
Linear Algebraic Louvain Method in Python

Tze Meng Low, Daniele G. Spampinato
Electrical and Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA, USA

lowt@cmu.edu, spampinato@cmu.edu

Scott McMillan
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

smcmillan@sei.cmu.edu

Michel Pelletier
Graphegon, Inc.

Portland, OR, USA

pelletier.michel@gmail.com

Abstract—We show that a linear algebraic formulation of
the Louvain method for community detection can be derived
systematically from the linear algebraic definition of modularity.
Using the pygraphblas interface, a high-level Python wrapper for
the GraphBLAS C Application Programming Interface (API), we
demonstrate that the linear algebraic formulation of the Louvain
method can be rapidly implemented.

Index Terms—Louvain Method, Community Detection, Graph
Algorithms, GraphBLAS

I. INTRODUCTION

Community detection is a critical component in the anal-

isys of real-world network systems with important appli-

cations in social media analytics, biology, recommendation

systems, and telecommunications among others [1]. The Lou-

vain method [2] based on modularity optimization [3] is a

commonly adopted technique to identify communities.

Current implementations of the Louvain method adopt a

traditional vertex-based approach in their algorithmic for-

mulation despite there being a linear algebraic formulation

for the computation of modularity [4]. In this paper, we

show that by starting with the linear algebraic formulation

of modularity, a linear algebraic algorithm for computing

the Louvain method can be determined. This formulation

can leverage recent community-driven efforts behind linear

algebraic graph interfaces, such as the GraphBLAS [5], to

rapidly develop an implementation of the Louvain method.

Productivity is enhanced through the use of pygraphblas [6],

a python interface for the GraphBLAS effort.

II. BACKGROUND

We assume the goal is to identify communities within a

graph graph G = (V,E) where V is the set of vertices

and E is the set of weighted edges connecting them. The

Louvain method is an iterative algorithm where each iteration

is composed of two major steps:

• Step 1) Vertices are moved between communities such

that each move increases the overall modularity of G.

Step 1 is initialized by creating |V | communities where

each vertex is in its own community. Vertices are se-

quentially reassigned to new communities as long as

modularity can be increased. The choice of communities

for a vertex is based on the community that yields the

highest modularity increase.

• Step 2) A new graph is created from the newly par-

titioned graph. Identified communities form the set of

new vertices, and edges between vertices in different

communities are aggregated into a new set of edges. Step

1 is then applied to this newly created graph.

The two steps above are repeated until no further improvement

in modularity is obtained.

A. Definition of Modularity

Modularity is a scalar measure used to quantify the strengh

of community structures within a graph [3]. It is computed as

Q =
1

2m

∑
ij

[
Aij − kikj

2m

]
δ(ci, cj),

where Aij is the edge weight between vertices vi, vj ∈ V , m
is the sum of all edge weights, ki is the sum of the weights

of all edges incident on vertex vi, ci ∈ C is the community

to which vi is currently assigned, and δ(ci, cj) = 1 if vertices

vi and vj are in the same community (i.e., ci = cj) and 0

otherwise.

We will build on the matrix formulation of Q from [4]:

Q =
1

2m
Γ(STBS), (1)

where Γ(·) computes the trace of a matrix, S is a |V | × |C|
matrix that captures the community membership of each

vertex, and B is the |V |×|V | modularity matrix where element

Bij is defined as

Bij = Aij − kikj
2m

.

Each column si of S represents a community of vertices,

where a one in the jth position of si indicates that vertex vj
is in community ci. We denote vertex vj as a column basis

vector ej of length |V |, and si is the sum of all vertices that

belong to the same community ci, i.e.,

si =
∑

j:vj∈ci
ej .

An empty community is simply the zero vector, i.e. si = �0.

III. LINEAR ALGEBRAIC LOUVAIN METHOD

In this section we develop a fully linear algebraic formula-

tion of the Louvain algorithm starting from the linear algebraic

definition of modularity.

223

2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-7281-7445-7/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPSW50202.2020.00050

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:34:01 UTC from IEEE Xplore. Restrictions apply.

A. Modularity of a Community

Starting with Eqn. (1) and expanding on the definition of

the trace of a matrix, we express the modularity Q as

Q =
1

2m

(
sT0 Bs0 + sT1 Bs1 + . . .+ sT|C|−1Bs|C|−1

)

=
1

2m

|C|−1∑
i=0

sTi Bsi =
1

2m

|C|−1∑
i=0

Qi,

where Qi is the modularity of community ci.
Consider an arbitrary vertex vj where vj is a vertex

(possibly, the only one) in community ci. We can define

a community vector si in terms of the vertex vj and the

remaining set of vertices si\{j} as follows

si = si\{j} + ej .

Using the above definition, we can derive the following defini-

tion of modularity for community i in terms of the contribution

to modularity by introducing vertex vj into community i:

Qi = sTi Bsi

= (ej + (si − ej))
TB(ej + (si − ej))

= eTj Bej + sTi\{j}Bej + eTj Bsi\{j} + sTi\{j}Bsi\{j}
= Bjj + sTi\{j}Bej + eTj Bsi\{j}︸ ︷︷ ︸

Contribution by vertex vj

+sTi\{j}Bsi\{j}

B. Linear Algebraic Louvain Method

We address the two steps of Louvain separately.

• Step 1) Initially, vertices are assigned to their own

community and the community matrix S is the identity

matrix, I .

Each vertex, vj is evaluated for the change in modularity

when reassigned from community ci to community c�.
Mathematically, the change in modularity due to such

movement (ΔQ
i

j−→�
, where i �= �) can be computed as:

ΔQ
i

j−→�
= (Bjj + eTj Bs�\{j} + sT�\{j}Bej)

− (Bjj + eTj Bsi\{j} + sTi\{j}Bej)

= eTj Bs�\{j} + sT�\{j}Bej

− (eTj Bsi\{j} + sTi\{j}Bej).

Essentially, ΔQ
i

j−→�
is computed by subtracting the con-

tribution of vertex vj to community ci from the contri-

bution of vertex vj to community c�.
Let q be a vector of length |V | defined as follows:

qT =
(
ΔQ

i
j−→0

. . . ΔQ
i

j−→|V |−1

)
.

As the Louvain algorithm only considers moving a vertex

to a community that includes at least one neighbor, we

can restrict the modularity computation to the commu-

nities containing neighbors of vj via a mask in the

following manner:

qT1 = qT ◦ ((eTj (A+AT))S︸ ︷︷ ︸
tq

�= 0). (2)

The maximum increase in modularity is computed as κ =
max(q1), and the community c� associated with κ can be

identified by

t = (q1 == κ),

where t is a boolean vector of length |V | indicating the

new community for vertex vj . The original community

ci for vertex vj can be computed by extracting the jth

row of S. Using the original community and the vector

t, the community matrix S can be updated as

S = S + ejt
T − eje

T
j S.

Step 1 is repeated for all vertices until no increase in

modularity can be achieved.

• Step 2) A new graph G′ = (V ′, E′) is constructed, where

the set of vertices V ′ are the communities identified in

Step 1. The new adjacency matrix A′ is computed as

A′ = STAS,

where the weight at location A′ij is the sum of edge

weights in A between vertices in community ci and

vertices in community cj . The diagonal elements A′ii are

the sum of edge weights in A belonging to the same

communities ci.

IV. IMPLEMENTATION CONSIDERATIONS

In this section, we focus on Step 1 of the previously

presented algorithm and discuss several optimizations.

1) Removing redundant computation. Recall the objective

in Step 1 is to find the maximum increase in modularity.

Since the expression eTj Bsi\{j}+sTi\{j}Bej is removed

from all modularity computation, it does not contribute

to the decision of which community should vertex vj
be reassigned to. Thus, the expression eTj Bsi\{j} +
sTi\{j}Bej does not need to be computed. Hence, the

following computation can be performed instead:

ΔQ̃
i

j−→�
= eTj Bs�\{j} + sT�\{j}Bej .

= eTj (B +BT)s�\{j} (3)

2) Bulk computation of q. Notice that Eqn. (3) can be

computed at once for all values of � as:

qT = eTj (B +BT)S̄.

where

S̄ = S − eje
T
j S

= (I − eje
T
j)S, (4)

which is the community matrix after removing vertex vj
from its original community.

3) Eliminating modularity matrix B. Modularity matrix B
is a dense |V | × |V | matrix. In order to reduce the

memory requirements, recall that

B = A− 1

2m
kkT ,

224

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:34:01 UTC from IEEE Xplore. Restrictions apply.

where k is a vector where the ith value is the node

degree of vertex vi. Therefore,

B +BT = (A− 1

2m
kkT) + (A− 1

2m
kkT)T

= (A+AT)− 1

m
kkT . (5)

Instead of storing B, the above formulation allows us to

use a sparse matrix format to store G = (A+AT), and

a dense vector k, thus reducing the memory footprint.

4) Handling same change in modularity. Often, moving

vertex vj into different communities yields the same

change in modularity. In such cases, a tie-breaking

heuristics has to be applied to favor one community over

the rest. In this paper, a community is picked at random.

Applying these optimizations, the final linear algebraic Lou-

vain method algorithm is shown in Fig. 1 (left).

V. EXPERIMENTS

In this section, we discuss preliminary experimental results

in implementing our formulation of the Louvain method

discussing both productivity and performance aspects provided

by the use of pygraphblas [6], a Python wrapper to the

GraphBLAS [5] API for graph algorithms.

TABLE I
COMPARISON BETWEEN TWO PYTHON IMPLEMENTATIONS OF THE

LOUVAIN METHOD: NETWORKX (VERTEX-BASED, SEQUENTIAL) AND

PYGRAPHBLAS (PRESENT WORK, LINEAR ALGEBRAIC, BOTH

SEQUENTIAL, 1T, AND PARALLEL, 4T). THE NUMBER OF COMMUNITIES

(GROUND TRUTH) ARE REPORTED IN COLUMN 3. BOTH

IMPLEMENTATIONS REPORTED 100% ACCURACY.

Graph NetworkX pygraphblas
V E C Time (s) Time (s) Time (s)

w/o Mask w/ Mask
1T 1T 4T 1T 4T

50 319 3 0.02 0.06 0.07 0.07 0.09
100 778 5 0.03 0.07 0.08 0.08 0.10
500 9.4k 8 0.31 0.41 0.47 0.48 0.58
1,000 20.1k 11 0.78 0.79 0.89 0.93 1.11
5,000 101.9k 19 5.59 7.55 8.19 8.63 9.06
20k 408.8k 32 26.29 103.99 70.03 113.43 77.17
50k 1.0M 44 88.12 696.27 387.86 711.83 380.24

A. Experimental Setup

We implemented our linear algebraic Louvain method using

pygraphblas [6], a Python wrapper of the SuiteSparse [7]

library v3.2.0 that implements the C GraphBLAS API, and

compared with the implementation of the original vertex-based

Louvain method for the NetworkX package [8] v.2.4. Our

implementation is available at [6].

We ran our experiments on an Intel Core i7-4770K

(Haswell) CPU with four cores, 8 MB LLC cache, and 32

GB of memory. We provide both sequential (1T) and parallel

(4T, GxB_CHUNK=1024) results in Table I.

We report time to solutions (mean of seven runs) for

implementations using Static Graphs with known truth for the

2017 Partitioning Challenge provided on the Graph Challenge

website [9]. All implementations correctly identified commu-

nities when compared to the ground truth.

B. Discussion

In terms of productivity, our pygraphblas implementation

can be mapped nearly one-to-one with the linear algebraic

formulation of the algorithm, and requires less than 40 lines

of code (LOC). In contrast, the vertex-based NetworkX im-

plementation requires 4× as many (158) lines of code (LOC).

For a graph algorithm developer, the use of the pygraphblas

interface greatly simplifies the implementation; resulting in a

boost in algorithmic development productivity.

The ability to port between CPU and GPU platforms to

take advantage of different hardware while maintaining the

same high-level interface (similar to Blanco et. al [10]) is also

another advantage of using GraphBLAS.

Performance-wise, due to the use of SuiteSparse as a

black-box library that implement the GraphBLAS API, it

is unclear how much of the performance is related to the

linear algebraic approach or specific implementation decisions.

For example, parallelism was performed by the underlying

SuiteSparse library, which may choose to use less than the

allocated number of threads. Selecting the chuck size used

allowed us some limited form of control over this decision.

Nonetheless, we highlight key performance-related features of

our implementation.

Lines 23-25 in Fig. 1 (right) are essentially the equivalent

of the AXPY operation in the Level 1 BLAS [11]. This can

be implemented with a single GraphBLAS apply operation

in the most recent GraphBLAS 1.3 as follows:

k.apply(FP64.TIMES, first=(-k_j/m),
accum=FP64.PLUS, out=v)

However, as this capability is not supported by the version of

SuiteSparse used, three separate function calls, each traversing

through a vector of length |V |, have to be used.

It was interesting to note that while the masking operation

as described by Eqn. (2) was meant to reduce the computation

cost by considering only neighbor communities when deter-

mining changes in modularity, the computation of the mask

was a significant cost in our implementation. As such, it was

generally faster for our implementation to compute the change

in modularity for all existing communities. This cost could

potentially be amortized with larger graphs.

A considerable fraction of the runtime was spent extracting

from or assigning to single matrix columns or rows. While we

have implemented the computation of the change in modularity

as a bulk operation, the sequential vertex approach remains a

large cost in this implementation.

VI. CONCLUSION

In this paper, we derived a linear algebraic formulation of

the Louvain method for community detection starting from

the linear algebraic definition of modularity. We also imple-

mented the derived algorithm using the pygraphblas interface

to enhance algorithm design productivity.

We believe that alternative modularity-based clustering al-

gorithms (e.g. the synchronized Louvain algorithm [12]),

should enable better performance when expressed in terms of

bulk linear algebra operations.

225

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:34:01 UTC from IEEE Xplore. Restrictions apply.

1

2

3

4

5

6

7 G = A+AT

8

9 k = A vec(1)
10 m = 1

2
kT vec(1)

11 S = I
12

13 v changed = True
14 while v changed:
15 v changed = False
16 for j in range(|V |):
17

18 tq = (eTj G)S
19

20 tTj = eTj S

21 S̄ = (I − eje
T
j)S

22

23

24

25 qT = eTj G+ (−kj/m)kT

26 qT1 = (qT S̄) ◦ (tq �= 0)
27

28 κq = max(q1)
29 t = (q1 == κq)
30 while t.nvals() != 1:
31 p = random() ◦ t
32 κp = max(p)
33 t = (p == κp)
34 S = S̄ + ejt

T

35

36

37 if t != tj:
38 v changed = True
39

40

41

42

1 def louvain_cluster(graph):
2 rows = graph.nrows
3 S_row = Vector.from_type(BOOL, rows)
4 empty = Vector.from_type(BOOL, rows)
5

6 G = graph.dup()
7 graph.transpose(out=G, accum=FP64.PLUS)
8 G_rows = [G.extract_row(i) for i in range(rows)]
9 k = graph.reduce_vector()

10 inv_m = 2.0 / k.reduce_int()
11 S = Matrix.identity(BOOL, rows, format=lib.GxB_BY_COL)
12

13 vertices_changed = len(k)
14 while vertices_changed > 0:
15

16 for j,k_j in k:
17 v = G_rows[j]
18 t_q = v.vxm(S, semiring=BOOL.ANY_PAIR)
19

20 S.extract_row(j, out=S_row)
21 S[j,:] = empty
22

23 q = k.dup()
24 q.assign_scalar(-k_j * inv_m, accum=FP64.TIMES, mask=k)
25 q += v
26 q1 = q.vxm(S, mask=t_q)
27

28 max_q1 = q1.reduce_float(MAX_MONOID)
29 t = q1.select("==", max_q)
30 while len(t) != 1:
31 p = t.apply(random_scaler)
32 max_p = p.reduce_float(MAX_MONOID)
33 t = p.select("==", max_p)
34 S[j,:] = t
35

36 vertices_changed -= 1
37 if len(S_row * t) == 0:
38 vertices_changed = len(k)-1
39 if vertices_changed <= 0:
40 break
41

42 return S

Fig. 1. (Left) Formulation of of the linear algebraic Louvain method described in Sec. III and (right) its pygraphblas implementation.

ACKNOWLEDGEMENT

This material is based upon work funded and supported by

the Department of Defense under Contract No. FA8702-15-

D-0002 with Carnegie Mellon University for the operation of

the Software Engineering Institute, a federally funded research

and development center [DM20-0213]. References herein to

any specific commercial product, process, or service by trade

name, trade mark, manufacturer, or otherwise, does not nec-

essarily constitute or imply its endorsement, recommendation,

or favoring by Carnegie Mellon University or its Software

Engineering Institute.

REFERENCES

[1] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3, pp. 75–174, 2010.

[2] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of community hierarchies in large networks,” Journal of
Statistical Mechanics: Theory and Experiment, vol. 10, 2008.

[3] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical review E, vol. 69, p. 026113, 2004.

[4] M. E. J. Newman, “Modularity and community structure in networks,”
Proceedings of the National Academy of Sciences (PNAS), vol. 103,
no. 23, p. 85778582, 2006.

[5] J. Kepner, P. Aaltonen, D. A. Bader, A. Buluç, F. Franchetti,
J. R. Gilbert, D. Hutchison, M. Kumar, A. Lumsdaine,
H. Meyerhenke, S. McMillan, J. E. Moreira, J. D. Owens, C. Yang,
M. Zalewski, and T. G. Mattson, “Mathematical foundations of the
GraphBLAS,” CoRR, vol. abs/1606.05790, 2016. [Online]. Available:
http://arxiv.org/abs/1606.05790

[6] M. Pelletier, “pygraphblas: GraphBLAS for Python.” [Online].
Available: https://github.com/michelp/pygraphblas

[7] T. Davis, “Algorithm 9xx: SuiteSparse:GraphBLAS: graph algorithms in
the language of sparse linear algebra,” Submitted to ACM Transactions
on Mathematical Software (TOMS), 2018.

[8] T. Aynaud, “Community detection for NetworkX.” [Online]. Available:
https://python-louvain.readthedocs.io

[9] “Graph Challenge,” 2017. [Online]. Available:
https://graphchallenge.mit.edu

[10] M. Blanco, T.-M. Low, and K. Kim, “Exploration of fine-grained
parallelism for load balancing eager K-truss on GPU and CPU,” in High
Performance Extreme Computing (HPEC), 2019.

[11] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic
linear algebra subprograms for Fortran usage,” ACM Transactions on
Mathematical Software (TOMS), vol. 5, no. 3, pp. 308–323, 1979.

[12] A. Browet, P.-A. Absil, and P. Van Dooren, “Fast community detection
using local neighbourhood search,” preprint arXiv:1308.6276, 2013.

226

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:34:01 UTC from IEEE Xplore. Restrictions apply.

