
A Roadmap for the GraphBLAS C++ API

Benjamin Brock∗, Aydın Buluç†∗, Timothy G. Mattson‡ Scott McMillan§ and José E. Moreira¶
∗ EECS Department, University of California, Berkeley, CA

† Computational Research Department, Lawrence Berkeley National Laboratory, Berkeley, CA
‡ Parallel Computing Labs, Intel, Hillsboro, OR

§ Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA
¶ IBM Thomas J. Watson Research Center, Yorktown Heights, NY

Abstract—The GraphBLAS are building blocks for expressing
graph algorithms in terms of linear algebra. Currently, the
GraphBLAS are defined as a C API. Implementations of the
GraphBLAS have exposed limitations in expressiveness and
performance due to limitations in C. A move to C++ should
address many of these limitations while providing a simpler
API. Furthermore, for methods based on user-defined types and
operators, the performance should be significantly better. C++
has grown into a pervasive programming language across many
domains. We see a compelling argument to define a GraphBLAS
C++ API. This paper presents our roadmap for the development
of a GraphBLAS C++ API. Open issues are highlighted with
the goal of fostering discussion and generating feedback within
the GraphBLAS user community to guide us as we develop the
GraphBLAS C++ API.

I. INTRODUCTION

The GraphBLAS Forum was formed in 2013 to define

common building blocks for performing graph computations

in the language of linear algebra [10]. The mathematical

specification was published in 2016 [9], followed one year later

by the first version of the GraphBLAS C API Specification [3].

With input from early implementations from IBM [6] and Texas

A&M University [5], we have refined the specification which

is currently at version 1.3.

The C language was chosen for the first GraphBLAS API

due to its ubiquity. C is supported on all mature hardware, and

for research systems it is often the only language available.

C++, however, has never been far from our consideration. Two

C++ projects that predated the GraphBLAS, the Combinatorial

BLAS [2] (CombBLAS) and the GraphBLAS Template Library

(GBTL) [1], [17], were influential and greatly informed the

early development of the C API.

We believe it is critical that we develop a C++ language

binding to the GraphBLAS for the following reasons:

1) Expressiveness: C++ provides an expressive interface with

well-defined object lifetimes, constructors, destructors, and

strong generic support through templates that greatly sim-

plify support for user-defined types and operators.

2) Performance: Templates, combined with operator overload-

ing, functors, and other callable types, enables inlining

and powerful compiler code optimization to achieve more
efficient support for GraphBLAS user-defined types and

operators.

3) Pervasiveness: C++ use is growing among performance-

oriented programmers, especially for new projects. Unfortu-

nately, it is not straightforward to expose a C++ API through

a C library, which necessitates a new API specialized to the

needs of C++.

The primary contribution of this paper is to describe our plans

for the GraphBLAS C++ API and support discussions about

how we can best meet the needs of C++ programmers with

the GraphBLAS.

II. LIMITATIONS OF THE C API

With three years of implementation experience, we now

understand many limitations in the GraphBLAS C API. They

come about primarily due to C’s lack of support for templates/-

generics. Three topics best expose these issues:

1. Limitations due to user-defined types: The C API lists

predefined support for the eleven Plain Old Data (POD) types.

Additional types can be user-defined but these must be trivially
copyable types, meaning they can be copied byte-for-byte, as

with memcpy. This restriction reduces the API’s complexity and

improves performance by eliminating the need for a function

call whenever an object with a user-defined type must be copied.

However, the literature on graph algorithms expressed as linear

algebra has shown numerous cases where simple scalar types

are not enough. For example, it is often necessary to use

structs/classes with non-default constructors or that contain

complex objects involving memory dynamically allocated

through pointers. C++ generics overcome these limitations

by allowing types with custom copy constructors. This allows

for more complex user-defined types, including C++ Standard

Template Library containers such as std::vector and those

that require other types of internal resource management.

2. Performance issues with user-defined operators: Any

operator that is not predefined by the C API is a user-defined

operator. These could consist of: (a) operations that are not

supported over the predefined types, (b) operations that operate

on user-defined types, or (c) a combination of (a) and (b). In C,

these user-defined operators must be implemented as function

pointers that take and return void*. For example:

1 void (*unary_func)(void *out, const void *in);

In addition to the verbose syntax and lack of type safety

inherent in C’s function pointer interface, using C function

pointers for user-defined operators results in severe performance

degradation. This is because every call to this operator will

219

2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-7281-7445-7/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPSW50202.2020.00049

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:35:28 UTC from IEEE Xplore.  Restrictions apply. 



result in an indirect function call, preventing compiler inlining

and subsequent code optimizations.
3. Code bloat due to predefined types and operators:

The C API defines dozens of unary and binary operators,

monoids, and semirings; each defined for up to eleven dif-

ferent predefined types. Since C lacks support for function

overloading and generics, GraphBLAS C library implementers

resort to automatic code generation to produce a large set of

functions for each type and operator combination. Although

this approach has been used successfully in the SuiteSparse

GraphBLAS [5], the additional complexity is daunting for

many hopeful GraphBLAS library developers.
C++ templates resolve many of these issues. C++ user-

defined types improve inlining and optimization opportunities

compared to C function pointers. C++ eliminates runtime costs

associated with indirect function calls for user-defined types.

In addition, C++ supports more expressive user-defined types

with a type’s behavior described through copy constructors,

move constructors, and other lifetime events. C++ allows

function overloading so the same function name can be used

for invocations with different types. This simplifies the API

while reducing the work of library implementors since they

can use templates to avoid writing GraphBLAS methods for

each type. Finally, C++ overloading allows vendors to provide

custom, hand-tuned versions of some GraphBLAS methods

with fixed types for increased performance.

III. RELATED WORK

Numerous C++ linear algebra frameworks exist to inform our

work. C++ graph libraries that closely mimic the GraphBLAS

C API include the GraphBLAS Template Library [1], [17],

GraphBLAST [16], and IBM GPI’s C++ API [6]. Another

C++ library for graph systems based on linear algebra includes

GraphMat [15].
General C++ linear algebra frameworks of note include

Eigen, a high-level matrix library for C++ [7]. Eigen provides

high-level, generic data structures for matrices and vectors

(both dense and sparse) along with a collection of algorithms.

Eigen uses expression templates to provide code-specific

compile-time optimizations. This means that certain operations

return expression objects instead of explicitly materialized

intermediate products, allowing for operator fusion, loop

unrolling, and vectorization. The Tensor Algebra Compiler

(TACO) is a C++ DSL for sparse tensor computations that

allows users to optimize computational kernels on sparse

tenors [11]. There are multiple proposals for extensions to

the C++ Standard Library for linear algebra container types

and operations [4], [8]. Finally, there is a proposed extension

to the C++ Standard Library for graphs [14].
In the distributed computing space, the Combinatorial BLAS

provides many of the necessary sparse matrix primitives

necessary for the GraphBLAS in a C++ library built on top of

MPI [2]. Another similar approach is found in Elemental [13].

IV. KEY FEATURES OF A GRAPHBLAS C++ API

The C++ language has a number of features that will

influence the design of the GraphBLAS C++ API, including

generics (through templates, template parameter deduction

and metaprogramming), constructors and destructors, function

overloading, operator overloading, exceptions, and concepts

(in C++20). The C++ Standard Library also includes a broad

array of software utilities, such as containers, pre-defined math-

ematical operators, and tools for type inspection that support

interoperability and influence our design of the GraphBLAS

C++ API. The language is constantly evolving with a new

release approximately every three years; therefore, tracking

proposed changes to C++ will be part of this development

process. In this section, we highlight some of the features that

will directly impact the GraphBLAS C++ API.

A. Namespaces and Scoping

The C API used the prefix GrB to identify all API elements.

In the C++ API, the grb namespace will be used to scope

everything within the API. Nested namespaces within grb (such

as detail) will be used to scope non-API, and implementation-

defined portions of the library. A valid GraphBLAS program

will only access elements from the root grb namespace.

B. Domains

The C API used symbols to denote the predefined domains

(i.e., types) that could be stored in matrices and vectors (e.g.,

GrB BOOL, GrB INT8, GrB FP32, etc.). Using C++ template

mechanisms, these symbols are not needed and types (including

user-defined) will be directly specified (e.g., bool, int8 t,

float, etc.) as template parameters. This is the approach used

by all of the C++ frameworks listed in Section III.

C. Error Handling and Exceptions

An important open issue is how to handle errors. The

GraphBLAS C API handles errors through error-values returned

from every GraphBLAS method. This approach has long

been held as the most performant way to handle errors in

C++ (especially since early implementations of exceptions

incurred significant performance overheads). More recent

implementations of exceptions, however, add minimal overhead

relative to approaches based on error-values. Furthermore,

current C++ best-practices view exceptions as the preferred

way to handle errors. Exceptions force the calling code to

recognize and deal with errors. Exceptions are handled at any

level of the call stack, and in the process of unwinding the stack,

objects are properly destructed based on well-defined rules. In

addition, exceptions foster cleaner code by clearly separating

code that handles errors. Finally, by using exceptions for error

conditions, the return values from GraphBLAS methods can be

used for more semantically meaningful purposes. A majority

of the frameworks listed in Section III manage errors through

exceptions and we anticipate doing so as well as we define

the GraphBLAS C++ API.

D. Containers: Vectors and Matrices

In the GraphBLAS C API, vectors and matrices are opaque
objects meaning that information about the storage of data is

hidden from users. This is analogous to classes in C++ where

220

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:35:28 UTC from IEEE Xplore.  Restrictions apply. 



1 template<typename ScalarT, typename... OtherTagsT>
2 class Matrix
3 {
4 public: // the specified API appears here
5 Matrix(IndexType rows, IndexType cols)
6 : impl_mat(rows, cols) {}
7

8 IndexType nrows() const { return impl_mat.nrows(); }
9

10 private: // this section is implementation-defined
11 // Not shown: implementation-defined type generator
12 ImplementationMatrixType impl_mat;
13 };

Fig. 1. GBTL Matrix class.

1 template<typename D1, typename D2 = D1, typename D3 = D1>
2 struct Plus
3 {
4 typedef D3 result_type;
5 inline D3 operator()(D1 lhs, D2 rhs) {return lhs+rhs;}
6 };

Fig. 2. GBTL Plus operator.

users interact with an object only through the class’s public

interface, while all implementation details are hidden in the

private section of the class. We will consider the same approach

in the C++ specification. This approach was used in GBTL as

illustrated in Figure 1 for matrices.

A template parameter specifies the scalar type stored in a

matrix or vector. Another template parameter could specify

the index type (currently restricted to uint64 t in C API)

as is done in CombBLAS, Eigen, and the proposed C++

Standard Graph Library. Additional template parameters could

specify storage traits such as sparse vs. dense, directed vs.

undirected, and so forth. In addition, methods from the

C API for building, modifying, and querying vectors or

matrices would be public members of the vector/matrix class.

Figure 1 shows a Matrix constructor that would have the

same functionality as GrB Matrix new() from the C API

and a method for querying the number of rows (replacing

GrB Matrix nrows()). All methods in this API class would

forward calls to the ”backend” Matrix class defined by an

implementation.

E. GraphBLAS Operators

GraphBLAS C API Version 1.3.0 provides a set of over

50 predefined operators: unary and binary functions, monoids,

and semirings. Each is defined for a set of built-in domains.

For example, to use the plus operator with objects of type

int32 t, the user must select GrB PLUS INT32. Through

the use of template structs (functors), C++ offers a more elegant

mechanism for supporting operators over different types. Each

of the C++ frameworks listed in Section III that support custom

operators do so through callable functors. An example of the

Plus operator from GBTL is shown in Figure 2. This is more

versatile than the eleven variants defined in the C API since

this template allows the inputs and the output to be of different

types (and even non-POD, user-defined types).

Another idea for the C++ API is support for the collection

of generic, pre-defined function objects found in the Standard

Template Library’s (STL) <functional> header, such as

std::plus and std::multiplies. These are defined as

template structs. They can handle arguments of various types

while enabling aggressive compiler inlining for increased

performance. In a future GraphBLAS C++ API, we foresee a

series of GraphBLAS C++ operators that follow the standard

library’s conventions.

A more complex open issue relating to GraphBLAS operators

in C++ is stateful operators. These are operators which carry

internal state used to determine their output. A key point is

whether stateful operators should be allowed, and, if so, what

the semantics should be in terms of copying or borrowing

the operators, and whether the order in which the operator is

invoked may vary between executions.

F. GraphBLAS Operations

The GraphBLAS C++ API will feature versions of the

GraphBLAS operations, such as mxm and mxv, that closely

mimic the C API functions with similar names and arguments.

An example C++ mxv operation taken from GBTL is shown in

Figure IV-F where the first six arguments are equivalent to the

ones in the C API. The only difference is the last argument

where the C API would have a Descriptor. This difference is

briefly discussed in the next section. Also note that (except for

the last) the type of each argument is completely templated to

allow for the complete range of possible types. A concurrent

effort to extend GraphBLAS to distributed environments

considers introducing a GraphBLAS “context” that would be

passed into each GraphBLAS operation, potentially unifying

serial, multi-threaded, and distributed APIs. This implies a

design in C++ where the GraphBLAS operations would be the

methods of a future GraphBLAS context object.

Another option is to mimic syntax from high-level libraries

such as NumPy, where matrix-vector multiplication would be

performed as methods embedded in container classes (w =

A.mxv(u)). This would require that the output parameter be

returned from the method. This would be more concise and

would provide a more friendly programming environment for

novice users. However, this goes against C++ best practices, in

which algorithms (operations in this case) are separate from,

but interoperate with, containers.

1 template<typename WVectorT,
2 typename MaskT,
3 typename AccumT,
4 typename SemiringT,
5 typename AMatrixT,
6 typename UVectorT>
7 inline void mxv(WVectorT &w, // output
8 MaskT const &mask,
9 AccumT const &accum,

10 SemiringT const &op,
11 AMatrixT const &A,
12 UVectorT const &u,
13 OutpControl outp); // MERGE/REPLACE

Fig. 3. GBTL C++ mxv signature.

221

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:35:28 UTC from IEEE Xplore.  Restrictions apply. 



G. GraphBLAS Descriptors and Views

As shown in Figure IV-F, the place where GBTL deviates

most from the C API is the use of Descriptors. In the C

API, Descriptors control whether or not input matrices are

transposed, masks are complemented, or if unmasked elements

of the output are cleared (the replace flag). For GBTL, we

decided to improve readability and allow the template system

to generate more efficient code. Compare the following two

mxv calls:

1 mxv(w, m, GrB_PLUS_INT32, GrB_PLUS_TIMES_SEMIRING_INT32,
2 A, u, GrB_Desc_RCT0); // C API
3 mxv(w, complement(m), Plus<int>, PlusTimesSemiring<int>,
4 transpose(A), u, REPLACE); // GBTL C++ API

Instead of encoding “complement the mask, transpose the first

input matrix, and set the replace flag” in a descriptor at the end

of the argument list, GBTL uses complement views to wrap

masks, transpose views to wrap input matrices and a replace

flag. In the C++ code above, the intent is clearer at the call site.

Through generics, these views are types that can be used to

select which code paths are most efficient without necessarily

having to materialize complements or transposes.

Views can also be used for indexing and performing

operations on submatrices without explicitly copying the matrix.

Handling views in a way that meets user’s needs without undue

complexity for the implementor will be a key issue as we define

the C++ API.

V. CONCLUSIONS AND FUTURE WORK

The GraphBLAS C API is well established. A growing

community is developing algorithms and contributing them to

the LAGraph project [12]. We see an increased demand for a

C++ API, especially from large scale, parallel and distributed

framework developers. There are C++ libraries that already

implement all or most of the mathematical functionality of

GraphBLAS [1], [2], [16] on which we can base our work

on a C++ API. We will also align our work closely around

proposed C++ Standard Library extensions in the linear algebra

[4], [8] and graph domains [14]. Work on the C++ API will

occur in conjunction with work on distributed and parallel

support. Hence, we are following the parallel execution policy

extensions introduced in C++17 and how they may influence

our design.

ACKNOWLEDGMENTS AND DISCLAIMERS

We thank the members of the GraphBLAS forum. This

material is based upon work funded and supported by the

Department of Defense under Contract No. FA8702-15-D-

0002 with Carnegie Mellon University for the operation of

the Software Engineering Institute, a federally funded research

and development center [DM20-0209]. Benjamin Brock and

Aydın Buluç were supported in part by the DOE Office

of Advanced Scientific Computing Research under contract

number DEAC02-05CH11231 and in part by NSF under Award

No. 1823034.

REFERENCES

[1] Graphblas template library (GBTL), v. 2.0. https://github.com/cmu-
sei/gbtl.

[2] Aydın Buluç and John R Gilbert. The combinatorial blas: design,
implementation, and applications. The International Journal of High
Performance Computing Applications, 25(4):496–509, 2011.

[3] Aydın Buluç, Timothy Mattson, Scott McMillan, José Moreira, and Carl
Yang. The graphblas c api specification. GraphBLAS. org, Tech. Rep.,
version 1.3.0, 2019.

[4] Guy Davidson and Bob Steagall. P1385r5: A proposal to add
linear algebra support to the c++ standard library. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2020/p1385r5.pdf, January 2020.

[5] Timothy A Davis. Algorithm 1000: Suitesparse: Graphblas: Graph
algorithms in the language of sparse linear algebra. ACM Transactions
on Mathematical Software (TOMS), 45(4):1–25, 2019.

[6] K. Ekanadham, W. P. Horn, Manoj Kumar, Joefon Jann, José Moreira,
Pratap Pattnaik, Mauricio Serrano, Gabriel Tanase, and Hao Yu. Graph
Programming Interface (GPI): A linear algebra programming model
for large scale graph computations. In Proc. ACM Intl. Conference on
Computing Frontiers, CF ’16, pages 72–81, New York, NY, USA, 2016.

[7] Gaël Guennebaud, Benoı̂t Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[8] Mark Hoemann, David Hollman, Christian Trott, Daniel Sunderland,
Nevin Liber, Siva Rajamanickam, Li-Ta Lo, Graham Lopez, Peter Caday,
Sarah Knepper, Piotr Luszczek, and Timothy Costa. P1673r1: A free
function linear algebra interface based on the BLAS. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2019/p1673r1.html, June 2019.

[9] Jeremy Kepner, Peter Aaltonen, David Bader, Aydın Buluç, Franz
Franchetti, John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew
Lumsdaine, Henning Meyerhenke, Scott McMillan, José Moreira, John
Owens, Carl Yang, Marcin Zalewski, and Timothy Mattson. Mathematical
foundations of the GraphBLAS. In IEEE High Performance Extreme
Computing (HPEC), 2016.

[10] Jeremy Kepner and John Gilbert. Graph algorithms in the language of
linear algebra, volume 22. SIAM, 2011.

[11] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman
Amarasinghe. The tensor algebra compiler. Proc. ACM Program. Lang.,
1(OOPSLA):77:1–77:29, October 2017.

[12] Tim Mattson, Timothy A Davis, Manoj Kumar, Aydin Buluc, Scott
McMillan, José Moreira, and Carl Yang. Lagraph: A community effort
to collect graph algorithms built on top of the graphblas. In IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 276–284. IEEE, 2019.

[13] Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond,
and Nichols A. Romero. Elemental: A new framework for distributed
memory dense matrix computations. ACM Trans. Math. Softw., 39(2),
February 2013.

[14] Phillip Ratzloff, Richard Dosselmann, and Michael
Wong. P1709r1: Graph library. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2019/p1709r1.pdf, January 2019.

[15] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary,
Subramanya R Dulloor, Michael J Anderson, Satya Gautam Vadlamudi,
Dipankar Das, and Pradeep Dubey. Graphmat: High performance graph
analytics made productive. Proceedings of the VLDB Endowment,
8(11):1214–1225, 2015.

[16] Carl Yang, Aydın Buluç, and John D Owens. Graphblast: A high-
performance linear algebra-based graph framework on the gpu. arXiv
preprint arXiv:1908.01407, 2019.

[17] Peter Zhang, Marcin Zalewski, Andrew Lumsdaine, Samantha Misurda,
and Scott McMillan. GBTL-CUDA: Graph algorithms and primitives
for GPUs. In IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 912–920. IEEE, 2016.

222

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:35:28 UTC from IEEE Xplore.  Restrictions apply. 


