
A scalable graph generation algorithm to sample
over a given shell distribution

M. Yusuf Özkaya∗, M. Fatih Balın∗, Ali Pınar†, Ümit V. Çatalyürek∗
∗Georgia Institute of Technology, School of Computational Science and Engineeering, Atlanta, GA, USA

†Sandia National Laboratories, Livermore, CA, USA

Email: {myozka, balin, umit}@gatech.edu, apinar@sandia.gov

Abstract—Graphs are commonly used to model the relation-
ships between various entities. These graphs can be enormously
large and thus, scalable graph analysis has been the subject
of many research efforts. To enable scalable analytics, many
researchers have focused on generating realistic graphs that sup-
port controlled experiments for understanding how algorithms
perform under changing graph features. Significant progress has
been made on scalable graph generation which preserve some
important graph properties (e.g., degree distribution, clustering
coefficients).

In this paper, we study how to sample a graph from the space
of graphs with a given shell distribution. Shell distribution is
related to the k-core, which is the largest subgraph where each
vertex is connected to at least k other vertices. A k-shell is
the subset of vertices that are in k-core but not (k + 1)-core,
and the shell distribution comprises the sizes of these shells.
Core decompositions are widely used to extract information from
graphs and to assist other computations.

We present a scalable shared and distributed memory graph
generator that, given a shell decomposition, generates a random
graph that conforms to it.

Our extensive experimental results show the efficiency and
scalability of our methods. Our algorithm generates 233 vertices
and 237 edges in less than 50 seconds on 384 cores. 1

Index Terms—graph generation, scalable graph algorithms,
distributed algorithms, shared memory.

I. INTRODUCTION

Graphs have emerged as the standard language to model

interactions between entities in many applications including

social sciences, biology, cyber security, and finance. Graphs

derived from real-world datasets can scale up to billions of

entities and relations. Many researchers focus their efforts

on analyzing these networks to increase understanding of

the inherent interaction properties between entities of these

networks. Despite the availability of many public data sets,

a lack of real-world data at larger scales continues to hinder

computational efforts.

To mitigate this problem, many research efforts focus on

synthetic graph generators which closely capture properties

of real world graphs. There are two main challenges here:

What are the critical properties that need to be preserved? And

1This work is funded by the Laboratory Directed Research and Develop-
ment program of Sandia National Laboratories. Sandia National Laboratories
is a multimission laboratory managed and operated by National Technology
& Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525.

how can we generate such graphs efficiently while preserving

the desired properties? Notable efforts in this area include

preferential attachment models such as [5], [9], which are

build on the “rich keep getting richer” principle, Kronecker

graphs [22], which generate a recursive structure, degree

and joint degree distribution-based methods [10], [36], and

BTER [19], which preserves both the degree distribution

and the clustering coefficient distribution. Some generators

are application driven such as Internet-specific [12], road

connectivity [6], and infrastructure [25]. Other efforts specifi-

cally focus on benchmarking such as the LFR [21] networks

for community detection algorithms. Stochastic block mod-

els [16], while designed as a generative model, are also used

to generate test cases. Additional efforts use a sample graph

to generate a (scaled) replica [37].

Many works focus on delivering synthetic graphs at scale,

as few real-world graphs are small, and subsequently, synthetic

copies required for an accurate analysis and interpretation

must be large. Some of the works focusing on scalable graph

generators are [37], [35], [32], [30], [20], [14]. Recent

work of Funke et al. [14] focuses on scalable generation of

Erdos-Renyi [13], Random Geometric [29], Random Hyper-

bolic [38], and Random Delaunay Graphs [30].

In this work, we focus on a well-known, important property

that indirectly affects density and structure of a graph: core de-
composition. The k-core of a graph is the maximal connected

subgraph in which each node is connected to at least k other

nodes. Typical core decomposition algorithms break down the

graph by incrementing k until the core is empty. It has been

observed that real graphs have much larger cores than random

graphs [33]. This is due to locally dense structures which

reveal information about the underlying system. As such,

the core decomposition of graphs have been used in many

applications, such as network visualization [3], [39], charac-

terizing the internet topology [4], [8], accelerating community

detection [28], resilience of communities [15], identifying

anomalous network nodes [34], finding influencers [1], [18],

[23], predicting protein functions [2], explaining jamming

transitions [26], and explaining structural collapse of ecosys-

tems [27].

Baur et al. [7], proposed an algorithm that given a shell

decomposition histogram N and a shell-connectivity matrix M
that stores inter-shell and intra-shell edge counts, generates a

graph from inside out. That is, it starts from the highest shell

227

2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-7281-7445-7/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPSW50202.2020.00051

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:32:31 UTC from IEEE Xplore. Restrictions apply.

value and progressively adds shells as layers to the graph.

To further improve the quality of the resulting graphs, they

propose methods of edge rewiring and swapping to adjust the

degree distribution and connected components, although it is

not always easy to find the correct ranges that make the graph

realizable.

Here, we present S3G2, Scalable Shell Sequence Graph
Generator, set of parallel graph generators that given a shell

decomposition of a graph, generates a random graph that

conforms to this decomposition. Our work is based on the

sequential work of Karwa et al. [17]. These algorithms are

equivalent to ALGORITHM 3 of Karwa et al. They generate a

graph from the space of graphs with a given shell distribution

histogram where any graph can be generated with a positive

probability (see Theorem 9 of [17]). This does not imply

a uniform sampling of possible graphs. Despite empirical

evidence of near-uniform distributions over possible graphs,

formally quantifying the bias of the distribution is an open

question.

This work provides carefully designed shared-memory and

distributed-memory parallel algorithms for this process. Our

main contributions are:

• Design and analysis of shared and distributed memory

algorithms for the graph generator,

• Analysis of best and worst cases,

• Extensive empirical evaluation of the proposed parallel

algorithms, and

• A software package containing implementations of our

parallel algorithms as well as the optimized sequential

algorithm.2

The rest of the paper is organized as follows. First, the

model introduction and formalization of the problem is in

Section II. Section III introduces and explains major issues

to tackle in parallel approaches to preserve the probabilistic

properties of sequential algorithm. Next, the proposed shared

memory/distributed algorithms are described in Sections IV

and V, respectively, and they are evaluated through extensive

simulations in Section VI. Finally, conclusion and directions

for future work are given in Section VII.

II. BACKGROUND

A. Definitions and Notations

An undirected graph G = (V,E), contains a set of vertices

V and a set of edges E of the form e = {u, v}, where the

edge e is undirected. We limit our focus on simple undirected

graphs where there are no self-loops (e = {u, u}). The degree
of a vertex u is the number of vertices that are connected to

u. A subgraph Gs = (Vs, Es), is a graph where Vs ⊆ V and

Es ⊆ E. A k-clique is a complete graph on k vertices.

The k-core of a graph G, is the maximal connected subgraph

of G in which all vertices have degree of at least k in the

subgraph. A vertex u has a coreness (or also referred as k-
shell value) k, if it is in some k-cores of the graph but no

(k + 1)-cores. The degeneracy (or kmax) of a graph G is the

2Available at: http://tda.gatech.edu/software/s3g2/

largest k such that there is a non-empty k-core. Algorithm 1

outlines a process known as peeling, which computes a k-

shell sequence, s, i.e., k-shell values si, for all vi ∈ V , by

repeatedly removing all vertices with degree less than k. This

algorithm also returns the degeneracy (kmax) of the graph.

Algorithm 1: Compute Core Values

Data: a graph G = (V,E)
Result: si, ∀vi ∈ V and kmax

1 si ← −1, ∀vi ∈ V
2 k ← 0
3 repeat
4 Remove vertices with degree at most k (and their

associated edges) in G until there are no changes

to G (i.e., if at least one vertex is removed, restart
on the remaining G).

5 Assign the value k (i.e., si ← k) for all removed

vertices in the previous step (i.e., line 4).

6 k ← k + 1
7 until G = ∅
8 return s, k − 1

We define kmax-shell histogram (array of kmax+1 integers),

(S0, S1, S2, . . . Skmax
) to describe the sizes of a graph’s shells.

That is, the graph has n = |V | = ∑
i Si vertices in total, and

it has Si vertices with shell value i, for i = 0, 1, 2, . . . kmax.

Theorem 1. There exists a graph G with a given shell his-
togram, (S0, S1, S2, . . . Skmax), if and only if Skmax > kmax.

Proof. The necessary condition follows from the definition of

core decomposition. Each vertex in the kmax-core of a graph

should have kmax neighbors and thus there should be at least

kmax + 1 vertices in the core.

To prove sufficiency, we will use a constructive algorithm.

Given the k-shell histogram, we can start by generating the

kmax-core as a (kmax+1)-clique on the first kmax+1 nodes

of the Skmax vertices. Then, add the remaining nodes one-by-

one, connecting them to exactly kmax last elements (i.e., for

vertex vi, the vertices from vi−kmax
to vi−1). For each of the

Skmax−1 vertices in the (kmax− 1)-shell, we connect them to

(kmax − 1) arbitrary vertices in the kmax-shell. Observe that

this will guarantee that all these vertices are in the (kmax−1)-
shell and at the same time, the shell numbers of the vertices

in the graph do not change.

We can continue this procedure for all the shells, processing

the shells in decreasing order.

B. Sequential Algorithm

Karwa et al. [17] presented a sequential algorithm which

forms the baseline of our parallel algorithms. Therefore, here

we briefly present the algorithm, with only some small tweaks

for performance.

The algorithm generates a graph where the core values of

the vertices are non-decreasingly ordered, i.e., lower vertex

IDs will have lower core values. Furthermore, the algorithm

228

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:32:31 UTC from IEEE Xplore. Restrictions apply.

will generate edges in the vertex ID order, i.e., each vertex

will generate edges only towards the higher ID vertices. For

each vertex vi, there must be at least si edges towards higher

or equal core values as per the definition.

Since the definition of k-core involves vertices with higher

or equal core values for any given vertex in the graph, we can

safely separate any edges from lower shells to higher shells,

as there is no dependency between them. For edges between

pairs of vertices in the same shell, we need to keep a counter

of the required edge count that has been realized before we

reach the current vertex.

The sequential algorithm follows the reverse of the peeling

approach (Alg. 1) to generate graphs. It starts from the lowest

shell value, and generates edges towards vertices with same

or higher shell value. Since the graph is generated in non-

decreasing order of the shell values, it is easier to generate

one where if si < sj then i < j. Other labeled combinations

can be generated by permuting the vertex IDs.

Pseudo-code of the sequential algorithm is given in Alg. 2.

It generates a graph with a shell sequence distribution

that matches a given shell histogram (S0, S1, S2, . . . Sk).
First, the algorithm divides the vertex set into two subsets:

v1, ..., vn−k−1 and vn−k, ..., vn, which are processed in two

separate phases of the algorithm. The first phase is the core of

the algorithm where it uses the reverse of the peeling approach

presented above. The second phase generates the last kmax+1
nodes of the last shell (i.e., kmax-shell). This phase is typically

negligible compared to the first phase in terms of runtime (see

Table I).

The main points from the sequential algorithm are:

• Any vertex may generate at most si edges towards higher

index vertices

• The only dependency among vertices i and j is between

vertices where si = sj .

• The last kmax + 1 vertices require a special case (Phase
2).

In addition, for random number generators, any distribution

that covers the entire space can be used to achieve a variation

of this algorithm that can generate all possible graphs with

a given shell sequence with a positive probability. Changing

the probability of selecting a node with the same shell value,

and skewing the probability distribution of random subset size

towards either end would allow one to adjust the average total

number of edges in the generated graphs. In our experiments,

we applied the uniform distribution for all random number

generation as in Karwa et al. [17].

III. S3G2: SCALABLE SHELL SEQUENCE GRAPH

GENERATION

Since Phase 1 is the most time consuming part of the

sequential algorithm (see Table I), we parallelize this phase by

simply partitioning the work required for shells and/or vertices.

If the workload, consisting of separate shells, can be divided

in a properly balanced fashion to the processing elements

(PEs), then, the shells can be processed in a pleasingly par-
allel fashion using the sequential algorithm, without requiring

Algorithm 2: Generate graph with given shell his-

togram

Data: a shell histogram (S0, S1, S2, . . . Sk).
Result: a graph G with shell sequence matching the

given histogram.

1 G(V,E)← G({v1, v2, ..., vn}, ∅)
2 initialize shell values s1, s2, ..., sn using histogram S
3 ti ← 0, ∀i = 1, 2, . . . , n

// Phase 1
4 for i← 1 to n− k − 1 do
5 Choose a random subset R of {vi+1, ...vn} where

max{0, si − ti} ≤ |R| ≤ si
6 for vj ∈ R do
7 Add edge (vi, vj) to G
8 if si = sj then tj ← tj + 1

// Phase 2
9 Rem← (vi : n− k ≤ i ≤ n)

10 Swap all vi where ti = 0 to the end of Rem
11 while Rem �= ∅ do
12 Assign vi = last element of Rem
13 Rem← Rem \ {vi}
14 Choose a random subset R of Rem with

|Rem| − ti ≤ |R|
15 for vj ∈ R do
16 Add edge (vi, vj) to G
17 if si = sj then tj ← tj + 1

18 for vj ∈ Rem do
19 tj ← tj − 1
20 if tj = 0 then
21 Rem← Rem \ {vj}
22 Add edges from vj to all vertices in Rem

any communication. If this is not possible, we partition the

vertices, in the shells, to different PEs but communicate the

information required by the higher ID vertices.

The sequential algorithm (Alg. 2) generates a random num-

ber of edges (line 5) for each vertex in the range from its

minimum number of edges (si − ti) to the shell value itself

(si), where ti is the number of received edges from lower ID

vertices with the same shell value (i.e., edges contribute to the

k-core value of the vertex). If a vertex already received enough

edges from the vertices in the same shell, then it does not need

to generate any edges but may still choose to do so. In the

parallel algorithms, we treat this operation (line 5) as a two-

step procedure. The maximum number of edges each vertex

may generate is bounded by its shell value. We can assume

the worst and generate all those edges. Next is to decide on

the random number of edges each vertex generates, which

requires knowledge about the edges coming from the vertices

with lower IDs within the same shell.

If the PEs do not communicate this information, the al-

gorithm cannot generate all possible graphs: It forces the

229

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:32:31 UTC from IEEE Xplore. Restrictions apply.

nodes that have dependencies to nodes in previous PEs to

create edges towards higher indices. Our parallel algorithms

tackle this problem by executing multiple fix rounds where

all PEs relay the information of edge counts they generate

to the PEs containing the corresponding higher-ID vertices.

This information is used by the receiving PE to re-select a

random subset size with the updated information. In other

words, our algorithms first generate an array of possible edges

from a node. Next, they generate a random subset size (which

is equal to the size of this array at this moment). Then, the

fix rounds only change how many elements of this array are

being used, by updating the subset size. The shared memory

algorithm asynchronously invalidates the affected nodes, and

queues them to be processed again, achieving the same goal.

Observe that this is not a re-run of the whole generation for

a node but just a range of confirmed edges for it.

In distributed memory setting, this re-selection for a vertex

vi may cause the previous information sent about vi’s edges

to be obsolete/incorrect, thus causing a cascading effect. Our

distributed memory algorithm assigns the workload to PEs by

increasing vertex ID, thus requiring sending information only

towards higher rank PEs. Thus, in the worst case scenario the

parallel algorithm running on p PEs will have up to p − 1
cascading fix rounds.

By properly handling the fix operations in our parallel

algorithms, the overall mechanics of the sequential algorithm

are preserved. As a result, the parallel algorithms conform to

all statistical findings reported in [17].

IV. S3G2: SHARED MEMORY ALGORITHM

The shared-memory algorithm starts by computing the com-

putational load of each shell, and schedules them with the

largest-job-first scheduling policy, that is, it orders the shells

in non-decreasing workload and starts assigning them in that

order. However, the actual scheduling is completely dynamic

after the p initial assignments, where p is number of PEs,

or threads in shared-memory code. Computation of each shell

can be done independently from each other (See Section II-B).

Therefore p initial threads are assigned to shells in a round-

robin manner. When a thread completes its work, it searches

for new work. If all shells are being processed by other threads,

it joins the shell with largest load, still following a round-robin

fashion among least crowded shells and takes a task from that

shell. This process continues until all shells and their tasks

have executed.

There are three implementation choices in our shared mem-

ory algorithm:

a) Granularity: We assign tasks to threads. The finest

granularity task is to process a single vertex, which we call

VERTEX. The coarsest granularity task is to process a complete

shell, however, in real-world cases kmax values might be

smaller than or close to the available number of PEs p. Hence,

we decided to use medium granularity tasks, where processing

a chunk of 64 vertices constitutes a task. We named this option

as CHUNK.

b) Memory: We implemented two options: i) GLOBAL:

All the necessary data for the algorithm is stored in shared

memory accessible by all threads, 2) LOCAL: The processing

of each shell is almost independent, therefore in this model

we have local data for each shell, which is allocated by the

first thread that takes a task from that shell.

c) Queue: Since a vertex vi requires information of the

edges from vertices with lower IDs (with the same shell value),

to define the number of edges towards vertices with higher IDs

that it needs to generate, we process the vertices in increasing

index order as much as possible. To do so, we implemented

two different queues: i) mutex-protected priority queue: where

all the vertices with the same shell value are pushed to a

priority queue, and access to the queue is protected via a

mutex, which we call MUTEX, ii) a lock-free version of the

approximate priority queue proposed by Matias et al. [24]. We

call this TRIE, and it uses bitwise and atomic operations to

keep track of the queue’s state.

In the shared memory algorithm, there are no global fix

rounds. Instead, nodes that have obsolete information are

simply re-added to the task queue.

V. S3G2- DISTRIBUTED MEMORY ALGORITHM

Alg. 3 outlines our high level parallel distributed algorithm,

which follows the two phases of the sequential algorithm

(Alg. 2) and in addition, includes a fix phase following Phase

1. The algorithm starts by distributing the shell histogram

and work (load) to PEs according to chosen load balancing

algorithm (loadBalAlg), and then each PE generates the shell

sequence they are responsible for, using the input histogram.

After that Phase 1 starts, where each PE first generates a

random subset (of size si for vertex vi) of edges (Ri) for each

of their local vertices. Then, they pick a random subset of the

edges in Ri. For each chosen edge {vi, vj} (i < j), tj values

need to be incremented, which may require communication if

vj is not a local vertex.

After Phase 1 is completed, the parallel algorithm requires

a fix phase (Alg. 4). In this phase updates from other PEs

regarding local nodes are accumulated, and if updates cause a

change in the number of outgoing edges selected for a vertex,

edges from that vertex are adjusted accordingly. Then, an

update for the affected neighbors of the vertex is prepared.

If those affected vertices do not reside in the same PE as the

vertex, updates to the corresponding PEs are sent in the next

round.

The performance of this distributed memory algorithm

mainly depends on two choices: i) the load balancing algo-

rithm (loadBalAlg) and ii) the communication scheme used for

the updates. Below we present these choices in more detail.

A. Load Balancing

We start by defining the metric, and then discuss the

algorithms used to partition the load.

230

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:32:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: Distributed Memory Algorithm

Data: p: number of PEs; Pi is the processor executing

this algorithm; and a histogram of number of

vertices per shell sorted by shell value

hist:(S0, S1, ..., Sk)
Result: Generated graph

1 distributeLoad(hist, loadBalAlg, Pi, p)

2 s← generateLocalShellVector(hist)
// Phase 1

3 for i← 0 to |s| − 1 do
4 Choose a random subset Ri of {vi+1, ...vn} with

|Ri| = si

5 for i← 0 to |s| − 1 do
6 Pick a subset size c where

max{0, si − ti} ≤ c ≤ si
7 for vj ∈ Ri(slice[0, c− 1]) do
8 if si = sj then
9 if vj is a local vertex then

10 tj ← tj + 1

11 else
12 Pt ← Processor containing vertex vj
13 sendVal[Pt][vj] ← sendVal[Pt][vj] +1

// Fix the misinformation
14 DistributedFixPhase()

// Phase 2
15 if Pi = Pp−1 then
16 Initialize Rem← (vi : n− k ≤ i ≤ n)
17 Swap all vi where ti = 0 to the end of Rem
18 while Rem �= ∅ do
19 Assign vi = last element of Rem
20 Rem← Rem \ {vi}
21 Choose a random subset R of Rem with

|Rem| − ti ≤ |R|
22 for vj ∈ R do
23 Add edge (vi, vj) to G
24 if si = sj then tj ← tj + 1

25 for vj ∈ Rem do
26 tj ← tj − 1
27 if tj = 0 then
28 Rem← Rem \ {vj}
29 Add edges from vj to all vertices in

Rem

1) Metric: In a general sense, load is the work a computing

resource is assigned. In particular for our algorithm, load is

a function of n = |V | and m = |E| assigned to a PE,

as for each vertex the process generates a number of edges

and stores them locally. In each PE, the distributed algorithm

generates si edges for each vertex vi over all vi it is assigned

(≈ O(m)). While doing this, the algorithm generates and

Algorithm 4: DistributedFixPhase

1 while true do
2 Prepare sendCnts, sendData using non-zero

sendV al
3 globalSend ← ALLREDUCE (sendCnts, MAX)

4 if globalSend = 0 then
5 break

6 Communicate the sendDatas to their targets

7 recvData ← Receive data from each process to

receive from

8 for < v, a > in recvData do
// < vertex, adjustment > pair

9 oldval = tv
10 tv ← tv + a
11 if oldval = tv then continue;

12 oldc ← Rv.size()
13 Repick a subset size c where

max{0, sv − tv} ≤ c ≤ sv
14 s, l← minmax(oldc, c)
15 d← (oldc < c) ? 1 : −1
16 for vj in Rv[s, l − 1] do
17 if sv = sj then
18 if vj is a local vertex then
19 tj ← tj − 1

20 else
21 Pt ← Processor containing vj
22 sendVal[Pt][j] ← sendVal[Pt][j] + d

maintains several arrays proportional to n. For each edge that

points out of the current process, it inserts/updates a value

in a priority queue dedicated to the receiver process. Thus,

we cannot simply say the load is proportional to number of

vertices, or edges alone.

We use a linear expression of number of vertices and edges

to define the workload due to its simplicity and effectiveness in

practice. The workload is, then, characterized as w = α∗n+m,

where α is a small constant (i.e., α < 10).

2) Load Balancing Algorithm: Our algorithm utilizes con-

tinuous block partitioning, which is also known as chains-on-
chains partitioning [31]. We have implemented two heuristics

and one optimal algorithm.

a) Greedy Balancing (GB): First, the total and average

load per PE is computed. Then, starting from the first PE,

each PE takes vertices until it reaches the average load. The

maximum load imbalance is bounded by kmax(+α), which is

typically small in real world graphs.

b) Relaxed Greedy Balancing (RB): The communication

and fix phases are only required when the vertices of a shell

value are divided into multiple PEs. Thus, a logical approach

would be to try minimizing the spread of each shell value as

much as possible with minimal damage to the load balance.

We relaxed our greedy balancing approach to allow PEs to load

231

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:32:31 UTC from IEEE Xplore. Restrictions apply.

approximately x% more if the remaining load for a given shell

after the current PE takes its share is less than that amount.

Similarly, we allow a PE to delegate its remaining load to the

next PE if it is going to get the first x% of the average load

from a shell. In the experiments, we tried x values ranging

from 10 to 16, and results were similar.
c) Optimal Balancing (OB): The Greedy Balancing and

Relaxed Greedy Balancing algorithms are heuristics. We also

experimented with a variation of Nicol’s 1D Optimal Parti-

tioning algorithm, NicolPlus [31].

B. Communication Scheme Variations

1) ALL-TO-ALL (A2A): All PEs communicate the amount

of data (counts) they need to send to other PEs, followed by

an ALLREDUCE (AR) with the total amount of information

(nSent) needing to be sent from each PE. If the maximum

of these total amounts is zero, that means no process is

sending information to anyone, which completes the fix phase.

Otherwise, all PEs communicate the data they have for other

PEs.
2) ALL-TO-ALL-SPLIT (Split after first fix round) (A2AS):

Due to the block distribution we used and nature of our

algorithm, there actually are subsets of PEs that (i) may

communicate, (ii) communicate only once, or (iii) never com-

municate. Let us start by reviewing the possible load of a PE

Pm in terms of the shells it participates in. Figure 1 shows

the three possible cases of shell distribution for any given PE.

First, as Figure 1(a) shows, the PE may be processing a single

shell value. Nodes of this shell may (or may not) have started

in a lower rank PE and (may or may not) continue in a higher

rank PE. Second, as Figure 1(b) shows, the PE might have

two shell values. In this case, si < sj and the PE Pm is the

first (smallest-ranked) PE that contains the shell sj . Similarly,

it is the last (highest-ranked) PE that contains the shell si. The

third case (Figure 1(c)), is where the PE contains more than

two shell values. Similar to second case, the PE Pm is the last

PE that holds si and first that holds sj . All the shell values

{sx|si < sx < sj}, are only contained by Pm.

Pm

si
(a) One

Pm

si sj
(b) Two

Pm

si ... sj
(c) More than two

Figure 1. Possible shell distributions for a given PE Pm.

Now, considering all three possibilities, and noting that

communication is required only within the same shell (only

between the PEs that hold vertices from the same shell), a PE

Pm may be at most participating in the communication related

to two shells: si and sj . Furthermore, the PE Pm may only

send data regarding sj and receive data regarding si. Note that

in Case 1(a), the PE may both receive and send data regarding

si, and in the Case 1(c), the PE cannot receive any data related

with shell values {sx|si < sx < sj}, because there is no other

PE that holds them.

Following this and the nature of the cascading updates

explained earlier, we can deduce that the only time a PE

Pm may communicate regarding two different shell values

is the first round of communications where it may receive

information for si and send information about sj . Since Pm

is the first PE that contains the shell sj , it does not receive

any information regarding this shell, and does not require any

further updates or communications. (We will give more detail

about this in the next section, Sec V-B3.)

Hence, after the first fix round, the PEs may send and receive

information only about the first shell si they contain. This

means, after the first fix round, we can split the PEs into

disjoint subgroups according to the first shell value they have,

and only communicate within their group instead of ALL-TO-

ALL communication.

In summary, all PEs do the first fix round the same as

explained in V-B1. For the following rounds, each PE only

communicates within their own group. The performance of

this variant is expected to beat ALL-TO-ALL as the number

of PEs increases and the shells are distributed to many PEs.

3) POINT-TO-POINT (P2P): On average, realistic graphs

contain more than a single shell value. Thus, they rarely

require communicating with all other PEs. And, at each round,

the number of PEs a PE need to communicate with decreases,

rendering ALL-TO-ALL communication unnecessary. Instead,

allowing PEs to communicate with each other POINT-TO-

POINT, asynchronously, and synchronizing them once each

round is better when there are not many PEs that require a fix

round.

In this approach, each PE posts its non-blocking receives

for the data they might receive from each PE. Then, each

posts their non-blocking sends to each PE working on the

same shell value. All PEs wait on any of the receives posted,

then deserialize and insert all received information into a local

priority queue of the vertex IDs, as vertices of the same shell

value need to be processed in increasing order.

After transferring the information, all PEs synchronize with

an ALLREDUCE to receive the maximum globalSend value

from any PE, learning if the fix phase is complete. Here,

ALLREDUCE is also not required to be global after the first

round of fix phase, it can be split into separate ALLREDUCEs

for each group with respect to the first shell value of each PE.

In general, the communication requirement comes from

the updates received from another PE Pj that invalidates the

current PE Pi’s computation. If a PE Pi is the first PE that

works on a shell value, then it cannot receive any updates

invalidating its computation. Thus, it should not create a new

fix communication packet.

All PEs, within the subset of PEs that work on the same

shell may only send fixes if their place in the ascending PE-

ID ordered list is greater than or equal to the fix round. For

example, PE P0 (first PE that processes a shell value), can

only send fixes in the first round, P1 may send in first and

second rounds, etc.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

Our algorithms take a shell distribution as input. Since our

algorithm is fast, we use 6 real-world undirected unweighted

232

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:32:31 UTC from IEEE Xplore. Restrictions apply.

Table I
GRAPH INSTANCES.

Graph |V | |E| avg. deg. kmax Phase 1 % Phase 2 %
cit-Patents 3,774,768 16,518,947 4.38 64 99.990 0.010
friendster 65,608,366 1,806,067,135 27.53 304 99.999 0.001
soc-LiveJournal1 4,847,571 42,851,237 8.84 372 99.853 0.147
twitter 61,578,414 1,202,513,046 19.53 2,488 99.749 0.251
uk-2005 39,459,925 783,027,125 19.84 588 99.984 0.016
wb-edu 9,845,725 46,236,105 4.70 448 99.860 0.140

simple graphs with more than 3M vertices, Table I presents

number of nodes, edges, average degree, kmax value for each

graph, and percentages of the computation time breakdown

for Phase 1 and 2 of the sequential algorithm. Note that

computation time of Phase 2 is negligible compared to that

of Phase 1.

Figure 2 shows the normalized number of edges in each k-

core value for the graphs in our dataset (cutoff at k = 80 for

readability, the succeeding shells have near zero percent). This

shows that the load of a single k-shell, in real-world graphs,

do not comprise a large portion of the graph.

Figure 2. Normalized number of edges for the first 80 k-shells for
the graphs in our dataset.

The experiments were conducted on three different mi-

croarchitectures: Cascade Lake, Newell, and Haswell. Table II

details the properties of the computing platforms.

Table II
OVERVIEW OF THE ARCHITECTURES.

Cascade Lake Newell Haswell
CPU Intel, Xeon 6226 POWER9 Intel, E7-4850
Cores × Sockets 2× 12 2× 16 4× 14
Host Memory 193 GB 320 GB 2 TB
L2-Cache 1 MB 512 KB 256 KB
L3-Cache 19 MB 10 MB 35 MB
Compute Nodes 16 1 1
Networking Mellanox CS7500 Switch
Technology EDR 100 Gb/s

The experiments were conducted using the GNU G++-

9.2.0 compiler (with -O3 optimization level) with C++17

standard libraries. The distributed algorithm uses the MPI

implementation MVAPICH2 (v2.3.1) and is executed only on

the Cascade Lake system. The shared memory implementation

uses the C++11 threads library. All experiments are repeated

25 times and arithmetic means are reported unless otherwise

noted.

B. Shared Memory Experiments

For the shared memory algorithm, we have 3 choices and 2

options per choice. Due to space limitations, we only present

5 different variants of the algorithm:
Algorithm Memory Granularity Queue

Naive GLOBAL VERTEX MUTEX

Trie GLOBAL VERTEX TRIE

ChunkTrie GLOBAL CHUNK TRIE

Local LOCAL VERTEX MUTEX

ChunkTrieLocal LOCAL CHUNK TRIE

Figure 3 shows the comparison of these variants on the

three architectures in Table II. As expected, Naive performs

worst. Our lock-free TRIE priority queue improves the per-

formance significantly as the number of threads increases.

Increasing granularity and using chunking further improves

the performance. One unexpected, but welcomed result of

this experiment was the performance of the Local algorithm.

It performs significantly better than Naive, as one would

expect, but is also comparable to other sophisticated variants.

When combined with those sophisticated variants, the final

algorithm, ChunkTrieLocal gave the best performance on all

architectures.

C. Distributed Memory Experiments

1) Parameter Tuning for Load Balance: There are multiple

parameters to tune. For the sake of simplicity in the presen-

tation, we will test only one at a time and fix the rest. For

this experiment, we set the communication scheme to ALL-

TO-ALL and only present results for p = 96 PEs (4 nodes ×
24 cores on Cascade Lake).

The first experiment is to select load balancing algorithm.

Figure 4 shows average execution time of the three algorithms

using histograms of the 6 real-world graphs as inputs. Just

looking at the graph generation runtime, OB and GB have

similar performance. The critical observation here is that

GB, in general, gives a similar performance to OB since the

imbalance is bounded by the maximum weight of a single

work element (plus alpha). For our dataset, the largest is

2496 with a degeneracy of 2488 and α = 8 (twitter). On

the other hand, computation of OB, requires the computation

of a prefix sum. In the case of sequential computation at

each process, this takes about 0.2 seconds in friendster
and twitter graphs. In case of a parallel prefix sum, we

are at the mercy of network bandwidth and latency for this

computation. Thus, the lead goes to GB. OB does the best job

of minimizing the maximum load, however, the computation

233

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:32:31 UTC from IEEE Xplore. Restrictions apply.

(a) Cascade Lake (b) Newell (c) Haswell

Figure 3. Speedup Comparison of Shared Memory: geometric means of speedups for 6 graphs in our dataset for number of processes on:
a) Cascade Lake, b) Newell, c) Haswell.

Figure 4. Runtime comparison of 3 distribution methods on 96 cores,
α = 3, communication scheme = ALL-TO-ALL.

of the optimal distribution itself is significantly slowing down

overall runtime.

In the fix period, the total runtime is proportional to the

highest number of cascading updates (maximum number of

fix iterations). RB is supposed to help decrease this number

by relaxing the load balance in favor of decreasing the com-

munication. However, if the maximum number of iterations

is not decreasing, the application will have to wait for the

lagging PEs and the relaxation does not practically decrease

the runtime. In addition, the increased load imbalance may

even slow down the overall runtime.

For the subsequent experiments, we will use GB.

The second experiment is to understand the load balancing

metric. The parameter α explained in V-A1 can affect the

performance significantly. We compared all 3 load balancing

algorithms with all α = [0, 9) values. Our results showed

similar behavior for different algorithms. Here, due to space

limitations we only show the results with GB. Figure 5, shows

the performance profile comparing alpha values on 24, 48, 72,

96, and 120 cores (1, 2, 3, 4, and 5 nodes respectively) for GB
decomposition. A performance profile shows the ratio of the

problem instances in which a variation obtains a value (run

time) on a problem instance that is no larger than θ times the

best value reached by any variation for that instance [11]. The

figure shows that GB with α = 3 and α = 4 give the best

overall runtimes, and as α deviates from those values, the

performance degrades. In addition, α = 3 achieves runtimes

within ×1.12 the fastest instance 90% of the time. Thus, for

the subsequent experiments, we will use α = 3.

Figure 5. The performance profile showing the comparison of total
runtimes with ALL-TO-ALL communication scheme with GB variant
and 9 α values. For number of cores: (24, 48, 72, 96, 120).

2) Selecting Communication Scheme: Figure 7 shows the

comparison of geometric means of speedups for three com-

munication schemes (see Sec. V-B): ALL-TO-ALL, ALL-

TO-ALL-SPLIT, and POINT-TO-POINT. All schemes perform

similarly within a single node (up to 24 processes). Starting

from 24 processes, ALL-TO-ALL-SPLIT starts outperforming

ALL-TO-ALL, as the number of processes increases. The

performance of POINT-TO-POINT communication surpasses

the other variations since it can reduce the number of pairs

communicating at each fix round, and can better overlap

communication and computation.

D. Comparing Average Degrees

Figure 6 shows the number of edges for the generated

graphs (for two sample cases) over a different number of

cores (25 repetitions in each case), together with the runs for

sequential algorithm (100 repetitions). As shown, the range

for the number of edges generated is not vast. Compared

to total number of edges, the variation is very small. For

friendster, the sequential algorithm experiences a max-

imum of 0.004% variation for 100 repetitions, and it is very

similar for the distributed algorithm.

E. Strong Scaling Experiments

Figure 8 shows the strong scaling of our algorithm on

Cascade Lake, using 1 to 10 nodes, as the geometric mean

of speedups for our dataset. Shared memory (ChunkTrieLocal)

algorithm is run on single node. Our results on single node

234

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:32:31 UTC from IEEE Xplore. Restrictions apply.

(a) Twitter (b) soc-LiveJournal1

Figure 6. The number of edges for the generated graphs. (Mind the notation for (a), where the range is 1 196 800 000 to 1 196 880 000).

Figure 7. Speedup comparison of communication schemes: geometric
means of speedups for 6 graphs in our dataset.

comparison showed that shared memory implementations do

not provide a significant speedup advantage over the dis-

tributed algorithm. As seen in the figure, our shared memory

and distributed memory algorithms achieved similar perfor-

mances on up to 24 PEs, hence we decided not to implement

a hybrid code.

Our distributed memory algorithm achieves up to 90

speedup on 240 PEs. The slight decrease in the speedup as the

number of PEs increases can be correlated with the increase

in the number of fix rounds (as seen in Fig. 9).

Figure 8. Strong scaling for shared and distributed memory algo-
rithms.

F. Weak Scaling Experiments

Finally, we present the weak scaling experiments. We scale

the graphs from our dataset by ×1, ×2, ×4, ×8, ×16, ×32,

×64, and ×128. (We just multiply the size of each shell by this

amount to reach to a bigger graph. Curve fitting over the his-

tograms yielded insignificant variations.) Figure 10(a) shows

Figure 9. Maximum number of fix rounds for any process per number
of processes.

the weak scaling for our algorithm. The results show that

scaling from ×1 to ×128, our runtime goes at most up to twice

the initial the runtime. The worst result in this experiment is for

the smallest graph cit-Patents, which also has the lowest

kmax value, thus with scaling, communication requirements

increase more for this particular graph. The increase in the

runtime as the number of PEs and the input size increased

proportionally can be further explained with the increase on

the number of fix rounds, as displayed in Fig. 10(b).

Our biggest scale (×128), reaches about 233 vertices and

237 edges. The distributed algorithm can generate this graph

in less than 50 seconds on 384 cores.

VII. CONCLUSION

Our algorithms focus on another well-known graph property

that has not been explored for scalable graph generation:

cores decomposition. We presented scalable shell sequence

based graph generators for both shared memory and distributed

architectures. We analyzed our algorithms’ strength and weak-

nesses, and empirically showed their scalability.

Our future work includes approaches to more realistic graph

generation using shell histograms, extensive analysis of the

quality of generated graphs compared to real-world datasets

and conformity to well-known graph properties.

ACKNOWLEDGMENTS

We would like to thank Kasimir Gabert for his careful

review and editing of the paper.

235

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:32:31 UTC from IEEE Xplore. Restrictions apply.

(a) Normalized Running time for MPI on 6 graphs in our dataset.
The runtimes for each repetition on each graph is divided by the
shortest runtime achieved for that graph’s scaled version.

(b) Maximum number of fix rounds for any process per number
of processes.

Figure 10. Weak scaling.

REFERENCES

[1] M. A. Al-garadi, K. D. Varathan, and S. D. Ravana, “Identification of
influential spreaders in online social networks using interaction weighted
k-core decomposition method,” Physica A, vol. 468, 2017.

[2] M. Altaf-Ul-Amine, K. Nishikata, T. Korna et al., “Prediction of protein
functions based on k-cores of protein-protein interaction networks and
amino acid sequences,” Genome Informatics, vol. 14, pp. 498–499, 2003.

[3] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani,
“Large scale networks fingerprinting and visualization using the k-core
decomposition,” in NIPS, 2005.

[4] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “K-
core decomposition of Internet graphs: hierarchies, self-similarity and
measurement biases,” Networks and Heterogeneous Media, vol. 3, no. 2,
2008.

[5] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[6] R. Bauer, M. Krug, S. Meinert, and D. Wagner, “Synthetic road
networks,” in International Conference on Algorithmic Applications in
Management. Springer, 2010, pp. 46–57.

[7] M. Baur, M. Gaertler, R. Görke, M. Krug, and D. Wagner, “Generating
graphs with predefined k-core structure,” in Proceedings of the European
Conference of Complex Systems, 2007.

[8] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir, “A model of
internet topology using k-shell decomposition,” PNAS, vol. 104, no. 27,
pp. 11 150–11 154, 2007.

[9] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 2004, pp. 442–446.

[10] F. Chung and L. Lu, “The average distances in random graphs with given
expected degrees,” Proceedings of the National Academy of Sciences,
vol. 99, no. 25, pp. 15 879–15 882, 2002.

[11] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with
performance profiles,” Mathematical programming, vol. 91, no. 2, pp.
201–213, 2002.

[12] A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “On the scalability of
bgp: The role of topology growth,” IEEE Journal on Selected Areas in
Communications, vol. 28, no. 8, pp. 1250–1261, 2010.

[13] P. Erdos, “On the evolution of random graphs,” Publications of the
mathematical institute of the Hungarian academy of sciences, vol. 5,
pp. 17–61, 1960.

[14] D. Funke, S. Lamm, P. Sanders, C. Schulz, D. Strash, and M. von
Looz, “Communication-free massively distributed graph generation,” in
IPDPS, May 2018, pp. 336–347.

[15] D. Garcia, P. Mavrodiev, and F. Schweitzer, “Social resilience in online
communities: The autopsy of friendster,” in COSN, 2013.

[16] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels:
First steps,” Social networks, vol. 5, no. 2, pp. 109–137, 1983.

[17] V. Karwa, M. J. Pelsmajer, S. Petrović, D. Stasi, and D. Wilburne,
“Statistical models for cores decomposition of an undirected random
graph,” Electron. J. Statist., vol. 11, no. 1, pp. 1949–1982, 2017.

[18] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E.
Stanley, and H. A. Makse, “Identification of influential spreaders in
complex networks,” Nature physics, vol. 6, no. 11, 2010.

[19] T. G. Kolda, A. Pınar, T. Plantenga, and C. Seshadhri, “A scalable
generative graph model with community structure,” SIAM Journal on
Scientific Computing, vol. 36, no. 5, pp. C424–C452, 2014.

[20] S. Lamm, “Communication efficient algorithms for generating massive
networks,” 2017, master’s thesis.

[21] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for
testing community detection algorithms,” Physical review E, vol. 78,
no. 4, p. 046110, 2008.

[22] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: An approach to modeling networks,” Journal
of Machine Learning Research, vol. 11, no. Feb, pp. 985–1042, 2010.

[23] Y. Liu, M. Tang, T. Zhou, and Y. Do, “Core-like groups result in
invalidation of identifying super-spreader by k-shell decomposition,”
Scientific reports, vol. 5, 2015.

[24] Y. Matias, S. C. Sahinalp, and N. E. Young, “Performance evaluation
of approximate priority queues,” in Proceedings of Fifth DIMACS
Implementation Challenge, 1996.

[25] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach to
universal topology generation,” in MASCOTS 2001, 2001, pp. 346–353.

[26] F. Morone, K. Burleson-Lesser, H. Vinutha, S. Sastry, and H. A. Makse,
“The jamming transition is a k-core percolation transition,” Physica A,
vol. 516, pp. 172–177, 2019.

[27] F. Morone, G. Del Ferraro, and H. A. Makse, “The k-core as a predictor
of structural collapse in mutualistic ecosystems,” Nature Physics, vol. 15,
no. 1, p. 95, 2019.

[28] C. Peng, T. G. Kolda, and A. Pınar, “Accelerating community detection
by using k-core subgraphs,” arXiv preprint arXiv:1403.2226, 2014.

[29] M. Penrose et al., Random geometric graphs. Oxford university press,
2003, vol. 5.

[30] M. Penschuck, “Generating practical random hyperbolic graphs in
near-linear time and with sub-linear memory,” in 16th International
Symposium on Experimental Algorithms (SEA 2017), 2017.

[31] A. Pınar and C. Aykanat, “Fast optimal load balancing algorithms
for 1D partitioning,” J. Parallel Distrib. Comput., vol. 64, no. 8, pp.
974–996, aug 2004.

[32] P. Sanders and C. Schulz, “Scalable generation of scale-free graphs,”
Information Processing Letters, vol. 116, no. 7, pp. 489–491, 2016.

[33] C. Seshadhri, A. Pınar, and T. G. Kolda, “An in-depth analysis of
stochastic kronecker graphs,” J. ACM, vol. 60, no. 2, pp. 13:1–13:32,
May 2013.

[34] K. Shin, T. Eliassi-Rad, and C. Faloutsos, “Corescope: Graph mining
using k-core analysis - patterns, anomalies and algorithms,” in ICDM,
2016.

[35] G. M. Slota, J. Berry, S. D. Hammond, S. Olivier, C. Phillips, and
S. Rajamanickam, “Scalable generation of graphs for benchmarking
HPC community-detection algorithms,” in SC, 2019, pp. 1–14.

[36] I. Stanton and A. Pınar, “Constructing and sampling graphs with a
prescribed joint degree distribution,” J. Exp. Algorithmics, vol. 17, pp.
3.1–3.25, 2012.

[37] C. L. Staudt, M. Hamann, A. Gutfraind, I. Safro, and H. Meyerhenke,
“Generating realistic scaled complex networks,” Applied Network
Science, vol. 2, no. 1, p. 36, Oct 2017.

[38] M. von Looz, M. S. Özdayi, S. Laue, and H. Meyerhenke, “Generating
massive complex networks with hyperbolic geometry faster in practice,”
in IEEE High Perf. Extreme Computing Conf. (HPEC), 2016.

[39] F. Zhao and A. K. Tung, “Large scale cohesive subgraphs discovery for
social network visual analysis,” PVLDB, vol. 6, no. 2, 2012.

236

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:32:31 UTC from IEEE Xplore. Restrictions apply.

