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Abstract—The GraphBLAS is a set of basic building blocks
for constructing graph algorithms in terms of linear algebra.
They are first and foremost defined mathematically with the goal
that language bindings will be produced for a wide range of
programming languages. We started with the C programming
language and over the last four years have produced multiple
versions of the GraphBLAS C API specification. In this paper,
we describe our next version of the C GraphBLAS specification.
It introduces a number of major changes including support for
multithreading, import/export functionality, and functions that
use the indices of matrix/vector elements. Since some of these
changes introduce small backwards compatibility issues, this is
a major release we call GraphBLAS 2.0.

I. INTRODUCTION

There are multiple ways to represent graphs. One exploits

the connection between graphs and sparse matrices resulting

in graph algorithms expressed as linear algebra [9]. The linear

algebra community (in the 1970’s and 1980’s) developed a

core set of building blocks for writing linear algebra algo-

rithms called the Basic Linear Algebra Subprograms or the

BLAS. We have built on this concept to define the BLAS

of Graph algorithms or the GraphBLAS. The mathematical

definition of the GraphBLAS was released in 2016 [8]. A year

later we completed the binding of the GraphBLAS to the C

programming language [5].

Shortly after the release of the GraphBLAS C specifica-

tion, a number of implementations of the GraphBLAS were

developed [7], [1], [6], [11], [15], [14], [12]. With feedback

from the community of GraphBLAS implementors (especially

the SuiteSparse [7] and GBTL [1] developers) and a group

working on a library of high level algorithms that use the

GraphBLAS (LAGraph [10]), we enhanced the specification

through four releases culminating in the GraphBLAS 1.3

specification [4] in 2019. These were minor releases by which

we mean the APIs did not violate backwards compatibility.

The next step in the growth of GraphBLAS requires more

profound changes. These changes introduce a small number

of backwards compatibility issues and change foundational

concepts within the API. Hence, the next release of the

GraphBLAS is a major release, GraphBLAS 2.0. We refer to

prior releases (1.0, 1.0.2, 1.1.0, 1.2.0, and 1.3.0) collectively

as GraphBLAS 1.X.

In this paper, we introduce the GraphBLAS 2.0 specifica-

tion. We start with a section that summarizers the motivation

behind some of the larger changes made in moving from

GraphBLAS 1.X to GraphBLAS 2.0. We then describe the

new features defined in GraphBLAS 2.0.

• Multithreading and how the GraphBLAS interact with the

host language memory model.

• Expanded concept of an execution context to support hier-

archical multithreading and to prepare for a future version

of the GraphBLAS that supports distributed computing.

• An error model that is easier to support in a multithreaded

implementation of the GraphBLAS.

• A new GrB scalar GraphBLAS object.

• Methods to import and export data between GraphBLAS

matrices and common array formats.

• Methods to serialize GraphBLAS objects.

• Operations that use the indices of elements of Graph-

BLAS objects.

The paper closes with a brief description of minor enhance-

ments in the 2.0 specification and concluding comments.

II. MOTIVATION

As the GraphBLAS API and computer architectures evolved

over the last few years, several limitations of the existing

GraphBLAS API became clear. While the version 1.X of the

GraphBLAS API touched on the subject of multithreading,

it was underspecified. As computers and processors get more

heterogeneous [13], either having different cores on a proces-

sor or having both CPUs and various types of accelerators

on the same compute node, a flat notion of parallelism is no

longer realistic even on a single compute node. This is true for

parallelism available on distributed-memory computers even

though we do not cover those aspects in this paper.

This paper makes two contributions along this area. The

first is a deeper dive into details of exploiting multithreading

for GraphBLAS programs, including a coverage of pitfalls

and recommended usage. The second is the introduction of

the GraphBLAS Context object (GrB_Context) that has

been alluded to in the past [3]. The GraphBLAS Context

object specifies where in the address space each GraphBLAS

object (matrix or vector) lies and how the resources (e.g.,

threads) are allocated to those objects. Due to the large

variation in specifying those resources by different platforms

and concurrency environments, a majority of the details of
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how a GrB_Context object is initialized is implementation-

defined.

Until now, GraphBLAS API did not allow its operators and

semirings to access the vector and matrix indices. This had

the benefit of keeping these functions and semiring operations

to be relatively stateless and functional. This approach of

disabling access to index values predates GraphBLAS and

similar linear-algebraic libraries, such as Combinatorial BLAS,

do the same. Whenever a graph algorithm needs indices,

those index values were stored in the values array. During

the computation, these index values were unpacked from the

values array. Clearly this is inefficient in terms of storage and

bandwidth as the same information is stored and streamed

twice: once as part of index array and once as part of

value arrays. More importantly, for common use cases, it

requires user-defined operators and semirings just to be able

to unpack the index values from the values arrays. This leads

to additional performance penalties in implementations of

the GraphBLAS C API, such as SuiteSparse::GraphBLAS,

because of a function pointer call required for each scalar

operation. For these reasons, we have expanded the API to

allow access to matrix and vector index values in a few key

GraphBLAS operations.

III. MULTITHREADING

The GraphBLAS C specification versions 1.X deliberately

deferred consideration of multithreaded execution. A con-

formant implementation could utilize multiple threads inside

a GraphBLAS method, but the behavior of an application

calling GraphBLAS methods from multiple threads was not

addressed. This was not an oversight. Execution of Graph-

BLAS method calls from multiple threads is complicated. We

chose to ignore those issues so we could focus on translating

the GraphBLAS mathematical specification into C.

With GraphBLAS 2.0, we are addressing multithreading

directly. We require in the 2.0 specification that a conformant

implementation of the GraphBLAS specification be thread
safe. A GraphBLAS library is thread safe when independent

method calls (i.e., GraphBLAS objects are not shared between

method calls) from multiple threads in a race-free program

return the same results as would follow from their sequen-

tial execution in some interleaved order. This is a common

requirement in software libraries. Thread safety requires an

implementation of a library to carefully manage (or if possible,

eliminate) shared data structures inside a library.

Thread safety applies to the behavior of multiple indepen-

dent threads. In the more general case for multithreading,

threads are not independent. That is, they share variables and

mix read and write operations to those variables across threads.

This requires the program to address the memory consistency

model of the host programming environment.

A memory consistency model is defined by the program-

ming language used to implement a library, the programming

language used to write the application making calls to the

library, and the architecture of the hardware on which the

application runs. The memory consistency model defines the

rules that specify the result that can be returned from reading

the value of a variable. This sounds simple, but consider the

complexity of multiple concurrent threads issuing loads and

stores to variables across a complex memory hierarchy. At

any point, a variable may exist in a register, in multiple levels

of cache, in DRAM, NVRAM, memory pages managed by a

Translation Look-aside Buffer (TLB), etc.

The GraphBLAS 2.0 specification does not define its own

memory model. Instead we define what must be done by a

programmer calling GraphBLAS methods and by the imple-

mentor of a GraphBLAS library so an implementation of the

GraphBLAS can work correctly using the memory model of

the host environment (i.e., the compiler and the processors on

which the program is running). A detailed description of the

C memory consistency model requires many more pages then

would fit in this paper. The essential elements of this model

can be briefly summarized as follows.

• Concurrent execution of threads, that is, they are un-

ordered with respect to each other and scheduled such

that each thread gets an even chance to execute (fair
scheduling).

• A happens-before relationship defines an ordering con-

straint between threads. This is done through an event that

defines a synchronized-with relationship between threads.

• A synchronized-with relation is usually expressed in

terms of loads and stores of atomic variables.

• The memory model defines constraints on the order of

memory operations with respect to the atomic loads

and stores used in a synchronized-with event. Three

memory orders are of interest to multithreading in the

GraphBLAS:

– Acquire: Associated with an atomic load operation, no

reads or writes that follow the atomic load in program

order can be reordered to precede the atomic-load.

– Release: Associated with an atomic store of a variable,

no writes prior to the atomic-store in program order can

be reordered to follow the atomic-store. These writes

are visible to other threads that execute an atomic-load

of the same variable with the acquire memory order.

– sequential consistency: A sequentially consistent load

is an acquire operation. A sequentially consistent store

is a release operation. Sequential consistency is a

stronger order than acquire-release since it requires a

single total order for memory operations and that all

threads observe that same order.

A program that violates the rules defined by a memory

consistency model contains data races; that is, reads and writes

that are unordered across threads making the final value of

a variable undefined. Modern programming languages such

as Java, C, C++ as well as multithreaded APIs such as

OpenMP specify that a program that contains any data races is

invalid and the results of that program are undefined. Hence,

a programmer writing multithreaded code must go to great

lengths to assure that their code is free of data races.

The GraphBLAS C specification adds a significant com-
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plication to reasoning about memory consistency models. A

GraphBLAS object at any point in an application is defined

by a collection of GraphBLAS methods in program order. We

call this collection of GraphBLAS method calls the sequence
that defines the GraphBLAS object at a given point in the

program. An implementation of the GraphBLAS specification

can reorder operations in a sequence or even fuse operations to

create more efficient but mathematically equivalent executions

of a sequence. This means that at any point in a program, the

state of a computation over GraphBLAS objects is potentially

ambiguous and a clear happens-before relationship cannot be

defined.

To address this problem, we have added the concept of

completion to the GraphBLAS specification. A GraphBLAS

object is said to be complete when it can be used in a happens-

before relationship with a method call that reads the variable

on another thread. Take the example of a pair of GraphBLAS

method calls where a method on one thread writes an object

and a method on a second thread reads that object. To establish

a happens before relationship and support race free execution,

the programmer must do the following.

• Express the collection of ordered GraphBLAS method

calls that define the sequence for the GraphBLAS object.

• Put the object into a complete state which causes compu-

tations on the object to finish and data structures internal

to the GraphBLAS implementation to be resolved in

memory so they are available to another thread.

• Define the synchronized-with relation between threads

using the approach provided by the host programming

environment (i.e., the GraphBLAS specification does not

define a multithreading programming model).

• Stipulate use of acquire and release operations so vari-

ables shared between threads are updated and available.

• Use the GraphBLAS object in a method that follows the

synchronized-with relation on the second thread.

An object, obj, is forced into a state of completion using

GrB_wait():

GrB_wait(obj, GrB_COMPLETE);

This method will not return until the sequence that defines

obj completes the computations defined by the sequence and

data structures internal to the opaque object are in a state that

can be safely shared between threads, where we use the word

“safe” with respect to the memory consistency model of the

host programming environment.

Figure 1 contains an example of a properly synchronized

GraphBLAS program. The program is written with a C-style

pseudo-code. For brevity, we omit details about the argument

lists to the GraphBLAS method calls. We use OpenMP [2]

to express multithreading.1 The parallel construct should

1While we use OpenMP in this paper, the GraphBLAS C specification is not
tied to OpenMP. A conforming implementation of the GraphBLAS must work
with any multithreading API that follows the C or C++ memory consistency
model.

1 #include <omp.h>
2 #include "GraphBLAS.h"
3

4 int main()
5 {
6 int flag = 0; // Synchronization flag
7 GrB_Matrix Esh, Hres, Dres;
8

9 GrB_init(GrB_NONBLOCKING);
10

11 omp_set_num_threads(2);
12 #pragma omp parallel shared(Esh, Hres, Dres)
13 {
14 if(omp_get_num_threads() != 2) exit();
15 int id = omp_get_thread_num();
16

17 if(id == 0){
18 GrB_Matrix A, B, C, D;
19

20 // A user written function (not shown)
21 Load_and_initialize(A,B,C,D,Esh,Dres);
22

23 // simplified ... most args omitted
24 GrB_mxm(C, A, B);
25 GrB_mxm(Esh, D, C);
26

27 GrB_wait(Esh, GrB_COMPLETE);
28

29 #pragma omp atomic write release
30 flag = 1;
31

32 GrB_mxm(Dres, A, Esh);
33 GrB_wait(Dres, GrB_COMPLETE);
34 }
35 else if(id==1){
36 int tmp = 0;
37 GrB_Matrix E, F, G;
38

39 // A user written function (not shown)
40 Load_and_initialize(E, F, G, Hres);
41

42 // simplified ... most args omitted
43 GrB_mxm(G, E, F);
44

45 while(tmp == 0){
46 #pragma omp atomic read acquire
47 tmp = flag;
48 }
49 GrB_mxm(Hres, G, Esh);
50 GrB_wait(Hres, GrB_COMPLETE);
51 }
52 } // end parallel region. A barrier is implied
53

54 // Dres and Hres are available at this point.
55

56 GrB_finalize();
57 }

Fig. 1. GraphBLAS C-style pseudo code with two threads sharing a matrix
Esh with a spin-lock on the atomic update to flag with acquire and release
memory orders. Calls to GrB_wait() are needed when GraphBLAS objects
(Esh, Dres, and Hres) are written in one thread and read in another.

fork two threads which are distinguished by their id. Thread 0
computes a shared object named Esh and calls GrB_wait()
to force Esh into the GrB_COMPLETE state. Following com-

pletion of Esh, thread 0 writes to flag to indicate that Esh
is ready to use. Thread 1 carries out a local computation and

then waits at a spin lock for an update to the variable flag.

This establishes a synchronized-with relation between threads
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0 and 1. Note that writes and reads to flag are done with

an OpenMP atomic operation and the memory order on the

write to flag is release while the read of flag uses the

acquire memory order. The use of acquire-release semantics

means that memory operations on each thread are ordered

with respect to their atomic operations and the second thread

can expect that the value of Esh, including any internal data

structures used to implement the opaque object, are available

and visible. Note that calls to GrB_wait() are needed for

Dres and Hres (the final results from the two threads) to

assure that they are complete and available to other threads

after the parallel region has finished.

An implementation of the GraphBLAS 2.0 specification

is responsible for any additional synchronized-with relations

required by internal data structures used to implement the

opaque GraphBLAS objects. We attempted to make the im-

plementors job easier by requiring the programmer writing

an application that uses the GraphBLAS to use the acquire

and release memory orders (rather than one of the weaker

memory orders). In cases where an opaque GraphBLAS object

is supported by static data structures, the implementor should

not need any additional synchronization due to the rules on

memory operations (specifically those not involving the atomic

variables) when using the acquire-release memory orders.

IV. EXECUTION CONTEXT

Calls to GraphBLAS functions occur within a context. In

GraphBLAS 1.X, there is a single context for the entire pro-

gram. It establishes the mode for the execution of GraphBLAS

functions (GrB_BLOCKING or GrB_NONBLOCKING). As

the GraphBLAS evolves to include multithreaded and (soon)

distributed execution, the scope of GraphBLAS’s context must

expand to include features of a parallel execution such as

the number of threads, thread affinities, MPI Communicators,

and potentially much more. Furthermore, the execution of

an application may embed parallel executions in complex

ways. For example, a common pattern in high performance

computing is to have a top level distributed execution us-

ing MPI with multithreaded execution on each node using

OpenMP. Hence, our new expanded context must also enable

hierarchical parallel execution strategies.

In Figure 2 we present the functionality added to the

GraphBLAS specification to add the concept of hierarchical

execution contexts to the GraphBLAS. A program must start

with the top level context with a call to GrB_init().

This is unchanged from GraphBLAS 1.X. A context nested

within an “outer” context is added with a call to the method

GrB_Context_new(). This function includes an output

parameter for a handle to a GraphBLAS context with the

type GrB_Context. As with other GraphBLAS objects, this

is an opaque type. This new context can use the existing

GraphBLAS modes. Contexts are hierarchical and defined with

respect to a parent context that is specified by the parent
argument. Passing GrB_NULL implies that the “top level”

context is to be used. In addition, GrB_Context_new()
takes a void* pointer to a structure containing information

1 GrB_Info GrB_init(GrB_Mode mode);
2

3 GrB_Info GrB_Context_new(GrB_Context *ctx,
4 GrB_Mode mode,
5 GrB_Context parent,
6 void *exec);
7

8 GrB_Info GrB_Vector_new(GrB_Vector *v,
9 GrB_Type d,

10 GrB_Index nsize,
11 GrB_Context ctx);
12

13 GrB_Info GrB_Matrix_new(GrB_Matrix *A,
14 GrB_Type d,
15 GrB_Index nrows,
16 GrB_Index ncols,
17 GrB_Context ctx);
18

19 GrB_Info GrB_Context_switch(<GrB Object> *obj,
20 GrB_Context newCtx);

Fig. 2. GraphBLAS methods for context functionality.

about the new context. The contents of this structure is imple-
mentation defined which means the GraphBLAS specification

does not define this structure but a conforming implementation

of the GraphBLAS must include documentation that defines

it. For example, with OpenMP, this might be a number of

threads to use in the context. It might also include information

about the places to run threads or the affinity of threads. Such

details are too varied across implementations to standardize so

the specification gives an implementor flexibility to do what

is needed for their specific situation.

When writing parallel code, one of the greatest challenges is

to manage locality of data to minimize the costs of data move-

ment. We expose locality management to the GraphBLAS pro-

grammer by associating a GraphBLAS Matrix or Vector with

a context. Hence, in GraphBLAS 2.0 we have added a new,

optional argument to the constructors of GraphBLAS vectors

and matrices for the context the vector or matrix belongs to.

We require that all the GraphBLAS matrices and Vectors in

a GraphBLAS method share a context. In doing so, a Graph-

BLAS implementation can use this shared context to manage

data movement without exposing low-level details to the ap-

plication programmer. This means we need a method to switch

an object’s context, GrB_Context_switch() where in

this case by <GrB object> we refer to GrB_Vector or

GrB_Matrix.

Finally, the handle to a context is an opaque GraphBLAS

object. Any resources needed to support that object can be

deleted by a call to GrB_free() after which that object be-

haves as an uninitialized object. A call to GrB_finalize()
frees all GrB_Context objects.

V. ERROR MODEL

The error model as defined in GraphBLAS 1.X created

challenges for the implementor we did not intend. These

challenges impacted the way the GraphBLAS interacts with

multithreaded execution. Hence, in GraphBLAS 2.0 we made
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major changes to how the error model works. The GraphBLAS

C specification defines two kinds of errors: API errors and

execution errors.

API errors indicate that a GraphBLAS method call was

malformed, with arguments that violate the rules for that

method. API errors are deterministic and consistent across

platforms and implementations. They are never deferred, even

in nonblocking mode. If a GraphBLAS method returns with

an API error, it is guaranteed that none of the arguments of

the method, or any other program data, have been modified.

Execution errors indicate that something went wrong during

the execution of a well formed GraphBLAS method invoca-

tion. (If the invocation were not well formed, it would have

returned with an API error.) The occurrence of execution

errors can depend on various circumstances specific to a run.

Sometimes they are clearly caused by program errors (e.g.,
GrB INDEX OUT OF BOUNDS). Sometimes they are

clearly caused by internal errors in the implementation (e.g.,
GrB PANIC). Sometimes they are caused by either or even

environment limitations (e.g.. GrB OUT OF MEMORY).

In GraphBLAS nonblocking mode, the execution of the

actual operations performed by the method can be deferred.

Consequently, execution errors and their reporting can also

be deferred. To constraint the scope of execution errors,

GraphBLAS 2.0 introduces a new materializing variant of

GrB wait:

GrB_wait(obj, GrB_MATERIALIZE);

A successful return from this method indicates that all previous

method invocations with obj as an OUT or INOUT argument

have completed (i.e., the same effect as GrB_wait(obj,
GrB_COMPLETE)) and no more errors can be generated from

those methods. (It also guarantees that no more execution time

will be charged to those methods.)

The GrB_wait(obj,GrB_MATERIALIZE) variant al-

ways includes the GrB_wait(obj,GrB_COMPLETE)
variant. In particular, a thread can call a sequence

of methods with obj as an OUT/INOUT argument

and then call GrB_wait(obj,GrB_COMPLETE). Af-

ter that, with proper synchronization, a second thread

can continue the sequence and end it with a call to

GrB_wait(obj,GrB_MATERIALIZE). Until the materi-

alizing call, any method invocation in the second thread

can report an error from any of the previous methods in

the sequence, including those in the first thread. This is

implementation dependent, as an implementation can always

make the completing wait method equivalent to a materializing

wait.

When the execution of a method, deferred or not, causes an

execution error, the state of the OUT or INOUT argument of

that method is undefined. An implementation-specific string

about the error state of an object can be obtained through a

call to

GrB_error(&str,obj);

which returns in str a pointer to the string. The call is

thread safe. Two threads can call the method concurrently,

even on the same object, without any synchronization as long

as the conditions from Section III hold. (Although each has to

pass a different string pointer.) The contents of the string are

implementation-defined. It is always legal to return an empty

string.

VI. GRB SCALAR

A GraphBLAS scalar (GrB_Scalar) is an opaque con-

tainer for a single element of a GraphBLAS domain, either

predefined or user-defined. Just like GraphBLAS vectors and

matrices, GraphBLAS scalars can be empty. Table I lists the

methods used to define an manipulate GrB_Scalar objects.

GrB_Scalar objects serve two main purposes.
First, they significantly reduce the number of nonpolymor-

phic variants of a method, because the scalar argument is

always of type GrB_Scalar, as opposed to one of the prede-

fined types of void* for user-defined types. This reduction

in variants also helps with the clarity of polymorphic code.

For example, it is easy to forget that the standard C constant

“true” is actually of type “int” and not “bool”. Similarly,

scalars of user-defined types are always passed as void*,

which makes it easy to misuse one user-defined type for

another. In contrast, a GrB_Scalar always has the type as-

signed to it when it was created through GrB_Scalar_new
or GrB_Scalar_dup.

The second major application of GraphBLAS scalars is

that, in being opaque objects, they make the behavior of

some methods more uniform. As an example, consider the

current variants of GrB_Vector_extractElement and

GrB_Matrix_extractElement. Since the operation ex-

tracts the value of a (possibly nonexistent) element into a

nonopaque data structure, the program has to (i) test for

the possibility of the element not existing (indicated by a

GrB NO VALUE return code) and (ii) immediately retrieve

the value (if present), without the possibility of deferring ex-

ecution. A variant with GrB_Scalar as the output bypasses

both of these problems.
Other examples are the matrix and vector variants of the

GrB_reduce operation when reducing that produces a scalar

value. With the current variants, the methods return the monoid

identity when there is nothing to reduce. A variant with

GrB_Scalar output can instead return an empty container,

similar to what happens when a matrix is reduced to a vector.

Moreover, we can now define reduction to scalar that takes

GrB_BinaryOp as the reducing function.
Table II lists the GraphBLAS methods that are currently

targeted for extension with GrB_Scalar variants in Graph-

BLAS 2.0 and beyond. The first to be released will be methods

that have scalar outputs. We are not yet deprecating the

variants with explicitly typed elements, but we may choose

to do so in the future.
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TABLE I
GrB_Scalar MANIPULATION METHODS.

Method Description
GrB_Scalar_new(GrB_Scalar*, GrB_Type) Create a GraphBLAS scalar of certain domain
GrB_Scalar_dup(GrB_Scalar*, const GrB_Scalar) Duplicate an existing GraphBLAS scalar into a new one
GrB_Scalar_clear(GrB_Scalar) Empty the contents of a GraphBLAS scalar
GrB_Scalar_nvals(GrB_Index*, const GrB_Scalar) Return number of elements in a GraphBLAS scalar (0 or 1)
GrB_Scalar_setElement(GrB_Scalar, <type>) Set the value of the element of a GraphBLAS scalar
GrB_Scalar_extractElement(<type>*, const GrB_Scalar) Extract the value of the element of GraphBLAS scalar, if present

TABLE II
GRAPHBLAS METHODS TO BE EXTENDED WITH GrB_Scalar VARIANTS IN GRAPHBLAS 2.0 AND BEYOND. (const KEYWORDS OMITTED.)

GrB_Monoid_new(GrB_Monoid*, GrB_BinaryOp, GrB_Scalar)
GrB_Vector_setElement(GrB_Vector, GrB_Scalar, GrB_Index)
GrB_Vector_extractElement(GrB_Scalar, GrB_Vector, GrB_Index)
GrB_Matrix_setElement(GrB_Matrix, GrB_Scalar, GrB_Index, GrB_Index)
GrB_Matrix_extractElement(GrB_Scalar, GrB_Matrix, GrB_Index, GrB_Index)
GrB_assign(GrB_Vector, GrB_Vector, GrB_BinaryOp, GrB_Scalar, GrB_Index*, GrB_Index, GrB_Descriptor)
GrB_assign(GrB_Matrix, GrB_Matrix, GrB_BinaryOp, GrB_Scalar, GrB_Index*, GrB_Index, GrB_Index*, GrB_Index, GrB_Descriptor)
GrB_apply(GrB_Vector, GrB_Vector, GrB_BinaryOp, GrB_BinaryOp, GrB_Scalar, GrB_Vector, GrB_Descriptor)
GrB_apply(GrB_Vector, GrB_Vector, GrB_BinaryOp, GrB_BinaryOp, GrB_Vector, GrB_Scalar, GrB_Descriptor)
GrB_apply(GrB_Matrix, GrB_Matrix, GrB_BinaryOp, GrB_BinaryOp, GrB_Scalar, GrB_Matrix, GrB_Descriptor)
GrB_apply(GrB_Matrix, GrB_Matrix, GrB_BinaryOp, GrB_BinaryOp, GrB_Matrix, GrB_Scalar, GrB_Descriptor)
GrB_apply(GrB_Vector, GrB_Vector, GrB_BinaryOp, GrB_IndexUnaryOp, GrB_Vector, GrB_Scalar, GrB_Descriptor)
GrB_apply(GrB_Matrix, GrB_Matrix, GrB_BinaryOp, GrB_IndexUnaryOp, GrB_Matrix, GrB_Scalar, GrB_Descriptor)
GrB_select(GrB_Vector, GrB_Vector, GrB_BinaryOp, GrB_IndexUnaryOp, GrB_Vector, GrB_Scalar, GrB_Descriptor)
GrB_select(GrB_Matrix, GrB_Matrix, GrB_BinaryOp, GrB_IndexUnaryOp, GrB_Matrix, GrB_Scalar, GrB_Descriptor)
GrB_reduce(GrB_Scalar, GrB_BinaryOp, GrB_Monoid, GrB_Vector, GrB_Descriptor)
GrB_reduce(GrB_Scalar, GrB_BinaryOp, GrB_BinaryOp, GrB_Vector, GrB_Descriptor)
GrB_reduce(GrB_Scalar, GrB_BinaryOp, GrB_Monoid, GrB_Matrix, GrB_Descriptor)
GrB_reduce(GrB_Scalar, GrB_BinaryOp, GrB_BinaryOp, GrB_Matrix, GrB_Descriptor)

VII. DATA TRANSFER

The problem of moving data into and out of the GraphBLAS

is an important issue that can be approached from two different

angles, each with different requirements. First, it is necessary

to have a mechanism for moving data into and out of the

GraphBLAS using known, non-opaque formats. This is neces-

sary to allow GraphBLAS to interact with other libraries and

so that data can be stored in a standard format. However, it is

sometimes advantageous to allow an implementation-defined,

opaque format that need not be compatible between imple-

mentations. An opaque format can allow for more efficient

data movement, since it does not require data be converted to

a specific format.

A. Import/Export API

In order to allow for easier interaction with other libraries,

as well as more straightforward storage of GraphBLAS ob-

jects, we have added an import/export API in GraphBLAS

2.0. The import/export API supports a number of commonly

used formats, including CSR, CSC, COO, and dense matrix

formats, as well as dense and sparse vector formats. To

import an object stored in one of these formats into the

GraphBLAS, users can invoke the GrB_Matrix_import or

GrB_Vector_import method, passing in the size and type

of the object, pointers to arrays defining the object data, and

a GrB_Format argument indicating the format of the data

being imported. A new GraphBLAS object will be constructed

using the provided external matrix or vector data.

To export a GraphBLAS matrix for external use, users first

invoke the GrB_Matrix_exportSize method, passing in

the GraphBLAS matrix to be exported as well as the desired

export format. The method will return sizes for each of

the output arrays that the user can then allocate using their

desired method. This allows users to use a custom allocator,

a memory-mapped file, or some other method for memory

allocation. After allocating the external arrays, the user then

must invoke the GrB_Matrix_export method, which will

export the matrix using the specified format. Corresponding

methods have been added for GraphBLAS vectors.

In addition, the GrB_Matrix_exportHint method has

been included that allows GraphBLAS implementations to

provide a hint about which format might be most efficient

for exporting a matrix. For example, if a GraphBLAS matrix

is internally stored in CSR, the implementation might choose

to return the CSR format as a hint. Note, however, that users

are free to arbitrarily pick a format for import and export.

Likewise, the implementation may refuse to provide a hint

by returning GrB_NO_VALUE. A corresponding method has

been added for GraphBLAS vectors.

B. Serialize/Deserialize API

While the import/export API provides a convenient way

to move data in and out of GraphBLAS matrices and

vectors in a number of predefined formats, this is not

necessarily the most efficient method of data transport. It

is likely that some GraphBLAS applications, for example

those in a distributed setting, will want to extract data
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TABLE III
NON-OPAQUE MATRIX FORMATS FOR IMPORT/EXPORT.

Format Parameters
GrB CSR MATRIX indptr a pointer to an array of size nrows+1 and the i’th index will contain the starting index of the i’th row in
Compressed sparse row. the values and indices arrays. The elements of each row are not required to be sorted by column index.

indices a pointer to an array of size number of stored elements, where each element contains the corresponding
element’s column index.

values a pointer to an array of size number of stored elements, where each element contains the corresponding
value.

GrB CSC MATRIX indptr a pointer to an array of size ncols+1 and the i’th index will contain the starting index of the i’th column
Compressed sparse column. in the values and indices arrays. The elements of each column are not required to be sorted by row index.

indices a pointer to an array of size number of stored elements, where each element contains the corresponding
element’s row index.

values a pointer to an array of size number of stored elements, where each element contains the corresponding
element’s value.

GrB COO MATRIX indptr a pointer to an array of size number of stored elements, where each element contains the corresponding
Sparse coordinate format. element’s column index.
Elements are not required indices a pointer to an array of size number of stored elements, where each element contains the corresponding
to be sorted in any order. element’s row index.

values a pointer to an array of size number of stored elements, where each element contains the corresponding
value.

GrB DENSE ROW MATRIX indptr unused and may be set to NULL
Dense row-major format. indices unused and may be set to NULL

values an array of size number of columns times number of rows, where element i,j is located at index i*ncols + j.
GrB DENSE COL MATRIX indptr unused and may be set to NULL
Dense column-major format. indices unused and may be set to NULL

values array of size number of columns times number of rows, where element i,j is located at index i + j*nrows.
GrB SPARSE VECTOR indices an array of size number of elements, where element i contains the index of the corresponding element.
Sparse vector format. values array of size number of elements, where value of element i is located at index i.
GrB DENSE VECTOR indices unused and may be set to NULL
Dense vector format. values array of size number of elements, where element i is located at index i.

in an arbitrary, opaque, serialized stream of bytes which

can easily be sent over the wire. However, this serialized

object need not be interpretable by the program or indeed

even other implementations of the GraphBLAS. This allows

implementations to use custom serialization mechanisms,

which can save both space and compute time. To this end,

we have added an API for serializing and deserializing

GraphBLAS matrices. To serialize a matrix, users must first

call the GrB_Matrix_serializeSize method, which

will return the size in bytes of the buffer needed to serialize the

matrix. Then, users can call the GrB_Matrix_serialize
method, which will serialize the matrix into an opaque stream

of bytes in the user-provided buffer. The serialized matrix

can then be deserialized into a GraphBLAS object using

the GrB_Matrix_deserialize method, which will

construct a new GraphBLAS matrix from the serialized data.

Corresponding methods have been added for GraphBLAS

vectors.

VIII. OPERATING WITH INDICES

In GraphBLAS 1.X, elementwise operations such as apply
specify a unary operator that operates only on the values stored

in a matrix or vector. GraphBLAS 2.0 expands the set of

operator types to include one that operates on both the stored

value and the indices describing the value’s location in the

matrix or vector. Figure 3 shows an example of how these

new operators can be used to either select a subset of the

stored values using the new select operation, or modify the

stored values based on its location using new variants of the

apply operation.

A. Index Unary Operators

GraphBLAS 2.0 supports the creation of arbitrary user-

defined index unary operators that can operate on either vec-

tors or matrices. The following GrB_IndexUnaryOp_new
method is used to construct these operators:

1 GrB_Info GrB_IndexUnaryOp_new(
2 GrB_IndexUnaryOp *index_unary_op,
3 void (*index_unary_func)(
4 void*, // out = C(i,j) or w(i)
5 const void*, // in = A(i,j) or u(i)
6 GrB_Index*, // indices = [i,j] or [i]
7 GrB_Index, // n = 2 or 1
8 const void*), // s (user specified)
9 GrB_Type d_out,

10 GrB_Type d_in,
11 GrB_Type d_s);

The first argument specifies the handle to the operator ob-

ject that is being constructed. The second argument is a

pointer to the user-defined function, index_unary_func,

that performs the computation on the stored values and indices.

The final three GrB Type parameters define the types that

correspond to void* parameters of the user-defined function,

out, in1, and s, respectively.

There are five parameters to the user-defined function,

index_unary_func, as indicated by the comments in the

code above. The out parameter is the result of the function.
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(a) Original weighted graph (b) Examples of operators for (c) Matrices resulting
and its adjacency matrix. select and apply operations from the operations.

Fig. 3. When using index unary operators with apply and select operations, the value and location (indices) of stored values are provided as well as an
additional scalar, s, that is provided by the user via the apply and select parameters. The select operation uses an operator that returns boolean to determine
which stored elements are kept (unchanged) or annihilated from the input matrix, while the operator for apply computes new values for every stored element
in the input.

The next three parameters (in, indices, and n) define the

value and location of a stored element in the matrix or vector.

When used in an operation on a matrix, indices is a pointer

to an array of two indices (row and column), and n is set to 2.

When used in an operation on a vector, indices is a pointer

to an array of one index (row), and n is set to 1.

The last argument to the user-defined function, s, is an

additional scalar value that is specified by the user application

(passed through the select or apply operation) and can be

used in the calculation of the out value. For example, if you

want to “select” elements with a certain value, s can be set to

that value and the operator performs a comparison between the

stored value (A(i,j) or u(i)) and s and returns the result

as a boolean. The s parameter can also be used in comparisons

with the indices to select values based on their location in the

matrix.

The following is an example of the code used to define an

index unary operator that selects values in the upper triangular

portion of a matrix that are greater than a user-defined constant

(passed as the s parameter) and returns a boolean. This creates

the operator for the select example shown on the top right of

Figure 3):

1 void my_triu_eq_INT32(void *out,
2 const void *in,
3 GrB_Index *indices,
4 GrB_Index n,
5 const void *s)
6 {
7 assert (n == 2); // perform test in debug mode
8 *out =((indices[1] > indices[0]) && // j > i
9 (((int)*in) > ((int)*s))); // a_ij > s

10 }
11

TABLE IV
PREDEFINED INDEX UNARY OPERATORS.

Operator Description
GrB {ROW,COL}INDEX replace with a row or column index (plus s)
GrB DIAGINDEX replace with a diagonal index (plus s)
GrB {TRIL,TRIU} keep the elements below/above diagonal s
GrB {DIAG,OFFDIAG} keep diagonal s, or remove diagonal s
GrB {ROW,COL}LE keep the set of rows or columns < s
GrB {ROW,COL}GT keep the set of rows or columns ≥ s
GrB VALUE{EQ,NE,LT, keep any element based on a comparison

LE,GT,GE} of its stored value with s

12 GrB_IndexUnaryOp myTriuEqINT32;
13 GrB_IndexUnaryOp_new(
14 &myTriuEqINT32, my_triu_eq_INT32,
15 GrB_BOOL, GrB_INT32, GrB_INT32);

To support this new functionality, a set of predefined oper-

ators is also defined by the specification and summarized in

Table IV. While the operators listed in this table can be used

by both apply and select operations, the descriptions starting

with “keep” correspond to operators that return boolean val-

ues intended for use with select, while descriptions starting

with “replace” correspond to operators returning other types

intended for use with apply. Operators like VALUEEQ only

access the stored value that is passed and can be used in

operations on either vectors or matrices. Likewise, operators

like ROWINDEX only access the first entry of the indices
array and can also be used in operations on either vectors or

matrices. However, operators such as COLINDEX, DIAGIN-
DEX, TRIL, or TRIU access both row and column indices and
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are only intended for use with matrices. If these operators are

used in operations involving vectors, an index array of one

element is passed which will result in undefined behavior.

B. Index Variants of apply

The new variants of the apply operation allow the use of

an index unary operator to compute new stored values for a

vector or matrix as a function of the existing stored values,

the indices of their locations, and a scalar. The mathematical

notation for these operations are given as follows:

w〈m, r〉 = w � f(u, ind(u), 1, s)

C〈M, r〉 = C� f(A[T], ind(A[T]), 2, s)

Note that when the input matrix, A, is transposed, the index

values used in the computation correspond to locations after

the transpose is applied. The signature of these operations

follow the standard order of other GraphBLAS operations:

1 // Vector variant of apply using IndexUnaryOp
2 GrB_Info GrB_apply(GrB_Vector w,
3 const GrB_Vector m,
4 const GrB_BinaryOp accum,
5 const GrB_IndexUnaryOp f,
6 const GrB_Vector u,
7 <type> s,
8 const GrB_Descriptor desc);
9

10 // Matrix variant of apply using IndexUnaryOp
11 GrB_Info GrB_apply(GrB_Matrix C,
12 const GrB_Matrix M,
13 const GrB_BinaryOp accum,
14 const GrB_IndexUnaryOp f,
15 const GrB_Matrix A,
16 <type> s,
17 const GrB_Descriptor desc);

Where w and C will hold the results of the operation and

u and A are the input objects. Each operation supports an

optional mask and accumulation operator. Different flags in

the descriptor control how the output is written (replace or

merge), how the mask is used (structure and/or complement),

and whether the input matrix is transposed (matrix variant

only). The f parameter specifies which index unary operator

is to be used. The s parameter is the scalar value that is passed

to the s argument of the GrB_IndexUnaryOp.

A common use for these functions is to replace stored values

with their row index (vectors and matrices) or column index

(matrix) only. With a matrix, the former replaces edge weights

with its source vertex index while the latter replaces it with

the destination index. The predefined operator DIAGINDEX
can be used to replace matrix elements with their diagonal

index. The following code uses the predefined column index

operator from Table IV to perform the apply operation shown

in the lower right portion of Figure 3:

1 GrB_Matrix C, A;
2 ...
3 GrB_apply(C, GrB_NULL, GrB_NULL,
4 GrB_COLINDEX_UINT64T, A, 1UL, GrB_NULL);

C. The select Operation

The new select operation provides the equivalent of a

functional input mask. It uses an index unary operator that

returns a boolean value to determine which elements to keep

(when the operator returns true) and which to annihilate (when

the operator returns false). The mathematical notation for these

operations are given as follows:

w〈m, r〉 = w � u〈f(u, ind(u), 1, s)〉
C〈M, r〉 = C�A[T]〈f(A[T], ind(A[T]), 2, s)〉

Where angle brackets on the right hand side of the equations

are used to indicate the masking behavior of this operation.

The signatures of this operation are identical to the index

variants of apply:

1 // Vector variant of select
2 GrB_Info GrB_select(GrB_Vector w,
3 const GrB_Vector m,
4 const GrB_BinaryOp accum,
5 const GrB_IndexUnaryOp f,
6 const GrB_Vector u,
7 <type> s,
8 const GrB_Descriptor desc);
9

10 // Matrix variant of select
11 GrB_Info GrB_select(GrB_Matrix C,
12 const GrB_Matrix M,
13 const GrB_BinaryOp accum,
14 const GrB_IndexUnaryOp f,
15 const GrB_Matrix A,
16 <type> s,
17 const GrB_Descriptor desc);

Common uses for this operation include selecting regions of

a matrix (TRIL, TRIU, ROWLE, COLLE, ROWGT, COLGT),

select regions of a vector (ROWLE, ROWGT), or select

elements of either a vector or matrix based on its value when

compared to the scalar s (VALUE* where * is EQ, NE, LT,

LE GT, or GE). The following code uses the operator created

earlier in this section to perform the select operation shown

in the upper right portion of Figure 3:

1 GrB_Matrix C, A;
2 ...
3 GrB_apply(C, GrB_NULL, GrB_NULL,
4 myTriuEqINT32, A, 0UL, GrB_NULL);

IX. CLEANUP AND MISCELLANY

Creating a formal specification is difficult. We strive for

perfection but inevitably we make mistakes or leave important

corner cases unaddressed. In this section, we cover a few

changes made in the GraphBLAS to “cleanup” the specifi-

cation that are beyond simple typographical errors.

The first change involves the definition of enumerations in

the specification. Enumerations provide symbolic names for

literal constants. With our goal of providing implementors

of the GraphBLAS maximum flexibility to produce optimal

libraries conforming to the specification, we aggressively

exploited opaqueness in the specification. It turns out, however,
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that when it comes to the symbolic names that make up an

enumeration, it is important to not leave them opaque. Defin-

ing specific values for each symbol lets programs correctly

link to different libraries that implement the GraphBLAS.

Therefore, any tables in the specification that list the elements

of an enumeration will now also specify the values they

must correspond to. Most notably this has been done for the

preexisting specification of GrB Info and has been applied

to the new GrB Format enumeration that lists the supported

matrix formats for import and export.

The other change to the specification occurs in the definition

of the GrB Matrix build() and GrB Vector build() methods.

We neglected to cover the case of a user not wanting to define

a “duplicate” function (the dup binary operator) that is called

to handle the case when more than one value is specified for

the same location to produce the value that will be stored

in the vector or matrix. In previous releases, this parameter

was required, but in this release it is optional. If a value of

GrB NULL is provided as the duplicate function, the result is

that duplicates are now treated as an execution error.

X. CONCLUSION

The GraphBLAS 2.0 specification was a collaborative effort.

In addition to the GraphBLAS C API Specification working-

group (i.e., the authors of this paper), we worked closely

with the group behind the SuiteSparse implementation of the

GraphBLAS [7] and the group behind the LAGraph [10]

library. With this close collaboration between specification-

designers and library-implementors, we hope to see implemen-

tations of the GraphBLAS conformant with the GraphBLAS

2.0 specification shortly after its official release.

With the GraphBLAS 2.0 specification complete, our work

will shift to enhancements to the GraphBLAS to support

execution on distributed systems. We also anticipate enhance-

ments to support heterogeneous systems where devices such as

GPUs and CPUs are addressed from a single program. These

goals should be clear from the definition of the execution

context described in this paper. Additional enhancements will

undoubtedly be included in future versions of the GraphBLAS

as we continue our ongoing collaboration with teams imple-

menting software based on the GraphBLAS. These collabora-

tions have been quite productive and we foresee even richer

interactions in the future.
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