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Abstract—Modeling and scheduling diverse and dynamic
workloads effectively has become a crucial issue due to the
ever increasing scale and complexity of systems and applications
in modern data centers. A large-scale cloud system consists
of a large number of computing nodes, storage nodes and
networking devices, running diverse workloads. Existing works
analyzed execution traces in terms of resource usage by ap-
plying statistical methods. Cloud workloads, especially batch
jobs, are composed of tens to thousands of tasks with complex
dependency which can be represented by directed acyclic graphs
(DAGs). Those workloads and their dependencies have not been
thoroughly studied. Understanding the characteristics of batch
cloud workload helps us foresee resource demands and execution
time of new jobs and make better decisions in job scheduling.
In this paper, we investigate batch jobs in production cloud
computing environments with dependencies from the perspective
of topological characteristics and structural patterns. We design
a graph learning approach for job classification based on jobs’
topological similarity. We evaluate our methods using traces
collected from a production data center and discover insightful
properties and patterns of batch jobs in real-world scenarios.
To the best of our knowledge, this is the first such work that
leverages graph learning to explore the topological structures for
cloud workflow for characterization and analysis.

Index Terms—Cloud computing, Workload characterization,
Graph learning, Job dependency, Classification.

I. INTRODUCTION

Applications run on large-scale cloud computing platforms

contain various numbers of tasks with dependencies that can

be expressed by directed acyclic graphs (DAGs). DAG jobs are

widely seen in big data analytics workloads. There is a depen-

dency hierarchy in these batch jobs. However, the composition

of DAG batch jobs can differ significantly. Then the question

comes up: How can we characterize these various workflows in

an effective manner that helps maximize the efficiency of task

scheduling and resource utilization? To answer this question,

we consider two aspects in cloud workload analysis: resource

management and topological structure-based optimization.

There are existing works on resource utilization analysis for

cloud workloads. Conventional statistical analysis approaches

have been applied to characterize workload on production

clouds [4], [12], [14]. However, the dependencies in batch

jobs have not been analyzed in depth. Existing works do not

consider the structural patterns and resource needs of multiple

jobs co-run on a node. There are gaps between the traditional

resource analysis and graph learning based characterization

scheduling, which provides a holistic view among jobs in

cloud.

In this paper, we aim to bridge this gap and provide an in-

depth analysis of DAG-described batch workloads to enable

effective job scheduling decisions in large-scale, co-located

cloud environments. We not only explore the inner properties

of task dependencies among jobs, but also explore the inter-job

structural relationships based on DAG topology among various

jobs in the cloud. Our main contributions are as follows.

1) We automate the construction of DAGs for more than 3

million batch jobs with dependencies from a production

data center and transform these graphs into a vector

representation for graph learning.

2) We perform graph learning and discover important pat-

terns with regard to job-task-node dependency which

provides crucial information for job scheduling.

3) We leverage graph clustering to group cloud jobs for

workflow classification and scheduling.

The rest of the paper is organized as follows. Section 2

describes the background on cloud management. Section 3

presents the graph abstraction and data processing. Section

4 characterizes the structural patterns of batch cloud jobs

and Section 5 details the graph-based clustering method and

presents the analytical results. Section 6 concludes the paper

with remarks on future work.
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Fig. 1: System architecture. There are five layers in the cloud system. Above from the scheduling layer, there are there major

components for cloud management: (1) unified controller. (2) cloud schedulers [42]. (3) upper level scheduling software, for

example, Hippo Manager [43].

II. BACKGROUND AND MOTIVATION

Cloud computing has become a mainstream investment in

the modern business market. Enterprises adopt various state-

of-the-art technologies to improve their competitiveness in a

reliable economic-friendly manner and to better adapt to the

rapidly changing business environments. The higher level of

virtualization, automation, and security of cloud data centers

provides larger capacity and greater convenience of manage-

ment compared with conventional data centers. According to

the prediction from Cisco [1], 94% of workloads and compute

instances will be processed by cloud data centers in 2021.

The increasing scale of cloud services in data centers has led

to the development of advanced systems and infrastructures.

Meanwhile, the complexity is rising dramatically. Workloads

in production cloud environments are heterogeneous and dy-

namic. A wide variety of applications are serviced by large-

scale data centers. These applications include but not limited

to live streaming services, Internet of things, transactions on

e-commerce platforms, machine learning, data management

and storage services. Due to miscellaneous capacity require-

ments and diverse performance characteristics of resources

consolidation in data centers, the efficient management of

these common shared infrastructures remains an important

challenge. Cloud services providers, such as Alibaba cloud,

Amazon Web Service (AWS), Google Cloud, IBM cloud

and Microsoft Azure, are seeking solutions to improve their

computing services for customers from different technical

perspectives: infrastructures, platforms, and software. Cloud

computing systems co-allocate online services and batch jobs

to improve the server utilization as well as reduce the cost of

energy and management. [2]

A. System Architecture

Before service co-location, different types of workloads

ran on separate subsystems, which caused more financial

cost and energy cost for data centers. The co-location ar-

chitecture in cloud management systems is designed based

on the needs of serving multiple different types of services,

such as Online user-interactive services and offline computing

services. Client-end job submissions such as transactions or

searching requests are examples of online services. Online

services require real-time responses with low latency and high

performance. These jobs are usually hosted on containers.

Offline services aim for executing large scale batch jobs

which can support big data processing, computing services

and statistical analysis. These server-end services are latency

insensitive. Due to the characteristics of these two types of

services, online jobs usually have a higher priority than offline

services to ensure the quality of service (QoS) at run time.

Co-location technology integrates the resource pool for both

services in order to properly handle the resource allocation and

competition in the scheduling layers. In a co-located cloud,

resources are shared by online and offline jobs.

A hierarchical structure exists in the overall co-location

architecture. Figure 1 presents a five-layer structure. In the

infrastructure layer, servers, networking equipment, and stor-

age resources needs to be well-planned and executed. On top

of that, a centralized manager for resource pools is deployed

at the resource layer. Furthermore, there are three levels of

schedulers: Level-0 scheduler is responsible for allocating re-

sources for both online and offline jobs, Level-1 schedulers are

dedicated to managing online and offline services individually.

Moreover, upper level scheduling software is deployed in the

level-2 scheduler for specific resource needs.
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B. Batch Workload

Batch jobs run without user interaction and involve job

scheduling on multiple nodes and run tasks in parallel. Unlike

online stream processing, a large volume of data needs to be

processed for a long time and mostly follow diurnal patterns.

In addition, the latency is insensitive for batch jobs. However,

the lower priority of offline batch processing leads to uncer-

tainty in execution. For example, when resource competition

happens, the running batch jobs may be either suspended

or killed to retain more computational resources for online

streaming jobs. They are then rescheduled to run on other

nodes.

Moreover, dependency is common in batch jobs. An increas-

ing proportion of jobs with dependencies play an important

role in the batch workloads. There are around 50% of batch

jobs have dependencies in the production data center that we

study and they consume 70% to 80% resources among all

batch jobs.

Dependency of batch jobs exist among their tasks. Batch

jobs with dependencies follow a job-task-instance hierarchical

paradigm that each job consists of one or more tasks. A task is

a computation unit of manifold distributed computing models

such as MapReduce, Spark, and SQL. There is at least one

instance for each task within a job. Resource requests can be

similar among instances of a task, and their input data are

usually distinct [2]. We use Directed Acyclic Graphs (DAGs)

to present the dependency relationship among tasks in batch

jobs. The completion time of a job is the total amount of time

it spends from the earliest time of starting the first task(s) to

the latest time of finishing the last task(s). Resulting from the

increasing complexity of varying jobs in the batch workload, it

becomes challenging to manage these long-running jobs with

dependencies in multiplexing cloud environments.

III. CLOUD AND WORKLOAD DATA

The data of Alibaba’s cloud trace was released in 2018

and contains co-located jobs from about 4000 nodes over 8

days. It provides comprehensive data and information collected

from machines, containers and batch jobs. Machines’ meta and

usage files were collected from servers. Configuration and run-

time resource usage are included. Each server ran multiple

containers that enabled distinct services to co-locate different

type of jobs.

Our study focuses on analyzing batch cloud jobs. There are

more than 4 million batch jobs run in the cloud during the 8-

day period. Batch workloads were generated by internal users

[12] to run jobs of MapReduce, SQL, and Flink ( [6], [46],

[45] ), and machine learning. Batch jobs follow the job-

task-instance hierarchical paradigm that each job includes

one or more tasks and each task has multiple instances.

Our work concentrates on job-level analysis of batch cloud

workload. Task dependency in a job is represented by DAGs.

We create a graph for each job and the vertices in the job

graph represent tasks. In our traces, batch job data is stored

in two files: batch task and batch instance. Batch task data

contains information at the task level, including task names

under their lead jobs, instance number for each task, duration

and planned resource usage. This dataset helps us determine

the dependencies among various types of tasks and is used

to build job DAGs for graph learning. Batch instance data

provides the detail about instances’ execution information of

all tasks. It also contains temporal records for each instance

and the actual resource consumption information (CPU and

DRAM).

IV. GRAPH REPRESENTATION AND DATA PROCESSING

In this section, we create a graph to represent batch jobs

from raw data and analyze the characteristics of DAG jobs

with dependencies.

A. Batch Job DAGs Graph

DAG is an unique form to represent a batch job with de-

pendencies. It provides an intuitive view of job representations

and their interrelationships. In our study, most of the batch

workloads constitute DAGs while others are independent. In

the workload, task dependency is denoted in the field of

Task Name. For instance, the DAG of a job with job ID

1001388 in figure 8(a) consists of 5 tasks (M1, M3, R2,

R4, R5) with some dependencies. In accordance with the

dependency, each task named differently in the dataset. M1

and M3 are “Map” tasks that can start individually without

waiting for other tasks to be finished. R2 and R4 are two

“Reduce” tasks that are named with R2 1 and R4 3, which

indicate that task 2 (R2) has dependency with task 1 (M1) and

task 2 can only start running when task 1 is finished. Similar

to task 4 (R4), it can only run after task 3 (M3) is completed.

Moreover, the last task (R5) with name R5 4 3 2 1 denotes

that task R5 can only start running after all previous tasks are

accomplished.

Batch workloads graph representation enables us to perceive

the scale of jobs that running in the cluster from the overall

collection and it provides us with an intuitive view of topolog-

ical structure based on tasks dependency. Moreover, it allows

us to detect the relative distribution of jobs according to their

volumes and concurrency degree.

We display the result in Figure 2. Each vertex represents a

task that indicates stage of a running job. We applied direct

edges to demonstrate the link dependency between stages. The

dependency indicated that the succeeding task can only start

running after its precedent task finished. We labeled nodes

using the combination of their job and task name to distinguish

tasks from different jobs. In addition, we take account the

resource usage of CPU and memory and instances information

including amounts, running time and periods as attributes to

the running tasks.

B. Feature Vector Selection

In the subsequent experiments, we sample 100 DAG batch

jobs arbitrarily from the overall data set to illustrate our

method and display the result. To maintain the fairness of data
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Fig. 2: Sample of job-level abstraction of DAG batch workload

sampling, we select our job entities based on the following

criteria:

Integrity. Not all batch jobs in the workloads are end

completely without any interruption. Some jobs still run during

the process of data acquisition cut off. Besides, some jobs are

canceled resulting from resource competition or erratic hard-

ware issues. Thus, we are intention to filtrate the terminated

jobs within the active interval of overall data to remain the

job completeness.

Availability. Despite the fact that selected jobs with ter-

minated status uphold the integrity of job graphs relatively,

the evidence of existing running tasks collected before the

starting point is missing. Original data source acquisition by

administrators my happen while cluster servers provide normal

services to the public. In this case, the actual running period of

a job is no longer reliable which would affect the authenticity

and effectiveness of the follow up analysis and the resultant

model. We aims to keep the sampling data with effectual

resource information in addition to the structural completeness

of DAG jobs.

Variability. It is important to preserve the variability of

DAG jobs by having manifold topological structures and

sizes. Data-intensive jobs running in the cluster exhibit strong

features on dependency. The dependency associated with tasks

presents temporal and spatial information in the workloads.

Additionally, all jobs vary in patterns on the basis of paral-

lelism and temporal distribution. Overall, we have 17 different

size types in our experimental set where the number of tasks

ranging from 2 to 31 nodes.

C. Node Conflation

In the large-scale batch workload, jobs with smaller size

are more likely to appear repetitively in terms of their simple

topological structure. However, recurrent structure occurred

partially in larger jobs. Some tasks perform the same kind of

operations without sophisticated dependency to other nodes.

Hence, we can consolidate them together to reduce the com-

plexity of large jobs in the workload. In this way, we can

improve the efficiency of estimating the DAG jobs’s structure

for further operations. As shown in Figure 3, the ratio of

smaller jobs increases compared before doing merge operation.

Fig. 3: Size of DAG jobs before and after node conflation

V. CHARACTERIZATION OF JOB GRAPHS

A. Structural Quantification

To better understand the characteristics of batch jobs, we

measure our data by taking account the following features: 1)

batch job size, 2) job critical path, and 3) job maximum width.

The number of tasks each job has determines batch job size. In

our experiment set, we obtain 17 different job volumes from

raw data. The results are shown in Figure 4 and Figure 5.

The amount of jobs in each size group are decreasing as the

batch size increases. For example, the larger size jobs have

appeared fewer times than the smaller size jobs.

Fig. 4: Job features before node conflation

The job critical path defined by the longest depth of a job

DAG graph which also illustrate the level that each job has.

We calculate the depth from each individual job and obtain the

maximum one from distinct dimensional groups. The length

of critical path varies from 2 to 8 in the experimental set. The
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Fig. 5: Job features after node conflation

result shows that the maximum critical path does not increase

linearly as the job size grows. In other words, some larger

jobs have more tasks running in parallel. The overall length

of maximum critical path of each size group are relatively

small.

Furthermore, we compute the largest width of every single

DAG graphs and select the maximum one from each size

group. From our investigation, the parallelism of a job is quite

positively correlated to the size of jobs. As shown in Figure 4,

the extreme case occurs when there are 30 out of 31 tasks

running in parallel and only one existing node perform the

reduce operation. Even though jobs with larger size has higher

parallelism, there is no guarantee that smaller jobs must have

lower parallelism. For instance, the maximum width of a job

from group 10, which consists of 12 nodes in the graph, is

larger than the values of a job from group 14, which has a

total 18 tasks.

B. Common Graph Patterns

In practice. many DAG batch jobs have complex dataflow

intermixing with multi-hierarchical levels and various parallel

tasks in the clusters. It made resource allocation and schedul-

ing in a more efficient way become a challenge. Sometimes,

the system needs to adopt a greedy approach to allot resources

which could cause long waiting time and over provision

issues on hardware. To better reveal the problems of batch

jobs under co-located environment, we find several prevalent

graphical patterns of DAG batch jobs. These components are

fundamental structure to form a job. Also, some jobs are

the synthesis of multiple components together. We categorize

them into shape-based fundamental patterns: inverted triangle,

straight chain, diamond.

Inverted Triangle: Jobs with inverted triangle structure are

convergent from input vertices to the terminated node. Input

vertices are nodes with in-degree of zero. Some of these tasks

may running simultaneously while others may work separately.

The number of inputs vertices are larger than the existing

nodes. Most inverted triangle jobs end with a single node that

perform a summary operation. A very easy example of this

type of job is a simple MapReduce job. In the beginning, there

are two map tasks and they finally merge to the reduce task.

This type of job has second highest frequency (37%) appeared

in the dataset.

Straight Chain: There are 58% of DAGs are straight chain

jobs which means that all the tasks are running one after

another. The number of inputs and output nodes are identical

and restricted to one. Parallel tasks are not existing in this

type of job. Tasks in the straight chain jobs need to wait to

start after its parent tasks finish running. Every single task

within the job is strongly reliant upon the performance of the

previous task.

Diamond: Jobs in diamond topological structure have rela-

tively low frequency than inverted triangle- and straight chain-

type of jobs appeared in our data set. These jobs have same

amount of input and output nodes such that they usually start-

ing and ending with a single task. However, their intermediate

level has multiple tasks running in parallel and the width is

larger than the number of two edge nodes.

In addition, we investigate other pattern components and

they also play an important role in the overall cluster workload.

hourglass and trapezium style jobs have also been detected.

They are basically the combination of formerly mentioned pat-

terns or the alternatives with minor changes from fundamental

components. The hourglass type of jobs have similar numbers

of nodes in the beginning and ending stage but only have a few

tasks running in the intermediate stage. The trapezium-type

jobs have more ending tasks than input ones. There are also

jobs with combination style such as having inverted triangle

in the beginning, but following tasks are running sequentially

with long tail. Learning job-based topological shape can help

us understand the job structure according to their distribution

and trend of how the tasks are arranged. This would further

help with clustering and incoming job predictions.

C. Exploratory Investigation of Task Types

The subsequent question is how assigned tasks are organized

in the DAG jobs? To answer this, we investigate the internal

organization along with the structure of DAG jobs to explore

the pattern of tasks. Large scale computing usually uses

multi-level pipeline based parallel computing framework [4],

for instance, Apache Hadoop [38]. Alibaba cloud developed

their own platform for multi-tenancy data processing called

MaxCompute [37]. It is also supporting computation jobs such

as SQL, MapReduce, and Spark. We observe that there are

some common batch programming modes has appeared in

our data: map-reduce [6], map-join-reduce [7], and map-
reduce-merge [8].

Map-Reduce is a programming model and best used for

handling homogeneous data in the cloud environment. Most

search-engine related jobs and some machine learning based

applications use this model to process data with large volumes.

Map function in the Map-Reduce framework splits input data

into smaller blocks and then processes and releases them

to an intermediate phase called shuffle, which could operate

on different machines in the cluster. The framework shuffles

and sorts the results to the reducer in the reduce phase.

Additionally, Map-Join-Reduce is an extended version of

MapReduce that improves the runtime efficiency on processing
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Fig. 6: Distribution of Map-Join-Reduce tasks

heterogeneous data analytic. It is designed for multi-way join

and allows to partition multiple data sets to the reducers in

one pass [7]. Map-Reduce-Merge [8] adds a Merge phase

after applying the map and reduce function and it reads data

in an organized manner. This programming model can also

support join operation on multiple dataset and it is helpful for

processing relational data.

To understand the relationship between task type and the

structure of DAG jobs, we measure the amount of different

task types among each job. As shown in figure 6. There are

three types of tasks appearing in our data: M, J, or R. There

might be other types of tasks in the original dataset. However,

those tasks are either jobs without DAG structure or they are

not fully terminated jobs. So we did not conclude them in

our test. M represents the tasks are either Map or Merge. R

indicates that the reduce function is applied in the task. J is

the join operations. The original cluster trace does not provide

the detailed description on specific task type, unlike trace data

from other organizations, like Google [10]. Regardless, these

jobs follow some common patterns that we can infer their

types based on the framework infrastructure. Many smaller

sized jobs that their length of critical path is less or equal to

two which exploit fundamental Map-Reduce framework that

only map and reduce functions deployed. Note that the job id

with 1011266 has the largest number of M tasks and just a

single R task.

Other than that, the majority of jobs present Map-Reduce

with join operations. Interestingly, there are different kinds

of Joins in the jobs. To distinguish the joins in different

algorithms, we find out that “join” in the general MapReudce

can be performed in either map or reduce side. The join

occurs before reaching the map function is the map-side join.

The shuffle phase sorts and merges the intermediate file from

mapper to reducer. It’s a one-to-one strategy that the data in

the intermediate node can only pass data to another node

[9]. Basically, if the join operations are performed in the

map or reduce phases are implementing the general MapRe-

duce. However, “join” in Map-Join-Reduce is an independent

stage that introduces a filtering-join-aggregation programming

model which allows the one-to-many shuffling activated [9].

The reduce functions read the input from the output of the last

join function [7].

In our observation, nearly all chain-structured jobs per-

formed MapReduce without join operations. The amount of R

tasks in most of the chain-structure cases are deployed more

than M tasks except those jobs who have less than four task

nodes in job graphs. In relatively larger jobs, the form of task

deployed is even more complicated. Map-Reduce and Map-

Join-Reduce framework are used in combination. We also find

that jobs with higher parallelism have more reduced tasks after

the node conflation process.

Performing clustering analysis is a critical step for exploring

the topological features of batch jobs DAG. Before applying

classification techniques, a similarity measurement is needed

for graph-structured data. A conventional idea is to calculate

the edit distance of transforming one graph to another. How-

ever, the computational cost is exponential depending on the

number of nodes, which is less effective. We adopt graph

kernels, in particular Weisfeiler-Lehman kernel [18] in our

method to conduct the graph clustering tasks for the batch

jobs.

D. The Kernel-Based Approach

The Weisfeiler-Lehman (WL) graph kernels break down a

connected graph into subtrees. and then, a similarity function

is defined according to the number of common substructures

across pairs of graphs. The common patterns are also discov-

ered in our batch job DAGs as we introduced in section 5.

A graph kernel is a kernel function over a set of graphs. It

is similar to an inner product of the embedding. Weisfeiler-

Lehman can effectively compare if two graphs are isomorphic.

It builds on top of the substructure-based kernel such as

subtree kernel or shortest path kernel. The Weisfeiler-Lehman

is defined as follows:
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Let G and G’ be graphs for comparison. Assume G1, G2,

..., Gn are graphs emerging from G at the iteration 1, 2, ..., n

of the Weisfeiler-Lehman algorithm. We define the Weisfeiler-

Lehman kernel as follows:

knwl(G,G′) =
n∑

i,j=0

k(Gn, G′n) (1)

In equation (1), k represents a base kernel function, such as

subtree or shortest path kernel. The base kernels, k(G, G’),

compare the substructure of two graphs that usually takes

polynomial time. We define that Σ represents the set of labels

of graph G and G’. The set of original labels of both graphs is

represented by Σ0, whereas, Σn is the set of labels after nth

iteration of the Weisfeiler-Lehman algorithm. Assume that all

Σn are pairwise disjoint and all elements ( σn1, ..., σi|Σn|)
inside Σn is ordered. The subtree kernel on graph G and G’

with n iterations is defined as:

k
(n)
wlsubtree(G,G′) = 〈φ(n)

wlsubtree(G), φ
(n)
wlsubtree(G

′)〉 (2)

where φ
(n)
wlsubtree(G) and φ

(n)
wlsubtree(G

′) are sets of maps

that count the number of occurrences of the label (σij) in the

graph G and G’ respectively, such that

φ
(n)
wlsubtree(G) = (m0(G, σ01), ...,m0(G, σ0|Σ0|),

..., (mn(G, σn1), ...,mn(G, σn|Σn|))

and

φ
(n)
wlsubtree(G

′) = (m0(G
′, σ01), ...,m0(G

′, σ0|Σ0|),
..., (mn(G

′, σn1), ...,mn(G
′, σn|Σn|))

Graph kernels employ re-labeling technique to the graph

in each iteration and obtain the new kernel values. Then, the

current nodes in both graphs will be re-labeled based on the

new values. When iterations end, if vertices in two graphs get

the same labels, the two graphs are isomorphic. If they are

not completely same, similarity scores are calculated. We have

shown the correlation map of our experimental data based on

the similarity score in Fig 7. The x- and y-axis of the map are

index values from 100 job samples randomly selected from the

dataset for demonstration purpose. Values of similarity scores

are float numbers ranging from 0 (darker blue) to +1 (red),

where 1 indicates that two job graphs are identical in terms

of the topological structure. In other words, the smaller the

value, the less similar the two graphs are. We ignore the results

of the red solid block along the diagonal since they are self-

comparison of the same job graphs. We found out that smaller

graphs with short tails and low-level parallelism usually have

higher similarity scores. For larger graphs, parallelism, tail

length, and degree of nodes in subgraphs among jobs are

comprehensively examined based on the calculation using

proposed method. We then use them for clustering to have

a deeper insight into the implication of outcomes.

VI. GRAPH SIMILARITY AND CLASSIFICATION ANALYSIS

Fig. 7: Similarity score map formed by pairwise comparison

between batch job DAGs.

A. Job Graph Clustering

In order to discover the representative pattern from existing

DAG jobs, we perform an exploratively analysis by applying

unsupervised learning methods on the received similarity map

to cluster jobs with multiple topological characteristics into

groups. In particular, we explore spectral clustering method

based on the generated jobs correlation map. Spectral clus-

tering aims to classify items into clusters through the eigen

decomposition of a similarity matrix. Due to the nature of

our circumstance, we implement spectral clustering because

it can capture the characteristics of geometrics from graph-

based data and can apply affinity measures directly from

the formatted input matrix. In a typical spectral clustering

algorithm, it needs to construct a similarity graph defined by

each pair of data points as input and it will then calculate

the clusters based on the affinity matrix instead of defining

specific attributes to train the model for clusters.

Conventional spectral clustering algorithm usually performs

on the task-level (or node-level in graph theory). In our

experiment, we apply the spectral clustering algorithm to a

pairwise graph comparison of sampling jobs and discover the

clusters based on the similarity scores between each pair of

jobs. In the experimental results, job graphs are clustered into

five groups in terms of DAG topological structure. We display

statistical analysis in Fig 9 according to the clustering results.

Various job sizes based on the number of tasks appear in
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(d) (e)

Fig. 8: Clustering Groups. Five different groups have been detected. Some representative jobs from each group are selected

to show above. (a) Group A with job id 1001496 (b) Group B with job id 1012962 (c) Group C with job id 1001510 (d)
Group D with job id 1011877 (e) Group E with job id 1012867

each cluster group which is shown in Figure 9(a). 75% of

jobs are clustered in the group A. The majority (90.6%) of

jobs inside group A are short jobs which have less than three

nodes (tasks) in each job DAG. Their length of critical path

and parallelism are smaller compared to other groups. Small

chain-structure jobs are frequently seen (91%) in this group.

This is because smaller jobs have relatively simple structure.

In addition, the intermediate parallel running tasks of non-

chained jobs in group A are more likely to converge into

one ending node in the last step. The topological shape of

jobs in Group A involves inverted triangle, straight chain, and

diamonds.

The scale of jobs in the clustered group B increases as

the average size raises about approximately 1.55 times in

respect of group A. The overall extent of critical path and

parallelism of jobs enhances as well. It appears that more

jobs contain chain-structured subgraphs closely tied to its

distributed tasks within the graph. These jobs still follow

the style of convergence but with longer tails in their hybrid

structure.

Furthermore, due to the increasing complexity, jobs in group

D have higher average values among the metrics. Subgraph

after distributed tasks in each job not only has chains but also

successive serial tasks appear before the aggregation. Group

C and Group E have a few different properties than other

groups. Unlike jobs in the other clusters follow a convergence

structure, Jobs in group C and E are diffuse. Based on the

depth of graphs, the number of tasks in the last level are more

than its precedent level. In group E, the extreme case, 8 tasks

are released from a single node at the ending level. For the jobs

in Group C, task intersection exists, for instance, all the ending

nodes are fully connected to every node in their previous level.

VII. RELATED WORK

Workload analysis and resource management. Cluster

workload analysis can provide valuable insight to the system

performance and utilization. [25] characterized the resource

usage of both online and offline production jobs from Al-

ibaba’s cluster data of 2017. [26] also analyzed the same

sets of data but they focused on discovering the characteristic
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Fig. 9: Properties of job DAGs in cluster groups. (a) Population

of jobs in groups. (b) Distribution of job size across groups. (c)

Distribution of the length of the longest critical path of jobs

across groups. (d) Distribution of the maximum parallelism

among jobs across groups.

of imbalance from overall workload in terms of resource

demands and job duration. [14] provided statistical analysis on

workload behavior and applied k-Means clustering algorithm

to grouping the similar job with similar properties on resource

demands and duration. [12] provided an overall analysis on

newly released data from Alibaba. [13] performed a character

analysis on DAG jobs and innovated a synthesis method to

generate simulated workloads. In addition, [34] introduced a

fractal-based model to investigate and characterize the self-

similarity and non-stationarity property of cloud workloads

for optimal control.

Algorithm design of dependency-aware scheduling in dis-

tributed clusters is another prevalent topic to improve effi-

ciency of data center. [16] developed a tool, called Decima, to

automatically learn the scheduling policies in the cluster using

reinforcement learning technique. Another group [15] imple-

mented the deep reinforcement learning approach to optimize

the scheduling of dependency-based jobs. However, their job

only focused on the task level optimization. [27]applied a task

duplication strategy to improve the performance of solving

multi-clusters DAG mapping problem.

Graph-based learning. Moreover, the literature of graph-

based learning provides a variety of intriguing approaches

and applications. In terms of graph similarity analysis, [20]

proposed a new graph matching networks model based on

graph neural networks. It can effectively learn the similarity

reasoning and identify differences among graphs by com-

puting similarity scores through cross-graph attention mech-

anisms. SimGNN [19] is a neural network-based approach

to solve the graph similarity search problems by combining

embedding function with attention mechanism and pairwise

node comparison in graph-level embedding. On top of that,

instead of using the fixed-dimensional embedding in graph-

level representations, node embedding matching technique was

applied to obtain the fine-grained differences between graphs

for similarity computation. [21]

More specifically, the following works adopted the

Weisfeiler-Lehman algorithm [18] in their design to im-

prove the performance of graph learning. [22] developed a

graph neural network-based framework in accordance with

transform-sum-concatenation pattern which considered the

continuous similarity in the neighborhood aggregation. [23]

presented two algorithms for both labeled and unlabeled

graphs aiming to capture the global properties of graph com-

parison. The first algorithm employed indefinite kernels based

on SVM classification and the second algorithm consolidated

Pyramid Match Kernel and Weisfeiler-Lehman framework to

enhance the accuracy of graph classification. In addition, [24]

proposed a graph kernel method on the basis of topolog-

ical properties that leverages iterative variants of persistent

Weisfeiler-Lehman procedure to improve model generalizabil-

ity and predictive performance by capturing the features of

connected components and cycles in non-attributed graphs.

Furthermore, a wide range of applications of graph learning

have been explored in real-world scenarios. [28] and [29] ap-

plied graph similarity analysis in storage workload and cloud

migration pattern generation, respectively. [30] developed a

graph-kernel based structure feature selection method to clas-

sify connectivity networks for brain disease. Similarly, [31]

applied WL-align technique to evaluate the brain atlases based

on topological structure similarity in connectome. Besides,

[32] and [33] also adopted the principles from WL kernel to

detect program resemblance and improve clustering outcome

of source code, correspondingly.

VIII. CONCLUSIONS

In this work, we perform a job-level graph-based batch

workload analysis with an aim towards understanding the

hidden information of job topological structure in the large-

scale cluster. We execute a comparative character analysis

on dependable jobs to study the performance in terms of

common patterns and task type. Finally, we contribute a graph

similarity approach that learns from the sub-patterns of each

job and clustering them into multiple groups. The result shows

that our method bridges the gap that can effectively capture

the properties of topological structure of batch jobs in a co-

located cloud environment. In the future, we plan to extend

the analysis by combining resource analysis techniques for job

scheduling optimization.
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