
Considerations for a Distributed GraphBLAS API

Benjamin Brock∗, Aydın Buluç†∗, Timothy G. Mattson‡, Scott McMillan§,
José E. Moreira¶, Roger Pearce‖, Oguz Selvitopi†, Trevor Steil∗∗

∗ EECS Department, University of California, Berkeley, CA
† Computational Research Department, Lawrence Berkeley National Laboratory, Berkeley, CA

‡ Parallel Computing Labs, Intel, Hillsboro, OR
§ Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA

¶ IBM Thomas J. Watson Research Center, Yorktown Heights, NY
‖ Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA

∗∗ School of Mathematics, University of Minnesota, Minneapolis, MN

Abstract—The GraphBLAS emerged from an international
effort to standardize linear-algebraic building blocks for com-
puting on graphs and graph-structured data. The GraphBLAS
is expressed as a C API and has paved the way for multiple
implementations. The GraphBLAS C API, however, does not
define how distributed-memory parallelism should be handled.
This paper reviews various approaches for a GraphBLAS API
for distributed computing. This work is guided by our experience
with existing distributed memory libraries. Our goal for this
paper is to highlight the pros and cons of different approaches
rather than to advocate for one particular choice.

I. INTRODUCTION

There are multiple ways to represent graphs. One approach

exploits the connection between graphs and sparse matrices; in

which graph algorithms are expressed in the language of linear

algebra [10]. The GraphBLAS forum was formed to standard-

ize an API for this approach to Graph algorithms. The resulting

specification is called the GraphBLAS which is defined by a

pair of documents: a mathematical specification [9] and a C

API [7].

The GraphBLAS C API is mature and has been used to

support multiple implementations of the GraphBLAS. The

current API (version 1.3.1) encourages parallel algorithms

embedded “inside” the GraphBLAS functions, but it says

nothing about explicit management of parallelism. That API is

adequate for multithreaded libraries [2], but it does not address

issues raised by more general parallelism.

In this position paper, we start with a discussion of the

changes needed in the GraphBLAS C API to support general

parallelism. We then discuss the complex case of distributed

memory parallelism, suggesting a few specific options. We

do not, however, choose any of these options. Our goal at

this point is to define our options and foster a discussion

about distributed memory parallelism with the GraphBLAS

community; a critical discussion as we anticipate creating a

GraphBLAS specification that supports distributed memory

parallelism over the next year.

II. PARALLELISM IN GRAPHBLAS

We begin by establishing the terminology we will use in

this paper. A program defines operations which constitute the

work associated with the program. The program is compiled

and linked to create an executable. An instance of a running

executable and the resources needed to support it are a job. The

work of a program can be decomposed into one or more sets of

tasks that can execute concurrently. Given parallel hardware,

these concurrent tasks can execute in parallel thereby letting

the work defined by a job complete in less time.

A parallel API defines mechanisms to exploit the concur-

rency in a program to support execution on parallel hardware.

Fundamental issues addressed by any parallel API include:

• Management of a collection of execution agents that make

forward progress in parallel.

• Mapping the work of a program (the tasks) onto the

execution agents.

• Mapping of data onto the memories associated with the

execution agents.

• Coordination (i.e., communication and synchronization)

between execution agents.

A program that supports parallel execution of a job is called

a parallel program. For a scalable parallel program, the job

should execute efficiently meaning they should effectively

utilize the processing elements of the parallel system. Fur-

thermore, the programs must execute correctly meaning they

avoid numerical instabilities and concurrency errors (data

races and deadlocks). We will consider two broad classes of

parallel systems: shared memory multiprocessor systems and

distributed memory multicomputer systems.

For a shared memory multiprocessor system, the execution

agents are threads so the associated parallel program is called

a multithreaded program. The set of threads execute in a single

address space. In most modern shared memory multiprocessor

systems, sharing of data between threads is managed by a

cache coherency system. This greatly simplifies the effort

a programmer must expend to map data between execution

agents (though for best performance, the nonuniform memory

features of the system must be taken into account which can

be quite complicated). Coordination in these systems involves

ordering potentially conflicting loads and stores to shared

addresses (synchronization).

215

2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-7281-7445-7/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPSW50202.2020.00048

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:36:14 UTC from IEEE Xplore.  Restrictions apply. 



On a distributed memory system, the execution agent is typ-

ically a process. Processes are gathered into groups called pro-
cess groups. Each process has its own memory, which works

well with systems which lack physical shared memory (such

as “shared-nothing” clusters). Lacking a shared address space,

the challenge with these systems is how to decompose the data

associated with a job into partitions that can be mapped onto

a group of processes. The processes communicate by passing

messages between each other, either explicitly for message

passing APIs such as MPI (Message Passing Interface), or

implicitly behind a more abstract put/get API in a partitioned

global address space (PGAS) model. Messaging occupies a

namespace of sorts called a communication context. This lets

programmers organize messages into distinct sets that do not

conflict. The most commonly used message passing library

is MPI. In MPI, the process group and context for messages

are combined into a single object called the communicator.

Any library built on top of MPI must decide how to manage

its communicators. This is a key aspect of our design of a

GraphBLAS API for distributed memory systems.

The current GraphBLAS specification is suitable for mul-

tithreaded programs where the threads are hidden from the

programmer inside the individual GraphBLAS methods. In

essence, the multithreaded and sequential APIs are nearly the

same. Due to the complexities of partitioning the data in a job

and the need to manage communicators, however, the API for

a distributed memory system cannot make parallelism com-

pletely abstract. By necessity, we need to define an explicitly

parallel API for distributed memory systems.

III. DISTRIBUTED GRAPHBLAS: DATA DISTRIBUTION

The GraphBLAS API presents objects as opaque data struc-

tures. This lets implementors of GraphBLAS libraries hide the

complexity of data structures and how they map onto different

systems. It is important to continue with this approach as we

move into a distributed GraphBLAS API. This implies that we

will need to adopt a Partitioned Global Address Space (PGAS)

approach which views GraphBLAS objects as distributed data

types. An important design decision with PGAS systems is

how indices of array objects handled.

In libraries where users manage the explicit details of their

data structures, the programmer must work in terms of two

index spaces: local indices and global indices. The local

indices correspond to elements of an object that physically

reside in the memory of a particular process. The global

indices are the “mathematically defined” indices for the full

array object. When working with such libraries the user must

manage the mapping between local and global indicies.

Given our goal of presenting users with opaque data struc-

tures, we believe it is important to avoid local vs. global index

mappings. Users should only interact with global indices with

any mapping onto local indices occurring inside GraphBLAS

functions.

IV. DISTRIBUTED GRAPHBLAS: COMMUNICATORS

A user writes a parallel program for execution on a dis-

tributed system. This program combined with needed re-

sources (such as the data set) constitutes a job. Inside the pro-

gram, groups of processes interact by exchanging messages.

A communicator is used to prevent conflicts between different

process groups or communication contexts.
When a distributed data structure is created, it is associated

with a specific communicator. Only the processes of a par-

ticular group that share a communication context can access

that data structure. Our use of the PGAS model for opaque

distributed data structures lets us hide many of the details of

our data structures. Since the processes in a process group are

not hidden behind an abstract interface, the communicators are

at some level exposed to programmers.
Based on the choice of how the communicators are exposed,

we consider three alternatives for the design of a distributed

GraphBLAS API:

(A) Each job is associated with one and only one commu-

nicator at a given time. That is, the communicator is a

property of the job. This leaves open the possibility of

changing communicators during the execution of a job,

but that is not a very common (or particularly useful)

operation if the processes available to a job are fixed.

(B) Each GraphBLAS object in the job is associated with one

and only one communicator. That is, the communicator is

the property of an object. An object is associated with a

communicator when it is created. That object can change

to a different communicator through a redistribute opera-

tion, discussed in more detail later. An object must have

an associated communicator through its entire lifetime,

from creation to deletion.

(C) Each GraphBLAS method call is associated with one

and only one communicator. That is, the communicator

is the property of a method call. That means that a

communicator must be an explicit argument in most,

if not all, GraphBLAS methods. For methods such as

GrB free the communicator can be trivially inferred.

We now discuss each of these alternatives in more detail.

Even within a given alternative there are several design

choices. We will focus on those choices that seem more

relevant at this level of the design.

A. One communicator per job
This is the path of least resistance to evolve the current

GraphBLAS C API into a distributed API. Since there is

only one communicator for the job, and it can be static

throughout the execution of the job, it suffices to create that

communicator at job start. In an MPI distributed environment,

it could simply be the default global communicator of MPI,

MPI Comm world. No changes to the existing GraphBLAS

API would be necessary (other than, perhaps, passing the

communicator to GrB init.)
The major drawback of the “one communicator per job”

approach is its lack of flexibility in organizing the computa-

tion. One cannot split the processes of a job into subgroups, or

216

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:36:14 UTC from IEEE Xplore.  Restrictions apply. 



control the distribution of data structures. Furthermore, every

operation would have to execute on the entire process group

which may not always be the more efficient solution.

B. One communicator per object

In this option, the communicator is passed as an argument

to object creation methods. This requires a change to the

existing GraphBLAS API. Object creation through duplication,

however, reuses the communicator so those methods would not

change.

APIs of methods that perform GraphBLAS operations (such

as GrB mxm and GrB mxv) would not need to change under

this option. If the objects are local, these operations are strictly

local and follow the semantics of the current API. If the objects

are distributed, then it is natural to require that all objects share

the same communicator. Mixing distributed and local objects

may be allowed in some cases. For example, it is reasonable

to multiply a distributed matrix by a local vector if the result

vector is also local.

If the distributed objects do not all have the same commu-

nicator, there are two alternatives. We can provide explicit

redistribute methods (e.g., GrB redistribute), requiring the

programmer to first redistribute the inputs so that they all

have the same communicator, or perform the redistribution

implicitly in the called method.

Redistribution, whether implicit or explicit, would require

that every process in both the source and target process-

groups must participate in the operation, otherwise the implied

collective communication operations would not be possible.

An important benefit of this option is that other than object

creation methods, the same code would work with both the

sequential and distributed GraphBLAS implementations.

C. One communicator per method

This is the most intrusive option. Almost every Graph-

BLAS method would need to be augmented with an optional

communicator argument. Object creation behaves as in the

“one communicator per object” approach above. GraphBLAS

operations also explicitly take a communicator, specifying

which group of processes should perform the computation.

We would need to define under which circumstances a

distributed operation is legal. The easier requirement would

be that all the objects passed to the operation use the same

communicator as the operation itself. This would make it triv-

ial for the processes in the communicator to cooperate in the

execution of the operation. Any difference in communicators

would require explicit redistribution.

We can also support automatic redistribution of the objects.

Again, for this to work correctly, all tasks in all involved

communicators would have to participate in the operation.

In this approach, distributed and sequential method calls

are clearly different, and all communicators are explicitly

identified (and have to be explicitly passed when calling other

routines). Code is clear and there is no obfuscation, but at

the cost of incompatibility between distributed and (current)

sequential APIs.

V. EXTENDING THE GRAPHBLAS CONTEXT

The needs of multithreaded and distributed memory com-

puting are disjoint suggesting a need for two different APIs.

We could merge them, however, by extending the concept of

the GraphBLAS context.
The GraphBLAS context is “an instance of the GraphBLAS

API implementation as seen by an application”. Currently, a

program can only have a single GraphBLAS context. We could

make GrB init reentrant so that it could be called multiple

times in a single job. Each time it is called a new “instance

of the GraphBLAS API implementation” is created. With

multiple contexts in a single program, we would need to define

a context-handle to pass to GrB finalize() when terminating

a context.
With multiple contexts in a single program, the issues

discussed previously for handling communicators in the dis-

tributed GraphBLAS would need to be addressed. In particular,

we would need to choose between option B (bind the Graph-

BLAS context to an object when that object is created) or

option C (bind the GraphBLAS context to each method when

it is called).
With support for multiple GraphBLAS contexts, we would

support multithreaded and distributed execution by extending

the GrB Mode parameter passed to call to GrB init() so it

includes:

• Serial semantics: The current GrB BLOCKING and

GrB NONBLOCKING modes.

• Multithreaded execution: A new descriptor object to

which parameters for managing multithreaded execution

can be assigned including the number of threads and

binding/place-modes needed on NUMA systems.

• Distributed memory execution: A new descriptor object

to hold the communicator described earlier. Ideally, the

communicator would come from the underlying commu-

nication library (such as MPI).

This GraphBLAS context extension will let users intermix

GraphBLAS operations executed in a local context, with

distributed GraphBLAS operations executed in a distributed

context.
Many details need to be worked out. We expect that objects

created in one context cannot be used in a different context.

We may need to add GraphBLAS methods to convert an

object from one context to another. Furthermore, functions

called inside a distributed context must be called as collective

functions among all processes inside the distributed context.
Working out all the changes required to support this ex-

panded scope of the GraphBLAS context will be complicated.

We believe these complications would be well justified, how-

ever, as GraphBLAS users would benefit greatly from being

able to move from serial to multithreaded to distributed exe-

cution by changing just a single parameter (the GrB MODE)

within the call to GrB init()

VI. RELATED WORK

There are few existing distributed sparse matrix libraries

with support for semiring algebra. Combinatorial BLAS

217

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:36:14 UTC from IEEE Xplore.  Restrictions apply. 



(CombBLAS) [6] and Cyclops Tensor Framework (CTF) [11]

are perhaps the only two that exist right now. By default,

CombBLAS uses a 2D block distribution for both matrices and

vectors, though it also includes support for an experimental 3D

matrix distribution. By contrast, CTF is more general in terms

of its ability to distribute its objects and can handle a large

spectrum within a virtual 3D process grid.

Each distributed object in CombBLAS has its own com-

municator (the “one communicator per object” approach de-

scribed among the possible options in Section IV). Whenever

a CombBLAS function is called on multiple CombBLAS

objects, the communicators are compared and only if they

are compatible will the computation proceed. CombBLAS

executes bulk-synchronously, relying heavily on collective

MPI-based inter-process communication using subcommu-

nicators. Furthermore, all CombBLAS functions are effi-

ciently parallelized with OpenMP to take advantage of intra-

node parallelism. Since CombBLAS predates GraphBLAS, it

does not follow the GraphBLAS API. Furthermore, Comb-

BLAS is missing certain concepts such as accumulators and

masks. However, it has the benefit of already having scal-

able implementations [5] of some of the most challenging

GraphBLAS primitives such as GrB mxm, GrB extract,
and GrB assign. At Berkeley, we are currently building a

distributed GraphBLAS by extending and modifying Comb-

BLAS. We are also planning a more asynchronous Graph-

BLAS implementation on top of the Berkeley Container Li-

brary [4].

Livermore Distributed GraphBLAS (LDGB) is a distributed

MPI/C++ GraphBLAS implementation in development at

Lawrence Livermore National Laboratory. LDGB uses the API

of the GraphBLAS Template Library (GBTL) [1]. While this

API does not strictly adhere to the GraphBLAS C API, it

provides the same functionality with an interface more familiar

to C++ developers. In its current implementation, LDGB uses

a global communicator to organize processes. Matrices and

vectors are distributed in a 1D cyclic fashion within this global

communicator. The GraphBLAS operations are implemented

in an asynchronous manner using the YGM communication

library [3]. The LDGB project has implemented most of the

GraphBLAS 1.2 specification. One notable gap is the Graph-

BLAS error model, which presents issues with propagating

errors in a distributed setting, as also noted by Hughey [8].

LDGB is being developed as a mostly drop-in replacement for

GBTL. The project will be made publicly available in the near

future.

VII. CONCLUSION

We face a range of options as we design the distributed

GraphBLAS API. Clearly, the API will use a PGAS perspec-

tive with GraphBLAS objects as abstract distributed data types.

The underlying communication infrastructure will map onto a

coordination system such as MPI. This led to 3 options for

how communicators will be bound to the GraphBLAS API.

We need input from GraphBLAS users to validate which of

these options are best.

Another key question is whether we need separate APIs for

the multithreaded, serial, and distributed cases. One approach

might be to expand the meaning of the graphBLAS context

to include multithreaded and distributed execution modes. A

programmer could then switch between different execution

cases by simply changing the GrB init() call.

One thing is clear at this point. The design of a distributed

memory GraphBLAS specification will be complicated. We

need feedback early in this process to make sure the API meets

the needs of programmers. It is our hope that this brief position

paper will drive such conversations and increase the chances

that the 1.0 draft of the distributed GraphBLAS specification

will be successful.

ACKNOWLEDGMENTS AND DISCLAIMERS

We thank the members of the GraphBLAS forum. This

material is based upon work funded and supported by the

Department of Defense under Contract No. FA8702-15-D-

0002 with Carnegie Mellon University for the operation of

the Software Engineering Institute, a federally funded research

and development center [DM20-0211]. Benjamin Brock and

Aydın Buluç were supported in part by the DOE Office of Ad-

vanced Scientific Computing Research under contract number

DEAC02-05CH11231 and in part by NSF under Award No.

1823034.

REFERENCES

[1] Graphblas template library (GBTL). https://github.com/cmu-sei/gbtl.
[2] Mohsen Aznaveh, Jinhao Chem, Timothy A. Davis, Balint Hegyi,

Scott P. Kolodziej, Timothy G. Mattson, and Gabor Szarnyas. Parallel
GraphBLAS with OpenMP. In SIAM workshop on Combinatorial
Scientific Computing, 2020.

[3] R. Pearce B. Priest, T. Steil, G. Sanders, T. La Fond, and K. Iwabuchi.
You’ve got mail (ygm): Building missing asynchronous communication
primitives. In 2019 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), page 2, May 2019.

[4] Benjamin Brock, Aydın Buluç, and Katherine Yelick. BCL: A cross-
platform distributed data structures library. In Proceedings of the 48th
International Conference on Parallel Processing, pages 1–10, 2019.

[5] Aydin Buluç and John R Gilbert. Parallel sparse matrix-matrix multi-
plication and indexing: Implementation and experiments. SIAM Journal
on Scientific Computing, 34(4):C170–C191, 2012.

[6] Aydın Buluç and John R. Gilbert. The Combinatorial BLAS: Design,
implementation, and applications. The Intl. Journal of High Performance
Computing Applications, 25(4):496 – 509, 2011.

[7] Aydın Buluç, Timothy Mattson, Scott McMillan, José Moreira, and Carl
Yang. The GraphBLAS C API Specification. GraphBLAS. org, Tech.
Rep., version 1.3.0, 2019.

[8] Curtis Hughey. Tumbling down the GraphBLAS rabbit hole with
SHMEM. In Workshop on OpenSHMEM and Related Technologies,
pages 125–136. Springer, 2018.

[9] Jeremy Kepner, Peter Aaltonen, David Bader, Aydın Buluç, Franz
Franchetti, John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew
Lumsdaine, Henning Meyerhenke, Scott McMillan, José Moreira, John
Owens, Carl Yang, Marcin Zalewski, and Timothy Mattson. Mathemati-
cal foundations of the GraphBLAS. In IEEE High Performance Extreme
Computing (HPEC), 2016.

[10] Jeremy Kepner and John Gilbert. Graph algorithms in the language of
linear algebra, volume 22. SIAM, 2011.

[11] Edgar Solomonik, Devin Matthews, Jeff Hammond, and James Demmel.
Cyclops tensor framework: Reducing communication and eliminating
load imbalance in massively parallel contractions. In IEEE Intr.
Symposium on Parallel & Distributed Processing, pages 813–824, 2013.

218

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:36:14 UTC from IEEE Xplore.  Restrictions apply. 


