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Abstract—Graphs are increasingly important for modelling
and analysing connected data sets. Traditionally, graph an-
alytical tools targeted global fixed-point computations, while
graph databases focused on simpler transactional read operations
such as retrieving the neighbours of a node. However, recent
applications of graph processing (such as financial fraud detection
and serving personalized recommendations) often necessitate a
mix of the two workload profiles. A potential approach to tackle
these complex workloads is to formulate graph algorithms in the
language of linear algebra. To this end, the recent GraphBLAS
standard defines a linear algebraic graph computational model
and an API for implementing such algorithms. To investigate
its usability and efficiency, we have implemented a GraphBLAS
solution for the “Social Media” case study of the 2018 Transfor-
mation Tool Contest. This paper presents our solution along with
an incrementalized variant to improve its runtime for repeated
evaluations. Preliminary results show that the GraphBLAS-based
solution is competitive but implementing it requires significant
development efforts.

I. CASE STUDY

This paper presents a GraphBLAS [8] solution for the

“Social Media” case study of the 2018 Transformation Tool

Contest [7]. The case study is defined using a familiar social

network-like data model (Fig. 1), based on the schema of the

LDBC Social Network Benchmark [5], and consists of Users
and their Submissions. These submissions form a tree where

the root node is a Post and the rest of the nodes are Comments.

Users can like Comments and form “friends” relations with

each other. Additionally, Comments have a direct pointer to

the root Post to allow quick lookups. Fig. 3a shows an example

graph with two Posts (p1, p2), three Comments (c1, c2,

c3) and four Users (u1, . . . , u4). Solutions are required to

compute two queries, denoted as Q1 and Q2.

Fig. 1: Graph schema of the case study.

(a) Q1: influential posts.

(b) Q2: influential comments.

Fig. 2: Queries in the case study.

Q1: influential posts. Assign a score to each Post, defined

as 10 times the number of their (direct or indirect) Comments
plus the number of Users liking those Comments (Fig. 2a).

Sort Posts according to their score and return the top 3.

Q2: influential comments. Assign a score to each Comment,
based on the friendships of the Users who like that

Comment (Fig. 2b). Based on the graph formed by the User
nodes and their friends edges, for every comment we define

an induced subgraph which contains the Users who like the

Comment and their “friends” relations. The subgraph contains

connected components, i.e. groups of users who know each

other directly or via friends. The score is defined as the sum

of squared component sizes.

Updating the graph. The case study requires solutions to

perform a number of inserts in the graph and return the results

of the queries on the updated graph. Insertions are performed

repeatedly, which favours solutions that use incremental main-

tenance techniques and avoid full recomputations.

Fig. 3 shows the initial graph and the updated graph with

the result scores of Q1 and Q2.

II. THE GRAPHBLAS

A directed graph can be stored as a square adjacency matrix

A ∈ N
n×n, where rows and columns both represent nodes of
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(a) Initial graph and scores. Comment c2 has two components: c2/a
consists of User u1, while c2/b consists of Users u3 and u4. Its
total score is the sum of the component sizes, i.e. 12 + 22 = 5.

(b) Graph after performing an update that inserted six entities: (1) a
friends edge between Users u1 and u4, (2) a likes edge from
User u2 to Comment c2, (3) a Comment node c4 with (4) an
outgoing rootPost edge to Post p1, (5) an outgoing commented
edge to Comment c1, and (6) an incoming likes edge from User
u4. The changes have increased the score of Post p1 and resulted
in Comment c2 having a single component of size 4, therefore
receiving a score of 42 = 16. Comment c4 got a score of 12 = 1.

Fig. 3: Example graphs: initial and updated versions.

the graph and cell Aij contains the number of edges from

node i to node j. If the graph is undirected, the matrix is

symmetric. If the graph nodes and edges have type constraints,

edges are stored per type, and the rows and columns of the

matrix can represent source and target nodes of edges (resp.),

whose number can differ.

An undirected graph can be stored as an incidence matrix

B ∈ {0, 1}n×m
, where rows and columns represent nodes and

edges (resp.). Each column contains 1 for the source and the

target vertex of the edge, otherwise 0.

GraphBLAS is a recently proposed standard built on the

theoretical framework of matrix operations on arbitrary semir-

ings [8], which allows defining graph algorithms in the lan-

guage of linear algebra. The goal of GraphBLAS is to create

a layer of abstraction between the graph algorithms and the

graph analytics framework, separating the concerns of the

algorithm developers from those of the framework developers

and hardware designers. The GraphBLAS standard defines a

C API that can be implemented on a variety of hardware

components (including GPUs and FPGAs).

GraphBLAS stores graphs as sparse matrices which contain

GraphBLAS method name notation

GrB_mxm matrix-matrix multiplication C〈M〉 = A ⊕.⊗ B

GrB_vxm vector-matrix multiplication wT〈mT〉 = uT ⊕.⊗ A
GrB_mxv matrix-vector multiplication w〈m〉 = A ⊕.⊗ u
GrB_eWiseAdd element-wise, C〈M〉 = A ⊕ B

set union w〈m〉 = u ⊕ v
GrB_eWiseMult element-wise, C〈M〉 = A ⊗ B

set intersection w〈m〉 = u ⊗ v
GrB_extract extract submatrix C〈M〉 = A(I , J)

extract subvector w〈m〉 = u(I )
GrB_apply apply unary operator C〈M〉 = f(A)

w〈m〉 = f(u)
GxB_select apply select operator C〈M〉 = f(A, k)

w〈m〉 = f(u, k)
GrB_reduce reduce to vector w〈m〉 = [⊕jA(:, j)]

reduce to scalar s = [⊕ijA(i, j)]

GrB_transpose transpose C〈M〉 = AT

GrB_build matrix from tuples C �→{〈i, j, Cij〉}
vector from tuples w �→{〈i, wi〉}

GrB_extractTuples extract 〈i, j, Aij〉 tuples {〈i, j, Aij〉} �→A
extract 〈i, ui〉 tuples {〈i, ui〉} �→u

TABLE I: Notation of the GraphBLAS operations used in this

paper (based on [3]). Matrix A contains scalar elements Aij ,

vector u contains scalar elements ui, i and j are row and

column indices, I and J are subset of indices, ⊕ and ⊗ are

addition and multiplication operators of an arbitrary semiring,

mask 〈M〉 is used to selectively write to the result.

elements as 〈i, j, Aij〉 tuples. An optional mask can be used

for operations, which limits the evaluation to the non-empty

positions of the mask. Table I contains the list of GraphBLAS

operations used in this paper.

III. SOLUTION

Q1 Batch. Alg. 1 computes the score for every post, then

selects the top 3 posts. In Line 6 row-wise summation of

RootPost matrix produces the number of comments per post,

then a GrB_apply operation multiplies the vector elements

by 10. Line 8 sums up the number of likes the post has via

its comments. For each post, the RootPost adjacency matrix

selects the cells of likesCount vector corresponding to the

comments of the post, then sums up the values. The score for

each post is the element-wise sum of the vectors (Line 9).

Fig. 4a shows an example calculation.

Algorithm 1 Calculate scores of query 1

1: Input
2: RootPost ∈ B

|posts|×|comments| � adjacency matrix
3: likesCount ∈ N

|comments| � # of incoming likes

4: Output
5: scores ∈ N

|posts|
6: sum← [⊕j RootPost(:, j)

]
� row-wise sum

7: repliesScores← 10× sum � apply mul-by-10 op.
8: likesScore← RootPost⊕.⊗ likesCount
9: scores← repliesScores⊕ likesScore

10: return scores

Q1 Incremental. To incrementally evaluate Q1, Alg. 2 updates

the scores for next evaluations and returns the posts with new

scores. Merging the previous top 3 scores and the new ones

yields the new result (new scores overwrite existing ones).

Lines 9 and 10 compute the increment of the score induced by

new comments. In Line 11 the number of likes the comments

204

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:33:18 UTC from IEEE Xplore.  Restrictions apply. 



ܜܛܗ۾ܜܗܗ܀ |comments|

|p
os
ts
| 1 1

1

ܜܖܝܗ۱ܛ܍ܓܑܔ
2
3 ′ܜܛܗ۾ܜܗܗ܀ |comments’|

|p
os
ts
| 1 1 1

1

ܕܝܛ
2
1

૚૙ܔܝܕ
20
10

ܜܛܗ۾ܜܗܗ܀ |comments|

|p
os
ts
| 1 1

1
5

ାܜܖܝܗ۱ܛ܍ܓܑܔ

|c
om

m
en
ts
’|

1

1

2

૚૙ܔܝܕ
10

ܕܝܛ
1

ઢܜܛܗ۾ܜܗܗ܀ |comments’|

|p
os
ts
| 1

܋܁ܛ܍ܑܔܘ܍ܚ ⊕ ܋܁ܛ܍ܓܑܔ = ܛ܍ܚܗ܋ܛ
20 5 25
10 10

Initial evaluationܛ܍ܚܗ܋܁ܛ܍ܑܔܘ܍ܚ

ܛ܍ܚܗ܋܁ܛ܍ܓܑܔ

Total: ܛ܍ܚܗ܋ܛ ା܋܁ܛ܍ܑܔܘ܍ܚ ⊕ ା܋܁ܛ܍ܓܑܔ = ାܛ܍ܚܗ܋ܛ
10 2 12

Update and reevaluationܛ܍ܚܗ܋܁ܛ܍ܑܔܘ܍ܚା

ାܛ܍ܚܗ܋܁ܛ܍ܓܑܔ

Total changes: ܛ܍ܚܗ܋ܛା

(a) Q1.

In
iti

al
 e

va
lu

at
io

n

ܛ܍ܓܑۺ
|users|

|c
om

m
en
ts
| 1 1

1 1 1
2,3

1,3,4

ܿ = 1

ܿ = 2

ܛ܌ܖ܍ܑܚ۴
|users|

|u
se
rs
|

1
1 1

1 1
1

1
1

1
1

ܿ = 1

ܿ = 2

ܛ܌ܑ_ܘܕܗ܋
2
2

1
3
3

CC

CC

Σ௜ܿݏ௜
ଶ = 2ଶ = 4

Σ௜ܿݏ௜
ଶ = 1ଶ + 2ଶ = 5

ܛ܍ܚܗ܋ܛ

|c
om

m
en
ts
| 4

5

′ܛ܍ܓܑۺ
|users’|

|c
om

m
en
ts
’|

1 1
1 1 1 1

1

2

1

ܛ܌ܖ܍ܑܚ۴ܟ܍ۼ incidence matrix
1

1

GxB_select ۱௜௝ۯ = 2

܋܉ vector

1reduce: ∨௝ ۱ۯ : , ݆

extractTuples
૛, 1

ܿ = 4

ܿ = 2
′ܛ܌ܖ܍ܑܚ۴

|users’|

|u
se
rs
’|

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

CC

CC
4

Σ௜ܿݏ௜
ଶ = 4ଶ = 16

Σ௜ܿݏ௜
ଶ = 1ଶ = 1

ઢܛ܍ܚܗ܋ܛ

|c
om

m
en
ts
’|

16

1

ܛ܌ܑ_ܘܕܗ܋
1
1
1
1

U
pd

at
e 

an
d 

re
ev

al
ua

tio
n

۱ۯ matrix

|c
om

m
en
ts
’|

2

1,2,3,4

4

ܿ = 2

ܿ = 4

ܽܿ = ด૝
୼௖௢௠௠௘௡௧௦

∪ ૛, ૝
୼௟௜௞௘௦
૛,ଶ , ૝,ସ

∪ ૛
1 2 3

4

5

6 7 8 9

1
2 3 4

(b) Q2. CC: connected components, comp ids: component ids, csi: size of component i.

Fig. 4: Execution of the algorithms on the example graph: initial evaluation and incremental maintenance. Recall that the

update in the example inserts the following relevant entities (highlighted with grey background): a friends edge between Users
u1 and u4, a likes edge from User u2 to Comment c2, a Comment node c4 with an outgoing rootPost edge to Post p1
and an incoming likes edge from User u4.

newly received are summed up per post. Two types of incre-

ments are summed up in Line 12. For subsequent evaluations

the scores are updated using the increment vector (Line 13). To

find the top 3 scores only the previous maximum values and

the posts with updated scores are considered. Line 14 yields

the score values which changed by assigning the scores′

vector via the scores+ increment vector as a mask, which

allows values in the result only if the mask has a value at the

corresponding position. Fig. 4a shows an example calculation.

Algorithm 2 Update scores of query 1

1: Input
2: scores ∈ N

|posts′| � previous scores

3: likesCount+ ∈ N
|comments′| � new incoming likes

4: ΔRootPost ∈ B
|posts′|×|comments′| � new rootPost edges

5: RootPost′ ∈ B
|posts′|×|comments′| � all rootPost edges

6: Output
7: Δscores ∈ N

|posts′| � only changed scores

8: scores′ ∈ N
|posts′| � all scores

9: sum← [⊕j ΔRootPost(:, j)
]

� # of new comments

10: repliesScores+ ← 10× sum
11: likesScore+ ← RootPost′ ⊕.⊗ likesCount+

12: scores+ ← repliesScores+ ⊕ likesScore+ � score increment
13: scores′ ← scores⊕ scores+ � update scores
14: Δscores〈scores+〉 ← scores′ � updated scores where changed
15: return Δscores, scores′

Q2 Batch. The batch evaluation of Q2 is depicted in the upper

part of Fig. 4b. The algorithm computes the score for every

comment, then selects the top 3 comments. To collect the users

of each subgraph, Step 1 extracts the elements of Likes
matrix as 〈c, u, 1〉 tuples and collects them into sets of user

IDs (u) per comment (c). To produce the subgraph, for each

comment Step 2 extracts a submatrix based on the users

selected. Step 3 finds connected components in the subgraph

using the FastSV algorithm [11] of the LAGraph library [9].

This produces a vector containing the component id for every

user. Step 4 yields the squared sum of component sizes, i.e.

the score for each comment.

Q2 Incremental. The incremental evaluation of Q2 is de-

picted in the lower part of Fig. 4b. The algorithm returns

the comments with new scores (Δscores) by reevaluating

the comments which the updates might impact on. Merging

the previous top 3 scores and the new ones yields the new

result (new scores overwrite existing ones). The first phase of

the algorithm (Steps 1 – 5 ) collects the comments which

might be affected by the updates (ac set), then the second

phase (Steps 6 – 9 ) computes the new scores of these

comments using the batch algorithm already mentioned.

A comment might be affected by an update if (1) it is

a new comment, (2) the comment receives a new incoming

likes edge from a user, resulting in a new component or the

expansion of an existing one, or (3) two users who like the

comment become friends, which merges the components the

users belong to (if the components differ). Step 5 collects

the IDs of these comments.

Steps 1 – 4 compute the comments which might be

affected by new friends edges. NewFriends incidence matrix

represents each new friendship by a column having two

1-valued cells for the two users. For every new friendship (i.e.

pair of users) Step 1 computes how many user of the pair

likes each comment (0, 1, or 2). During the matrix-matrix

multiplication each new column of friendships selects two

columns of Likes′ matrix and sums them up into AC matrix.

Step 2 keeps only 2-valued cells, i.e. where both users of

a friendship liked the comment, so they are present in the

subgraph and the new friendship might merge components.

Then Step 3 produces a row-wise sum using binary or oper-

ation. Step 4 extracts 〈c, 1〉 tuples from the result vector and

collects the comment IDs from these tuples. Step 5 collects

all the comments which might be affected by the update. The

next steps reevaluate the scores of these comments.

IV. EVALUATION

To evaluate the performance and scalability of our solution,

we have used the benchmark framework of the case study [7].
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Fig. 5: Execution times of the queries with respect to the graph

sizes in the load and initial evaluation, and the update and
reevaluation phases. Both axes are logarithmic.

1 2 4 8 16 32 64 128 256 512 1024

#nodes 1274 2071 4350 7530 15k 30k 58k 115k 225k 443k 859k
#edges 2533 4207 9118 18k 35k 71k 143k 287k 568k 1.1M 2.3M
#inserts 67 120 132 104 110 117 68 86 45 112 74

TABLE II: Graph sizes w.r.t. to the scale factor.

Our GraphBLAS solution was implemented using Suite-

Sparse:GraphBLAS [3]. The complete solution consists of

approx. 1100 lines of C++ of code and is available open-

source1. As a performance baseline, we used the reference

implementation of the case study, written in the .NET Model-

ing Framework [6] (NMF Batch) and its incremental version

(NMF Incremental). As described in Sec. III, we have imple-

mented two variants: GraphBLAS Batch always performs a

full evaluation, while GraphBLAS Incremental performs a full

evaluation during the first step, then switches to incremental

maintenance for the subsequent steps. We compared single-

and multi-threaded performance of our GraphBLAS solution

using 8 threads for the latter. The GraphBLAS implementation

we used has built-in parallelization of the operators [1], addi-

tionally, we parallelized Q2 using OpenMP constructs at the

granularity of comments. We ran the benchmark on synthetic

graphs of increasing sizes following powers of 2. The elements

in the graphs follow the Facebook-like distribution enforced

by the LDBC Datagen [5]). For each graph, the number of

nodes/edges and the number of inserted elements are shown

in Table II. We ran the computation on each graph size 5 times

and report the geometric mean value of these runs.

1https://github.com/TransformationToolContest/ttc2018liveContest/

We executed the benchmark on a cloud virtual machine with

a 24-core Intel R© Xeon R© Platinum 8167M CPU with Hyper

Threading at 2.00 GHz, 320 GB RAM, and HDD storage.

The machine was running the Ubuntu 18.04 operating system,

and the .NET Core 3.1.100 runtime. The GraphBLAS solu-

tion was using SuiteSparse:GraphBLAS 3.2.0draft20 compiled

with GCC/G++ 7.4.0.

The execution times are shown in Fig. 5. Both tools scale

similarly for the load and initial evaluation phase. Graph-

BLAS is the fastest, while the incremental NMF variant is the

slowest as it initially builds a dependency graph from the query

to assist incremental change propagatation. During the update
and reevaluation, both tools gain significant performance

benefits from incrementalization as they scale better for large

graph sizes. GraphBLAS has similar execution times for Q1

as NMF, and outperforms NMF for Q2. Parallel processing

of updates in GraphBLAS has a small performance gain for

the incremental version as the updates are small. However,

for GraphBLAS Batch, the difference is half of an order of

magnitude in favour of the parallel version as it requires a

costly recomputation over the whole graph, which negates the

parallelization overhead.

V. CONCLUSION AND FUTURE WORK

This paper presented a linear algebraic solution for the

“Social Media” case study of the 2018 Transformation Tool

Contest. While the presented solution already exhibits good

performance and scalability compared to the reference im-

plementation, a number of optimizations could be applied

as future work: (1) using updatable compressed matrix rep-

resentation formats such as faimGraph [10] or Hornet [2]

and (2) running an incremental connected components al-

gorithm [4] in Step 8 of Q2. Additionally, it would be

interesting to investigate the performance of the solution in the

presence of more realistic update operations, including both

insertions and removals.
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