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Abstract—We demonstrate nonstochastic Kronecker graph
generators produce massive-scale bipartite graphs with ground
truth global and local properties and discuss their use for
validation of graph analytics. Given two small connected scale-
free graphs with adjacency matrices A and B, their Kronecker
product graph [1] has adjacency matrix C = A ⊗ B. We first
demonstrate that having one factor A non-bipartite (alternatively,
adding all self loops to a bipartite A) with other factor B bipartite
ensures GC is bipartite and connected.

Formulas for ground truth of many graph properties (includ-
ing degree, diameter, and eccentricity) carry over directly from
the general case presented in previous work [2], [3]. However, the
analysis of higher-order structure and dense structure is different
in bipartite graphs, as no odd-length cycles exist (including
triangles) and the densest possible structures are bicliques. We
derive formulas to give ground truth for 4-cycles (a.k.a. squares
or butterflies) at every vertex and edge in GC . Additionally, we
demonstrate that bipartite communities (dense vertex subsets)
in the factors A,B yield dense bipartite communities in the
Kronecker product C.

We additionally discuss interesting properties of Kronecker
product graphs revealed by the formulas an their impact on
using them as benchmarks with ground truth for various complex
analytics. For example, for connected A and B of nontrivial size,
GC has 4-cycles at vertices/edges associated with vertices/edges
in A and B that have none, making it difficult to generate
graphs with ground truth bipartite generalizations of truss
decomposition (e.g. the k-wing decomposition of [4]).

I. INTRODUCTION

Bipartite graphs are common in real-world relational data

analysis applications, including text analysis (term-document

matrices), machine learning with discrete features (entity-

feature matrices), and recommender systems (user-rating ma-

trices). Graph analytics are an important data analysis tool for

bipartite graph datasets, and developing performant algorithms

and their implementations for various graph computations

is a vibrant research area. It is important for the research

community to have a collection of large-to-massive-scale bi-

partite graph datasets to validate their algorithm development
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AC52-07NA27344, and was approved for public release as LLNL-CONF-
807167.
‡ This material is based upon work funded and supported by the Department

of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally
funded research and development center [DM20-0214].

Fig. 1: Small examples of Kronecker products yielding bipartite graphs.
(Top) Two bipartite connected factors yield a bipartite, yet disconnected graph,
as discussed in §III-A. (Lower-Left) If both factors are connected, and one
is non-bipartite, a connected bipartite graph is produced (additional edges are
dashed and purple). (Lower-Right) Alternatively, if bipartite factors have self
loops added to all vertices of one factor, the product is also bipartite and
connected (additional edges are dashed and red). See Thms. 1 and 2.

and compare performance with other techniques. Collections

of open real-world graphs are extremely important for this

(several are available [5]–[7]), but synthetic generated graphs

play an important role as well, particularly when the datasets

are so large that knowing the correct answer of a given

graph computation is challenging. Here we propose using non-

stochastic Kronecker graphs to efficiently generate massive

graphs with ground truth of various challenging local and

global graph statistics, while having several of the challenging

aspects of real-world graphs (heavy-tail degree distribution,

some dense community structure, et cetera).

For non-bipartite graphs a fundamental structure used in

community analysis is the 3-cycle (a.k.a. triangle). Local

counts of triangles at vertices and edges are important in

several aspects of graph analysis, including clustering coef-

ficients [8], truss decomposition [9], and edge reweighting

for improved clustering [10], [11]. Previous work on non-

stochastic Kronecker generators include several formulas for

ground truth triangle counts [3], [12] and this technique has

been used to validate global triangle counting on a trillion edge

graph [13], a peta-scale graph computation.

For bipartite graphs, no odd-length cycle exists, so the

4-cycle (a.k.a square, or butterfly) plays the role of the

3-cycle. Multiple proposals exist for extending clustering

coefficient [14]–[16] and truss decomposition [4], [17] for

bipartite graphs. Direct computation of local and global 4-
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cycle counts in sparse, real-world massive bipartite graphs

G(V , E) is even more costly than 3-cycle counts in similar-

sized non-bipartite graphs. A simple algorithm that runs a

shortened breadth-first-search from each vertex i ∈ V into the

second neighborhood of i and counts non-tree edges at each

terminal vertex can count local vertex participation in 4-cycles

and global counts of 4-cycles in O(|V||E|) for bipartite graphs.

Several works describe how to improve direct computation

for general (potentially non-bipartite) graphs [18], [19]. The

compreshensive work [18] demonstrates worst-case bounds for

cycle-detection algorithms with cycles of length 3 to 10, where

the best bounds for detecting a length 4-cycle in a sparse graph

are O(E1.34) or O(Eδ(G)), with δ(G) being the degeneracy
of G, an O(E1/2) quantity.

Additionally, approximation techniques exist. The compu-

tational complexity makes graph generators that produce mas-

sive graphs with ground truth 4-cycle counts attractive for val-

idating both direct and approximate computation techniques.

A design criteria on these graph generators is that they yield

graphs with similar challenges to real-world bipartite graphs,

such as similarity with respect to size of maximum degree,

heavy-tail degree distribution, dense structure, et cetera.

A proposed solution to this problem is to use nonstochastic

Kronecker graphs as validation tools [20]. A Kronecker graph
GC has an adjacency matrix that is a Kronecker product [1],

[21], [22] of two much smaller factors, C = A⊗B =⎛
⎜⎝

A11B A12B · · · A1,nAB
A21B A22B · · · A2,nAB

.

.

.
.
.
.

. . .
.
.
.

AnA,1B AnA,2B · · · AnA,nAB

⎞
⎟⎠ ,

For many graph statistics, these methods produce large-scale

graphs with known ground truth statistics and properties [12].

Graph generation using nonstochastic Kronecker products

can be contrasted with the stochastic Kronecker products used

in the ubiquitous R-MAT generator [23]. R-MAT generators

are used to produce the graphs used for various graph bench-

marks, such as the Graph500 [24] and Graph Challenge [25],

[26]. When using an R-MAT generator, exact graph properties

cannot be determined until generation is complete, and their

computation is expensive. After generation, large graphs take

very large amounts of space if they are to be stored for reuse.

The use case for nonstochastic Kronecker generators is

different from that of stochastic generators, and the former will

not replace the latter. The nonstochastic Kronecker generators

are appropriate for validation of algorithms and generation

of graphs with certain properties at different scales. The

generated graphs do have some peculiar properties, such as the

lack of vertices with large prime degrees. Stochastic generators

are appropriate for fast generation of graphs with certain

properties, in expectation.

Previous work exists regarding scalable bipartite graph gen-

erators. A bipartite version of R-MAT exitsts [23], although the

probability of generating high-order graph structure between

medium-low degreee vertices is much too low to mimic

many real-world bipartite graphs. In [27] authors developed

a bipartite version of BTER (Block Two-Level Erd os-Renyi)

that produces community structure in bipartite graphs and is

fairly capable of matching degree-binned average of a type

of bipartite clustering coefficient. When using these stochastic

generators, some graph statistics are known in expectation.

However, if an implementation of a complex graph statistic

has a minor error (say a global count of 4-cycles is off by 1),

it is difficult to know, without a competing implementation.

Still it is difficult to know which implementation is correct,

especially in massive graphs. Here, we focus on non-stochastic

Kronecker generators, for which we demonstrate local and

global ground truth of bipartite graph statistics is known, and

researchers can use these generators and formulas to validate

their novel algorithms and implementations.

Several previous works demonstrate useful Kronecker for-

mulas and bounds for ground truth graph statistics, including

degree distribution, triangle distribution, graph eccentricity,

graph diameter, community structure, and eigenvalues [12],

[20], [28], [29]. This paper extends these works by deriving

efficient formulas for ground truth of 4-cycle counts and

density in bipartite graphs. These quantities can be computed

inexpensively and exactly for nonstochastic Kronecker prod-

ucts. In general, for a graph with |EC | edges, suppose a desired

graph analytic f(C) costs O(|EC |p). If a simple Kronecker

formula of the form

f(C) =
∑
s

(gs(A)⊗ hs(B))

with a low number of terms exists, then a data structure

requiring O(|EC |p/2) storage can produce ground truth with

O(|f(C)|+ |EC |p/2) cost. This means global scalar quantities

(such as a global 4-cycle count) are computed sublinearly, in

O(|EC |p/2) time, and local quantities (such as 4-cycle counts

at edges) are produced in linear time.

The linear algebraic ground truth formulas provided in

this work lend themselves nicely to an implementation using

GraphBLAS. The GraphBLAS Forum was formed in 2013

to standardize the mathematics and application programming

interfaces (APIs) for performing graph computations in the

language of linear algebra [29]. The mathematical specifica-

tion, published in 2016 [30], was followed one year later by the

first version of the GraphBLAS C API Specification [31]. The

most recent release (version 1.3.0) of the GraphBLAS C API

[32] included the Kronecker product operation that is used

extensively throughout this derivation. In addition, Graph-

BLAS API also supports a non-blocking execution policy that

would allow an implementation of the library to perform more

optimizations of the code, through deferred/lazy evaluation,

elimination of temporaries, and fusion of operations. With

these optimizations, a relatively simple GraphBLAS code

could be used to sample 4-cycle counts at edges and vertices

without materializing the full Kronecker products to validate

algorithms on massive graphs.

Our contributions are summarized as follows:

(a) We demonstrate that making one factor, A, non-bipartite

(or, alternatively, bipartite A with all self loops) and B
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bipartite with both factors connected ensures the product

C is connected and bipartite.

(b) We extend the results in [3], [12] to derive Kronecker

formulas for vertex and edge 4-cycle (a.k.a. square or

butterfly) participation in the cases of one bipartite factor

or self loops on every vertex in one of the factors. These

results yield linear computation of ground truth local 4-

cycles counts from a sublinear amount of memory.

(c) We derive scaling laws for bipartite edge clustering

coefficients that demonstrate edge clustering coefficients

are controllable.

(d) We derive Kronecker formulas and scaling laws for in-

ternal/external bipartite community edge counts and edge

density, which are both controllable, under reasonable

assumptions.

(e) We discuss several new advantages and disadvantages we

have observed regarding using nonstochastic Kronecker

bipartite graphs as various classes of benchmarks for

massive-scale graph analytics.

II. PRELIMINARIES

Let G(V, E) be a set of n := |V| vertices and |E| edges

with pair-wise relationships between members of V of the form

(i, j) ∈ E , where i, j ∈ V . We say G is undirected if (i, j) ∈ E
implies (j, i) ∈ E for every (i, j) (and G is directed if this

doesn’t hold for a single edge). An edge of the form (i, i) ∈ E
is a self loop.

Let B = {0, 1}. The matrix A ∈ B
n×n is an adjacency

matrix representing G if Aij = 1 for each (i, j) ∈ E and

Aij = 0 for each (i, j) �∈ E . Given an adjacency matrix A, we

use GA, VA, and EA, to represent the associated graph, vertices,

and edges, respectively. An A associated with an undirected

graph satisfies At = A. Additionally, we use a subscript A
for many other symbols referring to properties of GA (e.g.

nA = |VA|).
Def. 1. (Standard Matrix and Vector Objects) Given
A ∈ R

nA×nA , OA is the matrix of all zeros and IA is the
identity matrix, both with the same size as A. Constant vectors
0A,1A ∈ R

nA , are the vector of all zeros, and the vector of

all ones. The cardinal vector ei ∈ R
nA is a vector that is one

in the i-th slot and zero elsewhere.

Def. 2. (Walks and Trails) A walk in GA is a sequence of
connected edges from EA, that possibly repeat. For example,
(i0, i1), (i1, i0), (i0, i1), (i1, i2) is a walk with four hops.
Powers of the adjacency matrix count walks in GA of the length
of the power. The number of walks from i to j of length h is

W
(h)
A (i, j) := etiA

hej .

The vector counting all walks of length h away from every
vertex is w

(h)
A := Ah1A. Note that w(1)

A = dA is the vertex
degree. A trail is a walk that repeats no edges, forwards or
backwards.

Def. 3. (Closed Walks and Cycles) A closed walk in GA
is a sequence of connected edges in EA that start and

end at the same vertex, and possibly repeat. For example,
(i0, i1), (i1, i2), (i2, i1), (i1, i0) is a closed walk with four
hops. The number of closed walks of length h at vertex i is
W

(h)
A (i, i), or the i-th diagonal entry of Ah.
Cycles are closed walks that do not repeat or retrace any

edges if (i0, i1) is in the cycle, then (i0, i1) or (i1, i0) are not
present elsewhere in the cycle.

Note that the number of 3-cycles at vertex i, or triangles ti,

is easily computed via W
(3)
A (i, i) = 2ti, but the relationship

is more complicated for length-4 closed walks and cycles, as

discussed in §III-B.

A. Algebraic Properties of Kronecker Products

Matrices formed by Kronecker products are block structured

and we define some convenience functions to write the index

maps compactly. For a block-structured array with block-size

n, we define functions that, for a given global index i, retrieve

the block number, αn(i), and the intra-block index βn(i).

αn(i) = �(i− 1)/n�+ 1,

βn(i) = [(i− 1)%n] + 1.

The inverse of i→ (αn(i), βn(i)) is

γn(x, y) = (x− 1)n+ y,

in the sense that i = γn(αn(i), βn(i)).

Def. 4. (Kronecker Product [1], [21], [22]) Let A ∈ R
mA×nA

and B ∈ R
mB×nB . The Kronecker Product of A and B is

(A⊗B) ∈ R
(mAmB)×(nAnB) and has entries

(A⊗B)pq =
(
AαmB

(p),αnB
(q)

)(
BβmB

(p),βnB
(q)

)

for 1 ≤ p ≤ (mAmB) and 1 ≤ q ≤ (nAnB), or, equivalently,

(A⊗B)γmB
(i,k),γnB

(j,l) = AijBkl,

for 1 ≤ i ≤ mA, 1 ≤ j ≤ nA, 1 ≤ k ≤ mB , and 1 ≤ l ≤ nB .

We reserve p and q to be row and column indices into

(A ⊗ B), with i, j having similar roles for A and k, l for

B. Kronecker row and column indices are always associated

with pairs of factor indices via

Row Indices Column Indices

p = γmB
(i, k) q = γnB

(j, l)
i = αmB

(p) j = αnB
(q)

k = βmB
(p) l = βnB

(p).

Def. 5. (Hadamard Product [22]) Let A0, A1 ∈ R
m×n. The

Hadamard Product of A0 and A1 is (A0 ◦A1) ∈ R
m×n, with

(A0 ◦A1)ij = (A0)ij(A1)ij

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

We define some diagonal operators of square matrices

in terms of the Hadamard product so it is transparent in

Kronecker formulas we derive.

Def. 6. (Matrix Diagonal Operators and Self Loops) Given
A ∈ R

nA×nA , the matrix DA = IA ◦A is the diagonal entries
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of A. The diagonal operator is diag(A) := (IA◦A)1A, a vector
in R

nA . Diagonal entries of DA that are nonzero represent self

loops in GA. When DA = IA, we say A has full self loops,
and when DA = OA we say A has no self loops.

Throughout the derivations of Kronecker formulas, we

utilize several of the algebraic properties of Kronecker and

Hadamard products, as listed in Appendix A.

B. Self Loops in Kronecker Factors

Adding self loops to the Kronecker factors has been used

previously to create denser structure when desired. For exam-

ple, when self loops are added to A and B, a C with more

triangles is produced. In this work, we also utilize self loops

to ensure connectivity.

When both factors have self loops, the product C also has

self loops. These must be removed via [C−C◦IC ] before using

canonical linear algebra formulas for various graph statistics.

For example if both factors have self loops C = (A+ IA)⊗
(B + IB), then the degree distribution vector is

dC = [C − C ◦ IC ]1C ,

and the triangle distribution vector is

tC =
1

2
diag

(
[C − C ◦ IC ]3

)
.

Thus, Kronecker formulas with self loops in both factors

contain many more terms, as demonstrated in [3], [12].

On the other hand, when one factor of C =M ⊗B has no

self loops then the Kronecker product is an adjacency matrix

with no self loops, or B◦IB = OB implies (M⊗B)◦IM⊗B =

(M ◦ IM )⊗ (B ◦ IB) = (M ◦ IM )⊗OB = OM⊗B .

This implies there are no self loops to remove before doing

combinatoric computation via linear algebra, or C−C ◦ IC =
C. Thus, we use no self loops in at least one factor in this

work as some of the linear algebra formulas involve Kronecker

products of pairs of 4-th matrix powers.

This design choice is important to limit the combinatorial

complexity within deriving the formulas. If the input factors

both had all self loops (e.g. (A + IA) and (B + IB)), this

would yield up to 25 terms in the derivation of formulas.

If the diagonals of the factors had self loops added to only

some of the vertices, then the off-diagonals do not commute

with the diagonals, and there would be up to 256 terms in the

derivations!

III. BIPARTITE GRAPHS

Def. 7. Bipartite Graph A bipartite graph GA(VA, EA) is
one whose vertices can be grouped into two disjoint sets
UA ∪WA = VA such that no edge exists within either group,
or i, j ∈ UA implies (i, j) �∈ EA, and i′, j′ ∈ WA implies
(i′, j′) �∈ EA. Equivalently, bipartite graphs have no odd-
length cycles. By ordering UA before WA, the adjacency
matrix of a bipartite graph is block anti-diagonal, or

A =

[
O|UA| XA

Y t
A O|WA|

]
,

where XA, YA ∈ B
|UA|×|WA|. If A is additionally undirected,

then YA = XA.

We assume factors A and B (and in turn, product C) are

undirected throughout the rest of this section.

If one factor (say B, without loss of generality) is bipartite,

then any Kronecker product graph with adjacency matrix C =
M ⊗ B is also bipartite. This is seen by simply considering

the two bipartite vertex sets UB and WB and the vertices in

VC associated with them. For p associated with k ∈ UB and

p′ associated with k′ ∈ UB , edge (p, p′) �∈ EC because (k, k′)
cannot be in EB . The situation is the same for pairs of vertices

associated with WB .

A. Connectivity of Bipartite Kronecker Graphs

A graph GA is connected if for each vertex pair i, j ∈ VA
there exists a walk of edges from i to j. Algebraically, this

means that for each i, j there exists a number of hops h such

that the (i, j)−th entry of Ah is non-zero, and hopsA(i, j) is

defined as the smallest such number. We discuss assumptions

we make on A and B to ensure GC is connected, as it is often

desired when benchmarking.

It is well known that if C = A ⊗ B is the Kronecker

product of two connected bipartite factors with no self-loops,

A,B, then C is disconnected [1]. This is seen by considering

that there are four disjoint subsets of VC given by the direct

products (denoted ⊕) of the bipartite sets UA,WA,UB , and

WB . Equivalently, VC ={
UA⊕UB

}
∪
{
UA⊕WB

}
∪
{
WA⊕UB

}
∪
{
WA⊕WB

}
.

Consider a (p, q) ∈ EC corresponding to (i, j) ∈ EA and

(k, l) ∈ EB . Without loss of generality, assume i ∈ UA, then

j ∈ WA because A is bipartite. In the first case, let k ∈ UB ,

meaning l ∈ WB because B is also bipartite. This yields (p, q)
connecting {UA ⊕ UB} to {WA ⊕WB}. In the second case,

let k ∈ WB , meaning l ∈ UB . This yields (p, q) connecting

{UA⊕WB} to {WA⊕UB}. There are no edges that connect

these four sets in any other way. For this reason, we make two

sets of assumptions that ensure connectivity but offer different

properties.

Assump. 1. (Factors of Bipartite Kronecker Graphs)
(i) Assume factor A is non-bipartite, undirected, and con-

nected, and factor B is bipartite, undirected, and con-
nected. Let

C = A⊗B.

(ii) Assume that A is bipartite, undirected, connected, and
has all self loops added, and B is bipartite, undirected,
and connected. Let

C = (A+ IA)⊗B.

Assump. 1(i) yields the simplest Kronecker formulas, but is

not composed of two bipartite graphs, which may be less ideal

when factors are desired to match a real-world bipartite graph

of interest. Assump. 1(ii) addresses this by using two true
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bipartite factors, with a relatively simple set of formulas. As

discussed at the end of the previous subsection, Assump. 1(i)

and (ii) both imply C is bipartite, as factor B is bipartite. We

prove connectivity of GC in both of these cases.

Thm. 1. (Connectedness with a Non-Bipartite Factor)
Assume A is non-bipartite, undirected, and connected, and
B is bipartite, undirected, and connected. If C = A⊗B, then
GC is connected.

Proof. For p, q ∈ VC , we see W
(h)
C (p, q) =

etpC
heq = (etiA

hej)(e
t
kB

hel) =W
(h)
A (i, j) ·W (h)

B (k, l).

We need to show that there exists an h such that W
(h)
A (i, j)

and W
(h)
B (k, l) are mutually nonzero. Factor A is non-bipartite

and undirected, so there exists at least one odd-length cycle

C ∈ VA. Let s be a vertex involved in the cycle C. Factor A is

also fully connected, so a walk from i to j by way of s exists.

Now a family of walks Sa of both even and odd length exist,

by starting at i, heading to s, going around the cycle a ∈ N

times, and then heading to j. The length is

|Sa| = hopsA(i, s) + hopsA(s, j) + a|C|. (1)

Let h∗ = max(hopsA(i, j), hopsB(k, l)) where hopsA(i, j)
(and hopsB(k, l)) is the minimum hop distance from i to j
in GA (and k to l in GB). By Eqn. (1), there exists both an

hodd and heven such that W
(hodd)
A (i, j), W

(heven)
A (i, j) > 0

and hodd, heven ≥ h∗.
Factor B is bipartite and undirected. If k, l ∈ UB (or k, l ∈

WB) then hops(k, l) is even. Otherwise, k ∈ UB and l ∈ WB

(or k ∈ WB and l ∈ UB) and hops(k, l) is odd. Because

a shortest path from k to l can be augmented into walks by

traversing any edge incident to l back and forth b ∈ N times,

another family of walks Tb exists with lengths

|Tb| = hops(k, l) + b · 2. (2)

This means W
(h)
B (k, l) > 0 for every other integer greater

or equal to hopsB(k, l). As there exists hodd, heven ≥ h∗

from above, we can pick a, b so |Sa| = |Tb| ≥ h∗. Thus,

W
(h)
C (p, q) > 0 for h = |Tb|.

For the rest of this subsection we add all self loops on

a bipartite factor A. Consider counting lazy walks by taking

powers of (A+ IA), which counts walks that also potentially

wait at each hop, effectively removing any periodicity. The

number of lazy walks with h stages (lazy walks up to length

h, counting all potential wait sequences), is

W
(h)
(A+IA)(i, j) := eti(A+ IA)

hej

=

h∑
r=0

(
h

r

)
etiA

rej =

h∑
r=0

(
h

r

)
W

(r)
A (i, j),

Note that W
(h)
(A+IA)(i, j) > 0 for h ≥ hopsA(i, j) because it

is the sum of non-negative terms containing W
(r)
A (i, j) > 0

W
(4)
A (i, i) = 2si + d2i +

∑
j∈Ni

dj − di

Fig. 2: The number of length-4 closed walks that begin and end at vertex i,

W
(4)
A (i, i), double counts local 4-cycles at vertices si (once for each traversal

direction), counts d2i wedges centered at i, counts
∑

j∈Ni
dj wedges centered

at vertices in Ni. Both types of wedge represent (and thus double count) walks
that go back and forth twice between i and every j ∈ Ni, which is accounted
for by subtracting di.

for r = hopsA(i, j). We use this observation to obtain the

following result.

Thm. 2. (Connectedness with Self-Loops in One Factor)
Assume A and B are bipartite, undirected, and connected. Let
C = (A+ IA)⊗B. Then GC is connected.

Proof.

W
(h)
C (p, q) = etpC

heq = [eti(A+ IA)
hej ](e

t
kB

hel)

= W
(h)
(A+IA)(i, j) ·W

(h)
B (k, l)

Let h∗ = max(hopsA(i, j), hopsB(k, l)). We showed that

W
(h)
(A+IA)(i, j) is positive for any h ≥ h∗, so we only need

to show W
(h)
B (k, l) is positive for some h > h∗. This is

demonstrated simply by Eqn. (2).

B. Kronecker Formulas for 4-Cycles

Here we derive Kronecker formulas for 4-cycles that are

similar to those previously derived for 3-cycles [3], [12]. For

both sets of assumptions 1(i) and (ii), we give formulas for

local participation counts at vertices in §III-B1 and for local

participation counts at edges in §III-B2. Then we show a

relation for bipartite clustering coefficients of edges in §III-B3.

1) Vertex Participation in 4-Cycles:

Def. 8. (4-Cycles at Vertices) If A has no self loops, then
sA ∈ R

nA is the vector storing the number of 4-cycles each
vertex participates in,

sA :=
1

2

(
diag(A4)− dA ◦ dA −w

(2)
A + dA

)
.

A point-wise formula is listed and explained in Fig. 2.

Thm. 3. (Vertex 4-Cycles w/o Self Loops) Let A be nonbi-
partite, undirected, and connected and let B be bipartite and
connected. Let C = A⊗B, then sC =

1
2

[(
2sA + d2

A +w
(2)
A − dA

)
⊗

(
2sB + d2

B +w
(2)
B − dB

)

−d2
A ⊗ d2

B −w
(2)
A ⊗w

(2)
B + dA ⊗ dB

]
.

Proof.

sC =
1

2

(
diag(C4)− C1C ◦ C1C − C21C + C1C

)
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Expand each term, diag(C4) = diag(A4)⊗ diag(B4) =(
2sA + d2

A +w
(2)
A − dA

)
⊗

(
2sB + d2

B +w
(2)
B − dB

)
,

C1C = (A⊗B)(1A ⊗ 1B) = dA ⊗ dB ,

C21C = (A21A)⊗ (B21B) = w
(2)
A ⊗w

(2)
B ,

C1C ◦ C1C = (A1A ◦A1A)⊗ (B1B ◦B1B)

= d2
A ⊗ d2

B .

Combining and simplifying yields the final result.

Given the formulas in [12] and the discussion in the begin-

ning of §III, it is fairly easy to create Kronecker product graphs

with no 3-cycles (in certain regions or globally). Moreover,

it is possible to create Kronecker product graphs that have

a ground truth truss decomposition. The situation is entirely

different with 4-cycles.

Rem. 1. (Products Always Have 4-Cycles) We note that it
is difficult to create non-trivial Kronecker graphs with no 4-
cycles, should one desire such a graph (see Fig. 1 for simple
demonstrations).

Assume A and B have no 4-cycles. we see that in this case

sC =
1

2

[(
d2
A +w

(2)
A − dA

)
⊗

(
d2
B +w

(2)
B − dB

)

−d2
A ⊗ d2

B −w
(2)
A ⊗w

(2)
B + dA ⊗ dB

]
.

If A and B both have a vertex with degree 2 or greater, there
will be 4-cycles for C = A ⊗ B. The only graphs that have
all degree 1 vertices are collections of disjoint edges, which
is an extremely limiting constraint.

Fig. 3: Various types of 4-cycles in the Kronecker product graphs in the
examples introduced in Fig. 1. Some of the 4-cycles are labelled with red
edges.

Thm. 4. (Vertex 4-Cycles w/ All Self Loops in one Factor)
Let A and B be bipartite, undirected, and connected. Let C =
(A+ IA)⊗B, then

sC = 1
2

[
(2sA + d2

A +w
(2)
A + 5dA + 1A)⊗

(2sB + d2
B +w

(2)
B − dB)

−(dA + 1A)⊗ dB

−(w(2)
A + 2dA + 1A)⊗w

(2)
B

+(d2
A + 2dA + 1A)⊗ d2

B

]
.

W
(3)
A (i, j) = ♦ij + di + dj − 1

Fig. 4: The number of length-3 walks that start vertex i and end at vertex

j ∈ Ni, W
(3)
A (i, j), counts local 4-cycles at edges ♦ij , and counts di and

dj wedges centered at i and j, respectively. Both types of wedge represent
(and thus double count) the walk that goes back and forth between i and j,
which is accounted for by subtracting 1.

We give a point-wise version of the formula for p ∈ VC in
terms of the associated vertices i ∈ VA and j ∈ VB , sp =

1
2

[(
2si + d2i + w

(2)
i + 5di + 1

)(
2sk + d2k + w

(2)
k − dk

)

−(di + 1)dk −
(
w

(2)
i + 2di + 1

)
w

(2)
k + (di + 1)2d2k

]
.

Proof.

sC =
1

2

(
diag(C4)− C1C ◦ C1C − C21C + C1C

)
First note that diag(A3) = 0A because A is bipartite,

diag(A2) = dA, and diag(A) = 0A. Then, diag(C4) =

diag(A4 + 4A3 + 6A2 + 4A+ IA)⊗ diag(B4) =

diag(A4 + 6A2 + IA)⊗ diag(B4) =

(2sA + d2
A +w

(2)
A + 5dA + 1A)⊗

(2sB + d2
B +w

(2)
B − dB).

C1C = [(A+ IA)⊗B](1A ⊗ 1B)

= (dA + 1A)⊗ dB .

C21C = [A21A + 2A1A + 1A]⊗ (B21B)

= (w
(2)
A + 2dA + 1A)⊗w

(2)
B .

C1C ◦ C1C =

= [A1A ◦A1A + 2A1A + 1A]⊗ [B1B ◦B1B ]

= (d2
A + 2dA + 1A)⊗ d2

B .

2) Edge Participation:

Def. 9. (4-Cycles at Edges) If A has no self loops, then ♦A ∈
R

nA×nA is the sparse matrix storing the number of 4-cycles
each edge participates in,

♦A = A3 ◦A− (dA1
t
A + 1Ad

t
A) ◦A+A

A point-wise formula is listed and explained in Fig. 4.

Note the following relation between edge and vertex partic-

ipation counts exists:

sA =
1

2
♦A1A.
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Thm. 5. (Edge 4-Cycles w/o Self Loops) Let A be non-
bipartite, undirected, connected and B be bipartite, undi-
rected, and connected. Let C = A⊗B, then ♦C =

C + [♦A + (dA1
t
A + 1Ad

t
A) ◦A−A]⊗

[♦B + (dB1
t
B + 1Bd

t
B) ◦B −B]

−[dA1
t
A ◦A]⊗ [dB1

t
B ◦B]− [1Ad

t
A ◦A]⊗ [1Bd

t
B ◦B].

We give a point-wise version of the formula for (p, q) ∈ EC
in terms of the associated edges (i, j) ∈ EA and (k, l) ∈ EB ,

♦pq = ♦ij♦kl + ♦ij(dk + dl − 1) + (di + dj − 1)♦kl

+didl − di − dl + djdk − dj − dk.

Proof.

♦C = C3 ◦ C − (dC1
t
C + 1Cd

t
C) ◦ C + C

(dC1
t
C + 1Cd

t
C) ◦ C =

[dA1
t
A ◦A]⊗ [dB1

t
B ◦B] + [1Ad

t
A ◦A]⊗ [1Bd

t
B ◦B].

C3 ◦ C = (A3 ◦A)⊗ (B3 ◦B)
= [♦A + (dA1

t
A + 1Ad

t
A) ◦A−A]⊗

[♦B + (dB1
t
B + 1Bd

t
B) ◦B −B].

The point-wise formula is given by expanding

♦pq = 1+(♦ij+di+dj−1)(♦kl+dk+dl−1)−didk−djdl
into 19 terms and cancelling out 6 terms, then recombining.

3) Clustering Coefficients: Clustering coefficients are use-

ful local graph statistics for many applications. Often, graphs

with a high amount of similar vertices have more triangles

within sets of high affinity, and edge and vertex clustering

coefficients (ratios of number of actual triangles to the max-

imum possible given the vertex degree(s)) are used to gauge

local clustering [8].

For bipartite graphs, there are no triangles, and a gener-

alization must be made. There are many notions of bipartite

clustering coefficient proposed in the literature [14]–[16] that

involve local counts of 4-cycles. Typically, the vertex cluster-

ing coefficient score of vertex i involves the degree and 4-cycle

statistics of the vertices in Ni in addition to those statistics at

i. For example, a vertex i with di = 2 could be involved in

up to minj∈Ni
(dj − 1) 4-cycles, which could potentially be

a large number, independent of di.
In contrast, the number of 4-cycles an edge is possibly

contained in is at most (di − 1)(dj − 1), or all vertices in

Ni \ {j} connected to all vertices in Nj \ {i}. In bipartite

graphs, the number of triangles Δij = 0 and the overlap of

these sets is empty, Ni ∩ Nj = ∅. This edge-wise notion of

clustering coefficient is related to the global bipartite clustering

coefficient from [14] defined as a local coefficient and deftly

named metamorphosis coefficient in [27].

Def. 10. (Bipartite Edge Clustering Coefficient [27])

ΓA(i, j) =
♦ij

(di − 1)(dj − 1)

We derive a simple lower bound demonstrating that the edge

clustering coefficient is controlled from below.

Thm. 6. (Scaling Law for Bipartite Clustering Coefficient)
Let A be non-bipartite and connected and B be bipartite and
connected, and let C = A⊗B. Let p ∈ VC be associated with
i ∈ VA and k ∈ VB , and q ∈ VC be associated with j ∈ VA
and l ∈ VB . Assume di, dk, dj , dl ≥ 2. Then

ΓC(p, q) ≥ ψ(i, j, k, l)ΓA(i, j)ΓB(k, l),

where

ψ(i, j, k, l) =
(di − 1)(dk − 1)(dj − 1)(dl − 1)

(didk − 1)(djdl − 1)
.

Note that ψ(i, j, k, l) ∈
[
1
9 , 1

)
.

Proof. Thm. 5 shows ♦pq = ♦ij♦kl + η, where η > 0 for

di, dk, dj , dl ≥ 2. Recall dp = didk and dq = djdl. Thus,

ΓC(p, q) =
♦pq

(dp − 1)(dq − 1)

>
♦ij♦kl

(didk − 1)(djdl − 1)

= ψ(i, j, k, l)ΓA(i, j)ΓB(k, l).

Note that we opted for simplicity over the tightest bounds

possible. Typically, ♦pq is much greater than ♦ij♦kl, and the

ratio in the scaling law is better than ψ(i, j, k, l).

C. Community Structure

We take the definition of bipartite community structure

within a bipartite graph GA to be a connected subset of

UA ∪ WA with relatively high internal edge density and

relatively low external edge density. In this section, we demon-

strate that if bipartite factors A and B have strong community

structure, then this feature is maintained by the Kronecker

graph that has all self loops added to factor A.

Def. 11. (Internal/External Counts and Densities) Let SA ⊂
VA and let RA ⊂ UA, TA ⊂ WA such that SA = RA ∪ TA
and RA∩TA = ∅. Define indicator vector 1SA

∈ B
nA to have

a 1 in the i-th entry if and only if i ∈ SA. The internal edge

count is
min(SA) :=

1

2
1t
SA
A1SA

,

whereas the external edge count is

mout(SA) = 1t
SA
A (1A − 1SA

) .

Internal and external edge densities are

ρin(SA) :=
min(SA)
|RA||TA|

,
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and

ρout(SA) :=
mout(SA)

|RA||WA|+ |UA||TA| − 2|RA||TA|
Def. 12. (Product of Sets) Let A,B be bipartite, undirected,
and connected, and let C = (A + IA) ⊗ B. The Kronecker

product of connected vertex sets SA ∈ VA and SB ∈ VB is

SC := SA ⊗ SB := supp(1A ⊗ 1B).

Then let RA = SA ∩ UA and TA = SA ∩WA. Then define

RC := {RA ⊗RB} ∪ {TA ⊗RB},
and

TC := {RA ⊗ TB} ∪ {TA ⊗ TB}.
Note that |RC | = |SA||RB | and |TC | = |SA||TB |.
Thm. 7. (Internal/External Edge Counts) Let A,B be bi-
partite, undirected, and connected, and let C = (A+IA)⊗B.

Then,

min(SC) = 2min(SA)min(SB) + |SA|min(SB),
and

mout(SC) = mout(SA)mout(SB) + 2mout(SA)min(SB)
+ |SA|mout(SB) + 2min(SA)mout(SB).

We use Thm. 7 to show that GC has sets whose internal

density follows a controlled scaling law (bounded from below),

as long as the ratio of parts of SA = RA ∪ TA is modest.

Cor. 1. Assume

ω := min(|RA|/|SA|, |TA|/|SA|),
and note ω ∈ [|SA|−1, 1/2]. We have

ρin(SC) ≥ 2ωρin(SA)ρin(SB).
Proof.

ρin(SC) = 2min(SC)
|RC ||TC | =

2(2min(SA)min(SB)+|SA|min(SB))
|SA|2|RB ||TB | >

2(2min(SA)min(SB))
|SA|2|RB ||TB | =

4θ|SA|,|RA|,|TA| · ρin(SA)ρin(SB),
where

θ|SA|,|RA|,|TA| :=
|RA||TA|
|SA|2

.

which is greater than ω/2, as implied by (assuming, without

loss of generality, that |RA| ≤ |TA|),
|RA||TA|
|SA|2

=
|RA|
|SA|

(
1− |RA|

|SA|

)
= ω(1− ω) ≥ ω

2
.

Cor. 2. Define

εSA,SB
:= max

( |SA|
|VA|

,
|RB |
|UB |

,
|TB |
|WB |

)
,

ξSA
:=

2min(SA) + |SA|
mout(SA)

, ξSB
:=

2min(SB) + |SB |
mout(SB)

.

We have

ρout(SC) ≤
(1 + ξSA

)(1 + ξSB
)

1− ε2SA,SB

ρout(SA)ρout(SB).

Proof. First, we show a relationship for the numerator of

ρmin(SC) and the numerators of ρmin(SA) and ρmin(SA).
mout(SC) = mout(SA)mout(SB) +

2mout(SA)min(SB) + |SA|mout(SB)
2min(SA)mout(SB)

< (mout(SA) + 2min(SA) + |SA|) ·
(mout(SB) + 2min(SB) + |SB |)

≤ (1 + ξSA
)(1 + ξSB

)mout(SA)mout(SB)
Now we use the definition of εSA,SB

to show a relation for

the denominator of ρmin(SC), denom(SC) :=
= |RC ||WC |+ |UC ||TC | − 2|RC ||TC |
= |SA||VA| (|RB ||WB |+ |UB ||TB |)

−2|SA|2|RB ||TB |
>

(
1− ε2SA,SB

)
|SA||VA| (|RB ||WB |+ |UB ||TB |)

=
(
1− ε2SA,SB

)
(|RA|+ |TA|) (|UA|+ |WA|) ·

(|RB ||WB |+ |UB ||TB |)
>

(
1− ε2SA,SB

)
(|RA||WA|+ |UA||TA|) ·

(|RB |WB |+ |UB ||TB |)
>

(
1− ε2SA,SB

)
(|RA||WA|+ |UA||TA| − 2|RA||TA|) ·

(|RB |WB |+ |UB ||TB | − 2|RB ||TB |)
=

(
1− ε2SA,SB

)
denom(SA)denom(SB)

Combining this with the relation for the numerator gives the

result.

IV. EXPERIMENTS

We downloaded a small bipartite graph dataset to validate

our techniques, the unicode language network (unicode)

from Konect [6]. This is a small, disconnected adjacency

matrix A with hundreds of vertices, over a thousand edges, and

1662 global 4-cycles. We formed C = (A+IA)⊗A, yielding a

bipartite graph with hundreds of thousands of vertices, millions

of edges, and 946,565,889 global 4-cycles. We summarize the

statistics of the factor and Kronecker product in Tab. I.
The Kronecker structure of GC allows functions of several

powers of C to be computed relatively cheaply, for example

diag(C4) = diag(A4 + 6A2 + IA)⊗ diag(A4).

This means that the formulas in § III can be applied to compute

local and global square counts of GC with O(|VA|2.3729)
complexity with dense matrix vector products, which is

O(|VC |1.1865). This is a nearly linear complexity in |EC | and

is fairly palatable for fairly large graphs. For this example,

the local and global 4-cycle counts are done on seconds on

a commodity laptop. The vertex degree versus the vertex

participation in 4-cycles is plotted on a log-log scale in Fig 5.
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Adjacency Vertices Edges Global 4-Cycles
A |UA| = 254, |WA| = 614 |EA| = 1, 256 1,662

C = (A+ IA)⊗A |UC | = 220, 472, |WC | = 532, 952 |EC | = 3, 155, 072 946,565,889

TABLE I: Graph statistics for unicode and a Kronecker product graph built using unicode as both factors with all self

loops in one factor.

Fig. 5: Vertex degree versus count of 4-cycles for unicode and a Kronecker product graph built using unicode as both

factors with all self loops in one factor. Zero values are mapped to 10−1.

V. CONCLUSION

We described a few approaches to generating bipartite Kro-

ncker product graphs that are connected. For these approaches,

we derived Kronecker formulas that provide ground truth

for several bipartite graph properties, including local 4-cycle

counts at vertices and edges. We also demonstrate scaling laws

that show that clustering coefficients and community structure

are both bounded and controllable. This implies relatively

dense structures in the factors yield relatively dense structures

in the product. The ground truth values are computable in

linear time, making this approach extremely attractive for

generating massive bipartite graphs with ground truth and

similar challenges to real-world massive graphs.

For future work, we intend to use nonstochastic Kronecker

graphs to benchmark and validate massive-scale bipartite

graph pattern matching algorithms that include 4-cycle count-

ing. Also, we intend to implement this style of generator in a

distributed version of graphBLAS, including using the ground

truth formulas derived here to compute ground truth values

during generation.

APPENDIX

A. Properties of Kronecker and Hadamard Products

Prop. 1. (Properties of Kronecker Product [1], [21], [22])
(a) SCALAR MULTIPLICATION. For any a1, a2 ∈ R,

(a1a2)(A1 ⊗A2) = (a1A1)⊗ (a2A2).

(b) DISTRIBUTIVITY.

(A1 +A2)⊗A3 = (A1 ⊗A3) + (A2 ⊗A3) and

A1 ⊗ (A2 +A3) = (A1 ⊗A2) + (A1 ⊗A3).

(c) TRANSPOSITION. (A1 ⊗A2)
t = (At

1 ⊗At
2).

(d) MATRIX-MATRIX MULTIPLICATION. When nA1
= mA3

and nA2 = mA4 ,

(A1 ⊗A2)(A3 ⊗A4) = (A1A3)⊗ (A2A4).

Prop. 2. (Properties of Hadamard Product [22]) In the
following, we implicitly assume that nA0

= nA1
and mA0

=
mA1 whenever A0 ◦A1 is present.
(a) COMMUTATIVITY. A1 ◦A2 = A2 ◦A1.
(b) SCALAR MULTIPLICATION. For any a1, a2 ∈ R,

(a1a2)(A1 ◦A2) = (a1A1) ◦ (a2A2).

(c) DISTRIBUTIVITY.

(A1 +A2) ◦A3 = (A1 ◦A3) + (A2 ◦A3) and

A1 ◦ (A2 +A3) = (A1 ◦A2) + (A1 ◦A3).

(d) TRANSPOSITION. (A1 ◦A2)
t = (At

1 ◦At
2).

(e) HADAMARD-KRONECKER DISTRIBUTIVITY.

(A1 ⊗A2) ◦ (A3 ⊗A4) = (A1 ◦A3)⊗ (A2 ◦A4).

(f) DIAGONAL-KRONECKER DISTRIBUTIVITY. When
mA1

= nA1
and mA2

= nA2
,

diag(A1 ⊗A2) = diag(A1)⊗ diag(A2).
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