai surpasses the nonzero threshold count ci then Ai is added to Ai+1 and Ai is cleared. Hierarchical hypersparse matrices ensure that the
majority of updates are performed in fast memory.

If the number of nonzero (nnz) entries exceeds the threshold

ci, then Ai is added to Ai+1 and Ai is cleared. The overall

usage is as follows

• Initialize N -level hierarchical hypersparse matrix with

cuts ci
• Update by adding data A to lowest layer

A1 = A1 +A

• If nnz(A1) > c1, then

A2 = A2 +A1

and reset A1 to an empty hypersparse matrix of appro-

priate dimensions.

The above steps are repeated until nnz(Ai) ≤ ci or i = N .

To complete all pending updates for analysis, all the layers are

added together

A =

N∑

i=1

Ai

Hierarchical hypersparse matrices dramatically reduce the

number of updates to slow memory. Upon query, all layers

in the hierarchy are summed into the hypersparse matrix.

The cut values ci can be selected so as to optimize the

performance with respect to particular applications. The ma-

jority of the complex updating is performed by using the

existing GraphBLAS addition operation. The corresponding

Matlab/Octave GraphBLAS code for performing the update is

direct translation of the above mathematics as follows

function Ai = HierAdd(Ai,A,c);
Ai{1} = Ai{1} + A;
for i=1:length(c)

if (GrB.entries(Ai{i}) > c(i))
Ai{i+1} = Ai{i+1} + Ai{i};
Ai{i} = Ai{length(c)+2};

end
end

end

The goal of hierarchical arrays are to manage the memory

footprint of each level, so the GraphBLAS GrB.entries()
command returns the number of entries in the GraphBLAS

hypersparse matrix, which may include some materialized

zero values. In addition, GrB.entries() executes much

faster than the number of nonzeros command nnz(). The last

hypersparse matrix stored in the hierarchical array is empty

and is used to reinitialize layers whose entries have been

cascaded to a subsequent layer.

III. PERFORMANCE OPTIMIZATION

The performance of a hierarchical GraphBLAS for any par-

ticular problem is determined by the number of layers N and

the cut values ci. The parameters are tuned to achieve optimal

performance for a given problem. Examples of differents sets

of cut values with different c1 and different ratios between cut

values are shown in Figure 2. These sets of cut values allow

exploration of the update performance of closely spaced cuts

versus widely spaced cuts. Figure 3 shows the single node

performance using different numbers of processes and threads

on a simulated Graph500.org R-Mat power-law network data.

The data set contains 100,000,000 connections that are inserted

in groups of 100,000.

IV. SCALABILITY RESULTS

The scalability of the hierarchical hypersparse matrices are

tested using a power-law graph of 100,000,000 entries divided

up into 1,000 sets of 100,000 entries. These data were then

simultaneously loaded and updated using a varying number of

processes on varying number of nodes on the MIT SuperCloud

up to 1,100 servers consisting of mixture of 64-core Intel

Xeon 7210 servers, 28-core Intel Xeon 2683v3 servers, and 32-

core AMD 6274 servers for a total of 34,000 processor cores.

This experiment mimics thousands of processors, each creating

many different graphs of 100,000,000 edges each. In a real

analysis application, each process would also compute various

208

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:36:53 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Single thread update rate on a 64-core Intel Xeon 7210 server for
different cut ratio sets, ranging from {22, . . . , 28} to {82, . . . , 88}. For these
data, performance is optimal with ratio spacings in the 3 to 6 range. Actual
cut values are determine by multiplying the cut ratios by a base value (in this
case 217).

Fig. 3. Single node performance with different configurations of hierarchical
GraphBLAS processes and threads on a 64-core Intel Xeon 7210 server. Each
data point is labeled: (#processes)x(#threads/process). Single process achieves
maximum performance with 16 threads. Maximum overall performance is
achieved with 32 processes each with four threads.

network statistics on each of the streams as they are updated.

The update rate as a function of number of server nodes is

shown on Fig. 4. The achieved update rate of 75,000,000,000

updates per second is significantly larger than the rate in prior

published results. This capability allows the MIT SuperCloud

to analyze extremely large streaming network data sets.

V. CONCLUSION

The GraphBLAS implementation of provides a lightweight

in-memory database ideal for analyzing hypersparse network

data. Streaming data into hypersparse matrices puts enormous

pressure on a memory hierarchy. GraphBLAS hierarchical

matrices reduce memory pressure and increase update per-

formance. The linearity properties of sparse matrices allow

Fig. 4. Update rate as a function of number of servers for hierarchical Grap-
BLAS hypersparse matrices and other previous published work: Hierarchical
D4M [19], Accumulo D4M [25], SciDB D4M [26], Accumulo [27], Oracle
TPC-C benchmark, and CrateDB [28]

a hierarchical sparse matrix to be implemented using simple

addition operations. The performance of hierarchical Graph-

BLAS comes from controlling the number entries at each

level and can be tuned for any particular application. Hier-

archical sparse matrices achieve over 1,000,000 updates per

second in a thread instance and are significantly faster than

non-hierarchical sparse matrices. Scaling to 34,000 instances

on 1,100 server nodes on the MIT SuperCloud achieved a

sustained update rate of 75,000,000,000 updates per second.

ACKNOWLEDGEMENT

The authors wish to acknowledge the following individuals

for their contributions and support: Bob Bond, Alan Edelman,

Laz Gordon, Charles Leiserson, Dave Martinez, Mimi Mc-

Clure, Victor Roytburd, Michael Wright.

REFERENCES

[1] V. Cisco, “Cisco visual networking index: Forecast and trends, 2017–
2022,” White Paper, vol. 1, 2018.

[2] H. Allcott and M. Gentzkow, “Social media and fake news in the 2016
election,” Journal of Economic Perspectives, vol. 31, no. 2, pp. 211–36,
2017.

[3] “https://www.neosit.com/files/neos distil bad bot report 2018.pdf.”
[4] A. Soule, A. Nucci, R. Cruz, E. Leonardi, and N. Taft, “How to

identify and estimate the largest traffic matrix elements in a dynamic
environment,” in ACM SIGMETRICS Performance Evaluation Review,
vol. 32, pp. 73–84, ACM, 2004.

[5] Y. Zhang, M. Roughan, C. Lund, and D. L. Donoho, “Estimating point-
to-point and point-to-multipoint traffic matrices: an information-theoretic
approach,” IEEE/ACM Transactions on Networking (TON), vol. 13,
no. 5, pp. 947–960, 2005.

[6] V. Bharti, P. Kankar, L. Setia, G. Gürsun, A. Lakhina, and M. Crovella,
“Inferring invisible traffic,” in Proceedings of the 6th International
Conference, p. 22, ACM, 2010.

[7] P. Tune, M. Roughan, H. Haddadi, and O. Bonaventure, “Internet traffic
matrices: A primer,” Recent Advances in Networking, vol. 1, pp. 1–56,
2013.

209

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:36:53 UTC from IEEE Xplore.  Restrictions apply. 



[8] J. Kepner, K. Cho, K. Claffy, V. Gadepally, P. Michaleas, and
L. Milechin, “Hypersparse neural network analysis of large-scale internet
traffic,” in 2019 IEEE High Performance Extreme Computing Confer-
ence (HPEC), pp. 1–11, Sep. 2019.

[9] V. G. Castellana, M. Minutoli, S. Bhatt, K. Agarwal, A. Bleeker, J. Feo,
D. Chavarrı́a-Miranda, and D. Haglin, “High-performance data analytics
beyond the relational and graph data models with gems,” in 2017 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 1029–1038, IEEE, 2017.

[10] F. Busato, O. Green, N. Bombieri, and D. A. Bader, “Hornet: An efficient
data structure for dynamic sparse graphs and matrices on gpus,” in 2018
IEEE High Performance extreme Computing Conference (HPEC), pp. 1–
7, IEEE, 2018.

[11] A. Yaar, S. Rajamanickam, M. Wolf, J. Berry, and . V. atalyrek, “Fast
triangle counting using cilk,” in 2018 IEEE High Performance extreme
Computing Conference (HPEC), pp. 1–7, Sep. 2018.

[12] Y. Hu, H. Liu, and H. H. Huang, “High-performance triangle counting on
gpus,” in 2018 IEEE High Performance extreme Computing Conference
(HPEC), pp. 1–5, Sep. 2018.

[13] M. Bisson and M. Fatica, “Update on static graph challenge on gpu,” in
2018 IEEE High Performance extreme Computing Conference (HPEC),
pp. 1–8, Sep. 2018.

[14] R. Pearce and G. Sanders, “K-truss decomposition for scale-free graphs
at scale in distributed memory,” in 2018 IEEE High Performance extreme
Computing Conference (HPEC), pp. 1–6, Sep. 2018.

[15] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kepner,
“Static graph challenge: Subgraph isomorphism,” in High Performance
Extreme Computing Conference (HPEC), IEEE, 2017.

[16] E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra,
P. Monticciolo, A. Reuther, S. Samsi, W. Song, et al., “Streaming graph
challenge: Stochastic block partition,” in 2017 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–12, IEEE, 2017.

[17] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun, G. Con-
don, K. Gregson, M. Hubbell, J. Kurz, et al., “Dynamic distributed
dimensional data model (d4m) database and computation system,” in
2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5349–5352, IEEE, 2012.

[18] V. Gadepally, J. Kepner, L. Milechin, W. Arcand, D. Bestor, B. Bergeron,
C. Byun, M. Hubbell, M. Houle, M. Jones, et al., “Hyperscaling internet
graph analysis with d4m on the mit supercloud,” in 2018 IEEE High
Performance extreme Computing Conference (HPEC), pp. 1–6, IEEE,
2018.

[19] A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor,
B. Bergeron, V. Gadepally, M. Houle, M. Hubbell, M. Jones, A. Klein,
L. Milechin, J. Mullen, A. Prout, A. Rosa, C. Yee, and P. Michaleas,
“Interactive supercomputing on 40,000 cores for machine learning and
data analysis,” in 2018 IEEE High Performance extreme Computing
Conference (HPEC), pp. 1–6, Sep. 2018.

[20] J. Kepner and H. Jananthan, Mathematics of Big Data. MIT Press, 2018.
[21] J. Kepner, P. Aaltonen, D. Bader, A. Bulu, F. Franchetti, J. Gilbert,

D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
C. Yang, J. D. Owens, M. Zalewski, T. Mattson, and J. Moreira, “Math-
ematical foundations of the graphblas,” in 2016 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–9, Sep. 2016.

[22] T. A. Davis, “Algorithm 1000: Suitesparse:graphblas: Graph algorithms
in the language of sparse linear algebra,” ACM Trans. Math. Softw.,
vol. 45, pp. 44:1–44:25, Dec. 2019.

[23] T. A. Davis, “Graph algorithms via SuiteSparse: GraphBLAS: triangle
counting and k-truss,” in 2018 IEEE High Performance extreme Com-
puting Conference (HPEC), pp. 1–6, Sep. 2018.

[24] J. Kepner, V. Gadepally, L. Milechin, S. Samsi, W. Arcand, D. Bestor,
W. Bergeron, C. Byun, M. Hubbell, M. Houle, M. Jones, A. Klein,
P. Michaleas, J. Mullen, A. Prout, A. Rosa, C. Yee, and A. Reuther,
“Streaming 1.9 billion hypersparse network updates per second with
d4m,” in 2019 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–6, Sep. 2019.

[25] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally,
M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A. Reuther, A. Rosa, and
C. Yee, “Achieving 100,000,000 database inserts per second using accu-
mulo and d4m,” in High Performance Extreme Computing Conference
(HPEC), IEEE, 2014.

[26] S. Samsi, L. Brattain, W. Arcand, D. Bestor, B. Bergeron, C. Byun,
V. Gadepally, M. Hubbell, M. Jones, A. Klein, et al., “Benchmarking

scidb data import on hpc systems,” in High Performance Extreme
Computing Conference (HPEC), pp. 1–5, IEEE, 2016.

[27] R. Sen, A. Farris, and P. Guerra, “Benchmarking apache accumulo
bigdata distributed table store using its continuous test suite,” in Big Data
(BigData Congress), 2013 IEEE International Congress on, pp. 334–
341, IEEE, 2013.

[28] CrateDB, “Big Bite: Ingesting Performance of Large Clusters.”
https://crate.io/a/big-cluster-insights-ingesting/, 2016. [Online; accessed
01-December-2018].

210

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:36:53 UTC from IEEE Xplore.  Restrictions apply. 


