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Abstract—The availability of large scale streaming network
data has reinforced the ubiquity of power-law distributions in
observations and enabled precision measurements of the distribu-
tion parameters. The increased accuracy of these measurements
allows new underlying generative network models to be explored.
The preferential attachment model is a natural starting point
for these models. This work adds additional model components
to account for observed phenomena in the distributions. In this
model, preferential attachment is supplemented to provide a more
accurate theoretical model of network traffic. Specifically, a prob-
abilistic complex network model is proposed using preferential
attachment as well as additional parameters to describe the newly
observed prevalence of leaves and unattached nodes. Example
distributions from this model are generated by considering
random sampling of the networks created by the model in such
a way that replicates the current data collection methods.

Index Terms—networks, Zipf-Mandlebrot, preferential attach-
ment, modelling

I. INTRODUCTION

Recent events have underscored the increasing importance

of the Internet to our civilization, necessitating a scientific

understanding of this virtual universe [1], [2]. The pandemic

induced a drastic increase in Internet usage due to activities

such as remote education and work, streaming, social media,

online shopping, and video games [3]–[6]. However, with this

rise of online activity comes a potential surge of problematic

internet usage that is made more urgent by the rising influence

of adversarial Internet robots (botnets) on society [7]–[10].

Thus, for scientific, economic, and security reasons observing,

analyzing, and modeling the Internet is essential.

The two largest efforts to capture, curate, and share Inter-

net packet traffic data for scientific analysis are the Widely

Integrated Distributed Environment (WIDE) project [11] and

the Center for Applied Internet Data Analysis (CAIDA) [12].

These data have supported a variety of research projects

resulting in hundreds of peer-reviewed publications [13], rang-

ing from characterizing the global state of Internet traffic,

to specific studies of the prevalence of peer-to-peer file-

sharing, to testing prototype software designed to stop the

spread of Internet worms. More recently, novel analysis of
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trillions of network observations enabled by high performance

sparse matrix mathematics and interactive supercomputing

has reinforced the ubiquity of power-law distributions in

these observations and enabled precision measurements of the

distribution parameters [14]–[17]. The increased accuracy of

these measurements allows new underlying generative network

models to be explored.

Prior modeling studies primarilyly relied on collecting

data through web crawls that naturally produced connected

power-law networks [18]–[21]. The foundational preferential

attachment (PA) random network model emerged naturally

from these observations [22]–[26]. PA models rely on the

connectivity of a large component to generate subsequent

iterations of the model [27]–[30]. These large components, and

other network cores have been studied extensively [16], [22],

[31], [32]. WIDE, CAIDA, and other Internet observatories

provide different vantage points that can see complete streams

of traffic (Figure 1) that reveal significant rare leaves of

connected components as well as entirely unattached links

(Figure 2) that create deviations from standard traditional

power-law models (Figure 3).

At a qualitative level, it is suspected that many of these

leaves and unattached links are formed by bot traffic. These

connections often behave in unpredictable manners, and tend

to form other links only with similar (bot-like) connections.

Looking beyond the noise from these bots, the predictable

connections still grow and behave in a manner that satisfies

the preferential attachment model. Crucially, the internet traffic

observed in pipeline is distinct from the actual long-term

traffic network of the Internet. Rather, the observed traffic

is a random subnetwork of the actual network of “who in

general feels like talking with whom”. Even though over

large time scales, big chunks of Internet traffic might look

like preferential attachment, the observed behaviors from the

data collection methods will be a random subnetwork of the

underlying model.

Our approach to understanding this subnetwork will be with

a new model that considers the time iterative selection of

random subnetworks of a larger data subset. This model ampli-

fies the randomness of the unattached links and improves our

understanding of the internet beyond a preferential attachment

setting. This paper will cover the introduction and explanation

of the new five-parameter PALU (PA + Leaves + Unattached

links) model, a basic analysis of the model including the

degrees distribution and analysis of the variability of the

model, and conclude with the results and opportunities for

future work.
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II. NETWORK OBSERVATIONS

The stochastic network structure of Internet traffic is a core

property of great interest to Internet stakeholders and network

scientists. Of particular interest is the probability distribution

p(d) where d is the degree (or count) of one of several

network quantities depicted in Figure 1: source packets, source

fan-out, packets over a unique source-destination pair (or

link), destination fan-in, and destination packets [17]. Amongst

the earliest and most widely cited results of virtual Internet

topology analysis has been the observation of the power-law

relationship

p(d) ∝ 1/dα

with a model exponent 1 < α < 3 for large values of d [19],

[20], [33]. In our work network topology refers to the network

theoretic virtual topology of sources and destinations and not

the underlying physical topology of the Internet. These early

observations demonstrated the importance of a few supernodes

in the Internet (see Figure 2) [34]. Measurements of power-

laws in Internet data stimulated investigations into a wide

range of network phenomena in many domains and lay the

foundation for the field of network science [25].

Classification of Internet phenomena is often based on data

obtained from crawling the network from a number of starting

points [21]. These webcrawls naturally sample the supernodes

of the network [34] and their resulting p(d) are accurately fit

at large values of d by single-parameter power-law models.

Characterizing a network by a single power-law exponent

provides one view of Internet phenomena, but more accurate

and complex models are required to understand the diverse

topologies seen in streaming samples of the Internet.

At a given time t, NV consecutive valid packets are

aggregated from the traffic into a sparse matrix At, where

At(i, j) is the number of valid packets between the source i
and destination j [35]. The sum of all the entries in At is

equal to NV ∑
i,j

At(i, j) = NV

All the network quantities depicted in Figure 1 can be readily

computed from At using the formulas listed in Table I. An

essential step for increasing the accuracy of the statistical

measures of Internet traffic is using windows with the same

number of valid packets NV . Using packet windows with the

same number of valid packets produces aggregates that are

consistent over a wide range of windows from NV = 100,000
to NV = 100,000,000. While weights are important to study,

in this initial work we are studying the unweighted model. The

common weights to study subsequently could be the number

of packets or number of bytes sent over a link.

A. Logarithmic Pooling

A network quantity d computed from At produces a cor-

responding histogram denoted by nt(d), with corresponding

probability

pt(d) = nt(d)/
∑
d

nt(d)
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Fig. 1. Streaming network traffic quantities. Internet traffic streams of
NV valid packets are divided into a variety of quantities for analysis: source
packets, source fan-out, unique source-destination pair packets (or links),
destination fan-in, and destination packets [17]

�����
��	�


���

�������	� ���
��


�������
��

�����

Fig. 2. Traffic network topologies. Internet traffic forms networks consisting
of a variety of topologies: unattached links, supernode leaves connected to a
supernode, densely connected core(s) with corresponding core leaves [17]

and cumulative probability

Pt(d) =
∑
i=1,d

pt(d)

Due to the relatively large values of d observed due to a single

supernode, the measured probability at large d often exhibits

large fluctuations. However, the cumulative probability lacks

sufficient detail to see variations around specific values of d,

so it is typical to pool the differential cumulative probability

with logarithmic bins in d

Dt(di) = Pt(di)− Pt(di−1)

where di = 2i [23]. All computed probability distributions use

the same binary logarithmic pooling (binning) to allow for

TABLE I
AGGREGATE NETWORK PROPERTIES

Formulas for computing aggregates from a sparse network image At at time
t in both summation and matrix notation. 1 is a column vector of all 1’s, T

is the transpose operation, and | |0 is the zero-norm that sets each nonzero
value of its argument to 1 [36].

Aggregate Summation Matrix
Property Notation Notation
Valid packets NV

∑
i

∑
j At(i, j) 1TAt1

Unique links
∑

i

∑
j |At(i, j)|0 1T|At|01

Unique sources
∑

i |
∑

j At(i, j)|0 1T|At1|0
Unique destinations

∑
j |

∑
i At(i, j)|0 |1TAt|01
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consistent statistical comparison across data sets [23], [25].

The corresponding mean and standard deviation of Dt(di)
over many different consecutive values of t for a given data

set are denoted D(di) and σ(di).

B. Modified Zipf-Mandelbrot Model

Measurements of D(di) can reveal many properties of

network traffic, such as the fraction of nodes with only one

connection D(d = 1) and the size of the supernode

dmax = argmax(D(d) > 0) (1)

Effective classification of a network with a low parame-

ter model allows these and many other properties to be

summarized and computed efficiently. In the standard Zipf-

Mandelbrot model typically used in linguistic contexts, d is a

ranking with d = 1 corresponding to the most popular value

[37]–[39]. To accurately classify the network data using the

full range of d, the Zipf-Mandelbrot model is modified so that

d is a measured network quantity instead of a rank index

p(d;α, δ) ∝ 1/(d+ δ)α

The inclusion of a second model offset parameter δ allows the

model to accurately fit small values of d, in particular d = 1,

which has the highest observed probability in these streaming

data. The model exponent α has a larger impact on the model

at large values of d while the model offset δ has a larger impact

on the model at small values of d and in particular at d = 1.

The unnormalized modified Zipf-Mandelbrot model is de-

noted

ρ(d;α, δ) =
1

(d+ δ)α

with corresponding gradient

∂δρ(d;α, δ) =
−α

(d+ δ)α+1
= −αρ(d;α+ 1, δ)

The normalized model probability is given by

p(d;α, δ) =
ρ(d;α, δ)∑dmax

d=1 ρ(d;α, δ)

where dmax is the largest value of the network quantity d. The

cumulative model probability is the sum

P (di;α, δ) =

di∑
d=1

p(d;α, δ)

The corresponding differential cumulative model probability

is

D(di;α, δ) = P (di;α, δ)− P (di−1;α, δ)

where di = 2i.
Minimizing the differences between the observed differen-

tial cumulative distributions allows accurate Zipf-Mandelbrot

parameters to be selected for a given set of observations.

Figure 3 provides a representative sample of the hundreds of

fits from [17], illustrating the effectiveness of Zipf-Mandelbrot

model in describing these observations.

source packets source fan-out
100 101 102 103 104 105

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

 = 2.01
 = -0.833

100 101 102 103 104 105
10-5

10-4

10-3

10-2

10-1

100
 = 1.68
 = -0.758

NV = 106

Tokyo 2015Tokyo 2017

NV = 3x107

link packets destination fan-in destination packets
100 101 102 103 104

10-5

10-4

10-3

10-2

10-1

100
 = 2.25
 = 0.602

100 101 102 103 104
10-4

10-3

10-2

10-1

100
 = 1.76
 = 0.871

100 101 102 103 104
10-6
10-5
10-4
10-3
10-2
10-1
100

 = 2.26
 = -0.349

Chicago A 2016 Jan

NV = 105

Chicago B 2016 Mar Chicago A 2016 Feb

NV = 108 Nv = 3x105

100101102103104105106107108
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

 = 1.74
 = -0.92

Tokyo 2017

NV = 3x108

destination packets

Fig. 3. Measured Distributions and Model Fits. A selection of measured
differential cumulative probabilities spanning different locations, dates, and
packet windows. Blue circles are measured data with ±1-σ error bars. Red
dot highlights the significance of leaves and unattached links. Black lines are
the best-fit modified Zipf-Mandelbrot models with parameters α and δ and is
an excellent fit in all the examples except the upper right.

III. PA + LEAVES + UNATTACHED (PALU) MODEL

The effectiveness of the empirical Zipf-Mandelbrot model

drives the need to explore new underlying generative network

models that can produce these more complex probability

distributions. The new model extends the PA model with

explicit terms accounting for the leaves attached to the PA

core as well as unattached links.

The model can be conceptualized in two parts: the under-
lying network, and the observed network. The underlying net-

work can be considered as the “true” information of the traffic

connections that occur and how frequent these connections

are. With our current methods, the full image of this network

cannot be detected, and our consideration of this underlying

network is theoretical. There are three main pieces that make

up this network: the core which is constructed by preferential

attachment; a set of degree 1 nodes called leaves that are

adjacent to nodes in the core; and unattached nodes that are

not connected to the core, and have very low connection within

the set itself.

Looking through a window of a certain size with respect

to the number of observed connections (packets), a random

subnetwork of the underlying network is witnessed, which

we call the observed network. In this particular set of data,

we observe all possible data that passes from one gateway to

another until a given number of connections are observed, as

described in Section II. For further details on the collection

of the data see [17]. Conceptually, we can consider selecting

this subnetwork by randomly deleting edges and nodes of the

underlying network.

In reality these edge connections are directed since internet

communication is directional, however for the sake of the

model we will consider this undirected. Using a directed model

has a small impact on overall the degree distribution analysis

[20]. We will leave this discussion for later in the paper.

A webcrawl is more likely to detect nodes in the core, but
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less likely to detect the leaves and the unattached nodes. The

measurements taken by MAWI, CAIDA, and others through

trunkline observations of trillions of connections reveal these

leaves and unattached nodes included in this new model [17].

A. Defining the Model

The PALU model requires four parameters: the clustering of

the unattached nodes, the proportions of nodes in each section

of the underlying network, the preferential attachment of the

core in the underlying network, and the size of the sampled

network from the underlying network.

1) Let λ ∈ [0, 20] define the average degree of the

unattached nodes in the underlying network

2) The parameters C,L,U represent the proportions of

nodes in each of the core, the leaves, and the unattached

nodes in the underlying network, conforming to the

relationship

C + L+ U(1 + λ− e−λ) = 1

3) To describe the preferential attachment of the core, we

require the parameter α ∈ [1.5, 3] as the exponent of

power-law decay of the degree distribution.

4) The window size is described by the parameter p ∈ [0, 1]
as the proportion of the underlying network that is being

observed. As the window size increases, p will get closer

to 1. Specifically, this parameter is the probability that an

edge in the underlying network will appear (be selected)

in the observed network.

The model is completely determined by five parameters, and

the relationship in (1) determines the sixth (dmax). Importantly,

for a given network, the parameters λ,C, L, U, and α should

be the same regardless of the window size. As the window

size increases, the only parameter that will change is p, as it

is more likely to see more edges.

IV. PRELIMINARY ANALYSIS

In the following, we reference the Riemann zeta function,

which is a well-known function given by

ζ(α) =

∞∑
n=1

1

nα

In this paper, α was determined to be 1.5 ≤ α ≤ 3
experimentally from the log-log plot of degree distribution

in [17]. This function is supported in MATLAB with the

built-in function zeta(x), and was determined here to be

1.202 ≤ ζ(α) ≤ 2.612, where this will assist in the proba-

bilistic analysis.

Given a window size p, the fraction of nodes in the

underlying network that we expect to see in our observed

network is

V =
Cpα−1

(α− 1)ζ(α)
+ Lp+ U(1 + λp− e−λp)

Our model predicts the following about the observed network,

where d is taken to be some integer greater than 1

# core nodes

total # nodes
≈

(
Cpα−1

(α− 1)ζ(α)

)
1

V

# leaves nodes

total # nodes
≈ Lp/V

# unattached nodes

total # nodes
≈ U(1 + λp− e−λp)

V

# unattached links

total # nodes
≈ U · λp · e−λp

V

# degree 1 nodes

total # nodes
≈

Cpα

ζ(α)
+ Lp+ U · λp · (1 + e−λp)

V

# degree d nodes

total # nodes
≈

Cpα

ζ(α)
d−α + Ue−λp (λp)

d

d!

V

≈
Cpα

ζ(α)
d−α + Ue−λp

(
eλp

d

)d

V

≈
Cpα

ζ(α)
d−α

V

The last two approximations are very good when log(d) >
1, in which case we have

log

(
# nodes of degree d

total # nodes

)
≈ −α log(d) + β

where β is a constant independent of d. This provides an

effective estimation for α via linear regression in a log-log
plot.

A. Logarithmic Pooling

In order to consider a selection of nodes over a logarith-

mically binned degree interval, simply find the cumulative

sum of the corresponding estimate for all the values of d
within the interval. For example with i > 3, the number of

nodes of degree between 2i and 2i+1, we have the following

summation:

1

V

2i+1∑
d=2i

Cpα

ζ(α)
d−α =

Cpα

ζ(α)V

2i+1∑
d=2i

d−α

≈ Cpα

ζ(α)V

∫ 2i+1

2i
x−αdx

=
Cpα

ζ(α)V

(
1− 21−α

α− 1

)
·
(
2i
)1−α

.

Taking logs, where γ is some constant that does not depend

on i, we get this is approximately

(1− α) log(2i) + γ.
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Importantly, taking intervals of degrees for large i, a log
plot will have the slope of the regression line as 1 − α, and

not −α as it would be in the non-interval case. When i is

small (e.g., 1 ≤ i ≤ 3), the approximation for the number

of nodes between degree a and degree b with 2 ≤ a, b ≤ 23

becomes
b∑

d=a

# nodes of degree d

total # nodes

and the right-hand-side can be computed by summing up all

the terms,carefully approximating with the d! term and the Lp
term when d = 1. This differs from the large-i estimate in that

for large i, we can discard small terms on the right-hand-side

and safely estimate the sum by an integral. In both Fig 3 and

Fig 4 our parameters are given for the underlying probability

distribution, but we are plotting the differential cumulative

distribution which will result in power law exponent one unit

higher [40].

B. Simplified Degree Distributions

The ratios for distinct degrees d can be simplified using the

following parameters

if d = 1,
# degree 1 nodes

total # nodes
≈ c+ l + u (2)

if d ≥ 2,
# degree d nodes

total # nodes
≈ c · d−α + u

(
Λ

d

)d

(3)

if d ≥ 10,
# degree d nodes

total # nodes
≈ c · d−α (4)

where c, l, u, and Λ are constants that do not depend on d

c = Cpα/ζ(α)V

l = Lp/V

u = U exp(−λp)/V

Λ = eλp

For c, l, and u, each is proportional to the number of nodes

in the core, unattached, and leaves respectively. These three

constants do depend on the parameter p, related to the window

size. The parameter Λ depends on p as well and is related to

the clustering. The constant α is the same as the above section.

All of the parameters above should be positive.

To fit these parameters, all of which are in terms of the

discrete parameters, we can consider the following

(a) One first fits (4) to the long-term behavior of the degree

distribution. A log-log plot will have a linear behavior

whose slope is equal to −α and constant term equal to

log(c), as we will see in the discussion in the following

section. This will result in fitting c and α.

(b) Subsequently (3) will fit small values of d (log(d) < 10)

estimating u and Λ.

(c) It is then possible to solve for l exactly by using (2).

In (b) it is possible to fit the parameters by subtracting the

cd−α term from both sides of (3) and then summing up both

sides will give a value of roughly u·(eΛ−1−Λ), which would

be a more robust estimate than the point-wise estimates of (3).

After having computed c and α from (4), computing

∞∑
d=2

d

[
# degree d nodes

total # nodes
− cd−α

]

should be equal to roughly (eΛ − 1)Λu. Thus, resulting in

∞∑
d=2

d

[
# degree d nodes

total # nodes
− cd−α

]

∞∑
d=2

[
# degree d nodes

total # nodes
− cd−α

] ≈ Λ +
Λ2

eΛ − Λ− 1

Computing the two summations on the left-hand-side from the

data can be used to to approximate Λ by numerically solving

the above.

The advantage to this methodology is that it presumably

reduces the estimate to one with substantially less variance.

Estimating the right-hand side analytically, would provide

roughly accurate estimates for large Λ, but for Λ ≈ 0 the

estimates would become roughly 2 + Λ/3, by expanding its

Taylor series. After having an estimate of Λ, c, and α, (3) can

be used to estimate u by a linear regression.

A benefit to the efficacy of the model is that an arbitrary

choice of u and Λ would not lead to an inaccurate com-

putation. In choosing these variables arbitrarily, the network

would maintain the structural topology for d = 1 since the

information provided in choosing l will mostly determine the

structure. The model would be even more accurate for large

values of d by (3), and for the very few values of d in between,

the chosen values u and Λ could be modified until the desired

results were acquired.

V. DERIVATION OF THE ESTIMATES

The estimates from the simplistic model follow immediately

from the corresponding estimates in the refined model. For

the derivation, the aim is to count nodes rather than the

ratios determined with the variables C,L, and U . Let N be

the number of nodes in the underlying network. Rigorously,

we let CN be the number of nodes in the core and LN

be the number of leaf nodes in the underlying network. We

will carefully define UN later. We begin the model of the

observed network by beginning with the underlying network.

We obtain our observed subnetwork by retaining each edge

independently with probability p, creating an Erdős–Rényi

random subnetwork of the underlying network [29].

The core nodes of the underlying network are assumed to

be generated according to a preferential attachment model,

independent of the other parts of the underlying network. The

number of core nodes of the underlying network having degree

d follows a power-law distribution of the form d−α/ζ(α).
Thus, the number of degree d > 0 nodes in the observed

network is well-approximated by

pd−α/ζ(α)
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Any degree d node in the underlying network will have

degree distributed in the observed network according to the

binomial distribution

Bin(d, p) ≈ dp±
√
d(1− p)p ≈ dp

To estimate the number of core nodes with degree greater

than 0 in our observed network, we sum these estimates,

which we in turn approximate as a Riemann integral, at the

cost of a negligible error term. The number of leaf nodes in

the observed network has a binomial distribution with mean

pLN and variance (1 − p)pLN , and the random variable is

approximated by its mean [29].

Returning to the rigorous derivation of the unattached nodes.

In this part of the model we generate UN -many stars, each

of which has a random number of non-central nodes, where

the number of non-central nodes is given by independent

identically distributed Poisson random variables with mean

λ. The Poisson random variable represents the modeling of

the UN central nodes and a large number of potential leaves,

each of which chooses to attach to a central node with some

sufficiently low probability. With this distribution, the total

number of nodes in the unattached portion of the underlying

network has a distribution precisely given by

UN +

UN∑
j=1

Po(λ).

Since the sum of independent Poisson random variables is

again Poisson, this simplifies to

UN + Po(UNλ).

However, of these central nodes, there will be Bin(UN , e−λ)
of them which are isolated nodes. As these cannot be seen

by examining traffic between nodes, we remove these nodes

from this model. The model demonstrating a non-zero number

of isolated nodes gives significant evidence to the existence

of these nodes in the true picture of the internet, regardless

that they cannot be observed in our current methods of data

collection.

Estimating the degree sequence within our observed net-

work amounts to the following. If we first sample Y ∼ Po(λ)
and then we take the sum of Y independent {0, 1}-Bernoulli

random variables of mean p, we seek to find the resulting

distribution, that is to analyze Bin(Po(λ), p). This is well-

known to be simply Po(λp)—as seen from an elementary

computation—and additionally motivated our choice of Pois-

son random variables.

All to say, the unattached version of our observed subnet-

work is distributed as UN stars each of which have Po(λp)
non-central leaves, from which the results follow immediately

by independence and estimating the terms by their means,

which is valid large values of UN .

VI. ZIPF-MANDELBROT CONNECTION

Finally, a one-parameter (unnormalized) approximation of

Equation (3) can be used to compare with the empirical Zipf-

Mandelbrot distributions. Using the approximation

(Λ/d)d ≈ r(1−d)

where r is a positive number to be fit to the data. This approx-

imation effectively changes the underlying distribution from

Poisson to an equally valid Geometric distribution, resulting

in the distribution

cd−α + ur(1−d)

which can be rescaled as

d−α + (u/c)r(1−d)

The above expressions can be aligned with the Zipf-

Mandelbrot parameters by setting

u/c = (1 + δ)−α − 1

resulting in

PALU(d) ∝ d−α + r(1−d)((1 + δ)−α − 1) (5)

In Figure 4, the PALU(d) degree distribution is shown with

a selection of curve families that demonstrate the the PALU

model can be made to fit a Zipf-Mandlebrot distribution for d.

For any given power law exponent α and offset parameter δ,

the Zipf-Mandlebrot distribution can be well-approximated by

Equation (5) by varying r. In general, the model PALU(d)
tends towards Zipf-Mandlebrot. In addition, the PALU(d)
model has the potential to explain some observations that

deviate from the Zipf-Mandlebrot distribution (see Figure 3

upper right).

Connecting back to the original values of u and c, we have

u/c = (U/C) exp(−λp)ζ(α)/pα

and combining with the same u/c expression in PALU(d)
gives

(1 + δ)−α = (U/C) exp(−λp)ζ(α)p−α + 1

Thus, the model described in Equation 5 captures the PA

aspect of the model mostly in the first term and the rest of the

model is captured via r and δ through the second term.

VII. CONCLUSIONS

In this paper, we presented a modified preferential attach-

ment model to better represent new observations of network

topology observed from streaming data. From the figures, we

found the PALU model to fit the Zipf-Mandelbrot distribution

very well given the right parameters.

With the PALU model as a stepping stone, we can continue

to examine the space of the network and more effective

models, including comparing the data from [17] to the model

itself, extended the analysis done in Fig 4. Some opportunities

for future work that we are interested in include further

investigation of the PALU model such as its various appli-

cations in other big data environments and deeper study into
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Fig. 4. PALU model curve families. Examples of degree distributions that
are possible with the PALU model using varying parameters, and how they
relate to their base Zipf-Mandelbrot (ZM) differential cumulative distributions.
From the top to the bottom we vary the power law exponent α between 2
and 3. In each, δ is the model offset for each α, and in each figure, we vary
r to create the family of curves, as described in section V with Equation (5).
Further work will involve comparing these families with the model.

the degree distribution and clustering coefficients. The PALU

model research can also extend to the case of weighted edges

where potential weights could be the number of packets or

number of bytes sent along a link. Exploration of other models

are also possible, such as combining preferential attachment

with the Erdos-Renyi model and determining if there is a

better fitting model than the Zipf-Mandelbrot distribution. It

would be worthwhile to explore the existence and importance

of isolated nodes, and analyzing aspects of the network by

studying the behaviors of a random sampling or a preferential

attachment graph. Finally, extrapolating the results of the

PALU model to observe and define the large clusters of small

disconnected components may also be of interest.
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