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Abstract—Many fundamental graph mining problems, such as
maximal clique enumeration and subgraph isomorphism, can
be solved using combinatorial algorithms that are naturally
expressed in a recursive form. However, recursive graph mining
algorithms suffer from a high algorithmic complexity and long
execution times. Moreover, because the recursive nature of these
algorithms causes unpredictable execution and memory access
patterns, parallelizing them on modern computer architectures
poses challenges. In this work, we describe an efficient manycore
CPU implementation of maximal clique enumeration (MCE), a
basic building block of several social and biological network min-
ing algorithms. First, we improve the single-thread performance
of MCE by accelerating its computation-intensive kernels through
cache-conscious data structures and vector instructions. Then,
we develop a multi-core solution and eliminate its scalability
bottlenecks by minimizing the scheduling and the memory-
management overheads. On highly-parallel modern CPUs, we
demonstrate an up to 19-fold performance improvement com-
pared to a state-of-the-art multi-core implementation of MCE.

Index Terms—graph mining, maximal clique enumeration

I. INTRODUCTION

Subgraph patterns in graph datasets, such as communities,

clusters, and motifs, are fundamental concepts used in a

wide range of graph mining applications in various fields [1].

However, extracting subgraph patterns often requires executing

recursive algorithms that lead to a combinatorial explosion of

the search space, resulting in long run-times. It is becoming

increasingly challenging for applications to provide real-time

insights as the data set sizes continue to grow [2]. An open

research question is how to efficiently execute such recursive

graph mining algorithms on modern computer architectures.

Trends in multi-core CPUs offer unique opportunities to

accelerate graph mining algorithms. Modern manycore CPUs

have several architectural features that make them well-suited

for running this type of problems. Firstly, such algorithms

access memory in an unpredictable manner, which often leads

to cache misses and memory access stalls. Today’s processors

have a large number of cores, each capable of executing mul-

tiple simultaneous threads. The hardware can hide the latency

of memory accesses by transparently switching between these

threads (i.e. the memory accesses can be overlapped). Second,

modern CPUs have high-bandwidth memory interconnects that

increase the rate at which the data can be processed. Third,

wide vector instructions can be leveraged to significantly

accelerate the data-parallel operations.

Parallelizing recursive graph algorithms is not straightfor-

ward. Real-world graphs exhibit irregular connectivity patterns

and operating on them introduces scattered memory accesses

that result in cache misses and data transfers across NUMA

(Non-Uniform Memory Access) domains. The growing num-

ber of physical cores exacerbates all NUMA effects [3] and im-

poses high penalties when accessing remote data. In addition,

since the recursion tree is discovered dynamically and its shape

cannot be known in advance, distributing the work evenly

across all available hardware resource units (threads, cores,

and memory regions) is challenging. Poor load balancing can

result in unnecessary bottlenecks and decreased performance.

In this work, we describe how to efficiently parallelize

the maximal clique enumeration (MCE), a fundamental graph

mining algorithm. MCE is a building block of many different

graph mining applications, such as detection of communities in

social networks [4], prediction of protein functions in protein

interaction networks [5], and prediction of how epidemics

spread [6]. Other graph mining algorithms, such as subgraph

isomorphism [7], frequent subgraph mining [8], and maximum

clique finding [9], are similar to MCE in terms of the way solu-

tions are incrementally constructed and the type of processing

that dominates their execution time (i.e., random accesses to

adjacency lists of the graphs and intersections of vertex sets).

We first optimize the single thread performance of MCE and

then develop scalable parallel implementations. We accelerate

the single thread performance by optimizing vertex set inter-

sections through two orthogonal approaches: i) we use cache-

optimized data structures and vector instructions, and ii) we

reduce the sizes of the sets via subgraph-centric optimizations.

We then parallelize MCE across multiple CPU cores by i)

dynamic load-balancing across the cores via work stealing,

and ii) a NUMA-aware subgraph-centric partitioning of the

input graph. Lastly, we address the scalability bottlenecks

encountered, namely the memory management and the task

scheduling overheads. Overall, we show that our architecture-

conscious design leads to an order of magnitude speed-up with

respect to a recently-proposed multi-core solution [10], [11].

II. ACCELERATING MAXIMAL CLIQUE ENUMERATION

One of the most popular maximal clique enumeration al-

gorithms is the Bron-Kerbosch (BK) algorithm [12], which

performs a backtracking search to list all maximal cliques.

Tomita et al. [13] improved the original BK algorithm by using

a new pivoting technique that leads to a more efficient pruning

of the search tree. Eppstein et al. [14] further improved this

algorithm for sparse graphs by using the degeneracy order of
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Algorithm 1: Bron-Kerbosch w. degeneracy ordering
1 Function BKDegeneracy (Graph G(V, E))
2 Order vertices in G using degeneracy ordering;

// The outer loop

3 foreach vertex vi : V do
4 P = NG(vi) ∩ {vi+1, vi+2, ..., vn−1};
5 X = NG(vi) ∩ {v0, v1, ..., vi−1};
6 BKPivot({vi}, P , X , G);
7 Function BKPivot (Sets R, P, X, graph G)

// Backtrack

8 if P = ∅ then
9 if X = ∅ then Report R as a maximal clique;

10 return;
// Find pivot

11 foreach vertex v : P ∪ X do
12 tv = |P ∩NG(v)|;
13 pivot = argmaxv(tv);

// Recursive calls

14 foreach vertex v : P/NG(pivot) do
15 BKPivot(R+ {v}, P ∩NG(v), X ∩NG(v), G);

16 P = P − {v};
17 X = X + {v};

the vertices when constructing the recursion tree. In this paper,

we present an efficient parallel implementation of Eppstein’s

version of the BK algorithm, which is given in Algorithm 1.

The BK algorithm maintains three sets of vertices: clique set

R, candidate set P, and exclude set X. The algorithm searches
for the maximal cliques containing all of the vertices from R,
some vertices from P, and none from X. At each recursive
call, the set R is expanded by a vertex v from the set P, and
the sets P and X are intersected with the neighborhood of v.
If both P and X are empty, R is reported as a maximal clique.
The degeneracy of a graph is the smallest value d such that

each nonempty subgraph of it has a vertex with at most d
edges [14]. When the degeneracy of a graph is d, its vertices
can be ordered in such a way that each vertex has at most d
neighbors that appear later in this order. Processing the vertices

in the resulting degeneracy order in the outer loop of the BK
algorithm reduces the search space by bounding the size of the

initial candidate set P to d. Given a graph with n vertices and
degeneracy d, the worst-case complexity of Eppstein et al.’s
algorithm is O(dn3d/3), which is linear in n and exponential
in d, whereas the worst-case complexity of Tomita et al.’s
algorithm [13] is O(3n/3), which is exponential in n.

A. Data-parallel set intersections

The set intersection operations are the dominant part of the

BK algorithm [15]. Performing set intersections is required

both when determining the pivot vertex (line 12 in BKPivot)
and when constructing the new P and X sets (line 15 in

BKPivot). To improve the performance, it is crucial to reduce
the time spent on these operations. We accelerate set intersec-

tions by implementing a cache-friendly data structure called

Fig. 1: Data-parallel set intersections using CAlist.

cache-aligned list (CAlist), which reduces the cache misses and
increases the processing rates by using vector instructions.

We represent sets as ordered lists of 32-bit vertex IDs and

parallelize the set intersections using SIMD (Single Instruction

Multiple Data) instructions, which enable us to perform several

comparisons in only a few clock cycles. Sets are stored in lists

of cache-aligned buckets, where each bucket fits into an L2

cache line and stores several vertex IDs as well as a pointer to

the next bucket. An intersection between two sets is performed

by iterating through the smaller set and checking whether the

vertices of the smaller set also exist in the larger set.

Figure 1 illustrates the way we search for a vertex of set A
in set B. Whether vertex 3 of set A exists in the first bucket
of set B can be determined using two SIMD instructions. The
first SIMD instruction replicates the vertex ID in a vector,

whose size is the same as the size of the bucket. The second

SIMD instruction compares this vector with the contents of the

bucket. As a result, we obtain a bit vector that indicates the

position of vertex 3 inside the current bucket. If the resulting

bit vector is nonzero, vertex 3 is in the intersection of the two

sets. In this particular example, we see that the next element

of set A (i.e., vertex 5) cannot exist in the first bucket of set
B because it has a value greater than the value of the last

element of the bucket. Therefore, we can simply skip to the

next bucket of set B and repeat the same steps for vertex 5.
The performance of the set intersection operations can be

further improved by using bit-vector-based implementations

and by reordering the vertices to increase the data locality [15].

Currently, no such optimizations are exploited by our work.

B. Subgraph-centric processing

An orthogonal way of accelerating set intersections is to

reduce the number of vertices in the sets. This goal can be

achieved by creating a subgraph induced by the neighborhood

of a vertex vi in the BKDegeneracy function and forwarding
it to the corresponding BKPivot function [11]. Creating sub-
graphs enables the following recursive calls to perform faster

set intersections by using smaller adjacency lists.

An additional benefit of subgraph-centric processing is that

it improves memory locality and reduces remote memory

accesses. Instead of accessing a single large graph distributed

across all NUMA domains, each task can access a subgraph

local to its memory region. This optimization reduces the la-

tency of accessing memory, makes caching more efficient, and

reduces communication across the chip, all of which improve

the performance of the BK algorithm on NUMA architectures.
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Related subgraph-centric parallelization approaches have also

been used in distributed graph processing frameworks [16].

C. Multi-core optimizations

We use the Intel Threading Building Blocks1 (TBB) library

[17] for parallel processing, which enables defining tasks as
independent units of computation that are separately sched-

uled for execution on the available hardware threads. TBB

uses work-stealing scheduling, which performs dynamic load
balancing across the threads [18]. In addition, TBB offers a

scalable memory allocator, which reduces contention when

multiple threads allocate and deallocate memory concurrently.

Initially, each recursive call to the BKPivot function is
defined as a task. In each iteration of the foreach loop

shown in line 14 of Algorithm 1, memory for the subsets

P ′ = P ∩ NG(v) and X ′ = X ∩ NG(v) is allocated, and a
new task is spawned with the subsets as parameters. When the
foreach loop completes, we wait for all spawned child tasks to

return before finishing the current task. The iterations of the

foreach loop of the BKDegeneracy function are also executed
in parallel by spawning a dedicated task for each one.

The scalability of our parallel BK implementations can be

limited by task scheduling and memory management over-

heads. In the following, we discuss our relevant optimizations.

1) Reducing the task scheduling overheads: Grouping mul-
tiple recursive calls into a single task reduces the task creation

and scheduling overheads. If more time is spent on managing

tasks rather than executing them, the multi-core implementa-

tion will not scale well. Because the calls typically become

shorter lived as we move deeper in the recursion tree, we

heuristically restricted task grouping to the recursive calls near

the bottom of the recursion tree. However, we also impose a

limit on the number of recursive calls that can be combined

in a single task to preserve the efficiency of work stealing.

2) Reducing the memory management overheads: Frequent
memory allocations and deallocations by multiple threads can

cause contention and lead to performance bottlenecks. TBB’s

scalable memory allocator can alleviate such problems, but

it cannot eliminate them completely. The main reason is the

frequent dynamic allocation of P and X sets. Every recursive
call needs to create multiple pairs of these sets that might live

and be deallocated in different tasks. Our work reduces the

memory management overheads by allocating and deallocating

memory needed by multiple sets at once. Each task pre-

allocates a memory block, in which all the sets created by

the task are stored. The memory block is deallocated once all

of the sets in the block are no longer needed.

III. EXPERIMENTAL RESULTS

In this section we evaluate the performance of our imple-

mentation. First, we discuss how each optimization affects

the different components of the execution time, such as time

spent on set operations, memory access coordination, and

1 Intel, Intel Xeon, Intel Xeon Phi, Threading Building Blocks and VTune
are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

TABLE I: Properties of the graph datasets.

dataset #vertices (M) #edges (M) degeneracy size (MB)
wiki-Talk 2.4 5 131 64
B-anon 2.9 21 63 80
as-skitter 1.7 11 111 143
livejournal 4.0 28 213 393
wiki-topcats 1.8 29 99 403
Pokec 1.6 31 47 405
orkut 3.1 117 253 1740

Fig. 2: Impact of each performance optimization on the total

CPU time when using 256 threads to mine the wiki-Talk graph.

task scheduling. Next, we show how well our implementation

scales on a modern manycore CPU. Afterwards, we compare

our implementation to a state-of-the-art multi-core implemen-

tation of the BK algorithm by Das et al. [10], [11].

We use the second generation Intel Xeon Phi 7210 proces-

sor, i.e., the Knights Landing (KNL) [19]. It is a manycore

processor with 64 cores and four NUMA regions (16 cores

share a memory region). Each core can execute four simulta-

neous threads, so the CPU can run 256 simultaneous threads.

In addition, Intel KNL features a high-bandwidth memory and

the state-of-the-art vector instruction set (i.e., AVX-512).

To build our code, we use version 8.3.1 of the GCC compiler

using -O3 optimization flag. To exploit task parallelism, we use
version 2019 U9 of the Intel TBB framework. For profiling,

we use Intel VTune Amplifier version 2018.3.

In our set intersection implementations, the bucket size is

equal to the L2 cache line size (64B). Each bucket contains

14 vertex identifiers and a pointer to the next bucket. We use

Intel’s AVX-512 vector instructions to accelerate set intersec-

tions. The datasets we use are summarized in Table I and come

from the Network Data Repository [20] and SNAP [2].
Figure 2 shows the impact of each optimization when

executing our BK implementation on the wiki-Talk [2] graph
using 256 threads. Our baseline without optimizations is

std::unordered set, which supports lookups in O(1) time
complexity. Intersections are performed simply by iterating

through the smaller set and performing lookups in the larger

set. Our data-parallel set intersection implementation achieves

a two-fold speed-up with respect to this unoptimized baseline.

The improvement comes both from the use of AVX-512

instructions and the reduction of the number of cache misses.

The intersection time is further reduced 1.7 times by creating

subgraphs in the first level of the recursion tree. In addition,

combining several recursive calls into a single task eliminates

the task management overheads. However, this optimization

reduces the memory management overheads as well. Because

the tasks are dynamically allocated, reducing the frequency of
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Fig. 3: Speed-up w.r.t. single-threaded execution on KNL.

(a) KNL: 256 threads (b) Xeon Skylake: 96 threads

Fig. 4: Comparisons with the TBB-based implementation of

ParMCE [11]. The run-times are given above the bars in secs.

task creation indirectly reduces the time to allocate the P and
X sets. Lastly, Fig. 2 shows that the time spent on memory

management is further reduced by pre-allocating the memory

space needed to store all the P and X sets created by a task.
Figure 3 shows the scalability of our implementation by

reporting the speedup compared to the single thread case. The

algorithm scales almost linearly until 64 threads, which is

exactly the number of physical cores of the Intel KNL. After

that point, KNL uses simultaneous multi-threading, which

improves the performance sublinearly. There is little benefit

of using more than 128 threads, so we omit these data points.

Finally, we provide comparisons with the state-of-the-art

multi-core implementation by Das et al. [10], [11]. In addition

to KNL, we show results on the Intel Xeon Skylake proces-

sor, which incorporates 48 physical cores and supports two

simultaneous threads per core. This processor also supports

the AVX-512 instructions exploited by our work. Fig. 4 shows

that the largest performance improvements we achieve on the

KNL and Skylake processors are respectively 19- and 9-fold.

IV. CONCLUSIONS AND FUTURE WORK

We presented a scalable multi-core implementation of the

BK algorithm that achieves an up to 19-fold speed-up com-

pared to a recent solution [11]. Such an improvement was

enabled by minimizing the time spent on set intersections in

the single-threaded implementation and by eliminating the per-

formance bottlenecks of the multi-threaded implementation.

Currently, we are evaluating the impact of various vertex

ordering methods and set-intersection algorithms on both the

theoretical complexity and the practical performance of the BK

algorithm. Our future work will explore exploitation of high-

bandwidth memories to improve the performance further [21].
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