
Mathematics of Digital Hyperspace

Jeremy Kepner1,2,3, Timothy Davis4, Vijay Gadepally1,2, Hayden Jananthan1,5, Lauren Milechin6
1MIT Lincoln Laboratory Supercomputing Center, 2MIT Computer Science & AI Laboratory,

3MIT Mathematics Department, 4Texas A&M, 5Vanderbilt, 6MIT Dept. of Earth, Atmospheric, & Planetary Sciences

Abstract—Social media, e-commerce, streaming video, e-mail,
cloud documents, web pages, traffic flows, and network packets
fill vast digital lakes, rivers, and oceans that we each navi-
gate daily. This digital hyperspace is an amorphous flow of
data supported by continuous streams that stretch standard
concepts of type and dimension. The unstructured data of
digital hyperspace can be elegantly represented, traversed, and
transformed via the mathematics of hypergraphs, hypersparse
matrices, and associative array algebra. This paper explores a
novel mathematical concept, the semilink, that combines pairs of
semirings to provide the essential operations for graph analytics,
database operations, and machine learning. The GraphBLAS
standard currently supports hypergraphs, hypersparse matrices,
the mathematics required for semilinks, and seamlessly performs
graph, network, and matrix operations. With the addition of
key based indices (such as pointers to strings) and semilinks,
GraphBLAS can become a richer associative array algebra and
be a plug-in replacement for spreadsheets, database tables, and
data centric operating systems, enhancing the navigation of
unstructured data found in digital hyperspace.

Index Terms—graphs, hypergraphs, hypersparse, networks,
polystore, databases, algebra

I. INTRODUCTION

Global usage of the Internet is expected to exceed 5 billion

people [1]. The volume, velocity, and variety of Internet data

continues to expand. Social media, e-commerce, streaming

video, e-mail, cloud documents, web pages, traffic flows,

and network packets fill vast digital lakes, rivers, and oceans

that we each navigate daily [2]. Some of the most common

manifestations of these data are in the form of spreadsheets,

database tables, matrices, graphs, and networks. The resulting

digital hyperspace is an amorphous flow of data supported

by continuous streams of these objects that stretch standard

concepts of type and dimension.

Fortunately, the unstructured data of digital hyperspace can

be elegantly represented, traversed, and transformed via the

mathematics of hypergraphs [3]–[6], hypersparse matrices [7]–

[9], and associative array algebra [10]–[13]. These mathemat-

ics have been implemented in a variety of software libraries,

including the GraphBLAS standard [14]–[17] implemented

in the C/Matlab/Octave/Python/Julia languages [18]–[21] and

This material is based upon work supported by the Assistant Secretary of
Defense for Research and Engineering under Air Force Contract No. FA8702-
15-D-0001, National Science Foundation CCF-1533644, and United States
Air Force Research Laboratory Cooperative Agreement Number FA8750-19-
2-1000. Any opinions, findings, conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the
views of the Assistant Secretary of Defense for Research and Engineering,
the National Science Foundation, or the United States Air Force. The U.S.
Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

the RedisGraph database [22]; the C-MPI CombBLAS par-

allel library [23]; and the D4M associative array library in

Matlab/Octave/Python/Julia languages [24]–[28] with database

bindings to SciDB, Accumulo, and PostGreSQL [29]–[33].

The GraphBLAS standard has further enabled hardware ac-

celeration of these mathematics via multithreading [34], GPUs

[35], and special purpose accelerators [36]–[40].

Linearity is a key property of these mathematics utilized by

the above implementations to leverage extensive linear systems

theory [13]. From a performance perspective, linearity is often

manifest through the distributive property

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

enabling the reordering of operations critical for effective

parallel computation and distributed database query planning.

From a data perspective, linearity provides the additive identity

and multiplicative annihilator

a⊕ 0 = a a⊗ 0 = 0

eliminating the need to store 0 entries (an essential property

for efficient sparse computations). If fact, in this context, the

above properties can be used to define 0 for the relevant value

set, V , which may, or may not, be the standard arithmetic 0.

Collectively, these mathematical properties are defined by

mathematical semirings that are directly supported by the

aforementioned technologies. The increasing use of semirings

for the manipulation of digital data has led to frequent coupling

of distinct semirings in graph analysis [8], databases [12], and

machine learning computations [41]–[43]. This paper explores

some of mathematical properties of coupled semirings, here

referred to as semilinks, and offers up some potential paths

forward to formalizing and applying this novel mathematics

as natural extensions to existing technologies, such as the

GraphBLAS standard.

The rest of this paper is organized as follows. First,

some mathematical preliminaries regarding hypergraphs, hy-

persparse matrices, and semirings are provided. Associative

arrays are then summarized. Next, some general properties of

semilinks are explored and some specific possible semilinks

are investigated in the context of graph analysis, databases,

and machine learning. Finally, some recommendations and

conclusions are provided.

II. MATHEMATICAL PRELIMINARIES

The navigation of diverse digital data can be enhanced by a

number of mathematical concepts which underpin the broader

algebra of associative arrays which are briefly described in

263

2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-6654-3577-2/21/$31.00 ©2021 IEEE
DOI 10.1109/IPDPSW52791.2021.00048

20
21

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
is

tri
bu

te
d

Pr
oc

es
si

ng
 S

ym
po

si
um

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
78

-1
-6

65
4-

35
77

-2
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IP

D
PS

W
52

79
1.

20
21

.0
00

48

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:43:57 UTC from IEEE Xplore. Restrictions apply.

� �����

�

Alice

Bob

Alice

Carl

Bob

Carl

Fig. 1. Graph Adjacency Array Duality. Breadth-first-search performed on
a graph (left) and an adjacency array (right) illustrates the deep connection
between graphs and arrays.

1

2
3

4

5

6

7

8

9

10

11
12

1

3
2

4
5
6
7
8
9

10
11
12
13

4 5 6 7321 4 5 6 7321

ed
ge

 n
um

be
r

Eout Ein
1

3
2

4
5
6
7
8
9

10
11
12
13

ed
ge

 n
um

be
r

13

in-vertexout-vertex

Fig. 2. Hyper-Multi-Graph Edge Array Duality. Incidence (or edge) arrays
can capture hyper-edges (red) connecting more than two vertices and multi-
edges (blue) between the same vertices.

this section (see [8] for a complete description). Perhaps

the most important is the graph-matrix duality illustrated

in Figure 1 that links the fundamental operation of graphs

(breadth-first-search) with the fundamental operation of arrays

(array multiplication), where an adjacency array

A(k1, k2) �= 0

implies an edge from vertex k1 to k2. Hypergraphs extend

graphs to provide a natural representation of events that

connect diverse entities. Hypersparse arrays extend arrays

to allow the efficient storage and operation on data that is

growing without bounds. Semirings extend standard arithmetic

enabling operations on diverse data to utilize the power of

linear systems theory.

A. Hypergraphs
Adjacency arrays are a powerful tool for analyzing directed-

weighted-graphs, but are unable to represent the diverse data

that is commonly found in streaming events. These streaming

events can be described as hyper-multi-weighted-directed-

graphs and are best represented as incidence (or edge) arrays

(see Figure 2), where

Eout(k, k1) �= 0 Ein(k, k2) �= 0

implies that edge k comes out of vertex k1 and goes into vertex

k2.
The adjacency array and the edge array are strongly coupled

via array multiplication (Figure 3)

A = ET
outEin

A
1

3
2

4
5
6
7

4 5 6 7321

ou
t-

ve
rt

ex

in-vertex

1

3
2

4
5
6
7

edge number

ou
t-

ve
rt

ex

Eout

4 5 6 7321
in-vertexEin

1

3
2

4
5
6
7
8
9

10
11
12

ed
ge

 n
um

be
r

T

=

4 5 6 7321 8 9 10 11 12

Fig. 3. Edge Array to Adjacency Array. Construction of an adjacency array
of a graph from its incidence arrays via array multiply. The entry A(4, 3) is
obtained by combining the row ET

out(4, k) with the column Ein(k, 3) via

the array product A(4, 3) =
12⊕

k=1
ET

out(4, k)⊗Ein(k, 3)

AhypersparseAsparseAdense

nnz(Adense) ~ N2 nnz(Asparse) ~ N nnz(Ahypersparse) << N

Fig. 4. Dense, Sparse, and Hypersparse Arrays. Sparsity concepts for an
N×N array A.

where the individual values in A are computed via

A(i, j) =
⊕

k

ET
out(i, k)⊗Ein(k, j)

The adjacency array represents a projection of edge data and

is often an initial step in processing diverse digital data.

B. Hypersparse

As the dimensions of digital data expand the concept of

sparsity plays an increasing role. Sensor data, such as images,

are well presented by dense arrays where the number on

non-zero entries nnz() is small. Physical networks, neural

networks, mesh geometries, and other systems where the di-

mension of the problem is known can often be well represented

by sparse arrays where nnz() is on the order of the number

of rows or columns in the array. Data with dimensions that

are continuously increasing can be captured by hypersparse

arrays where nnz() is much smaller than the number of rows

or columns (Figure 4).

C. Semirings

Obtaining the advantages of linear systems on diverse data

involves extending addition ⊕ and multiplication ⊗ beyond

standard real numbers to include sets and strings. If the

set of values is denoted by V , then pairs of operations ⊗
and ⊕ that obey the distributive property on values from

V will generally exhibit the desired properties of a linear

system. Formally, the mathematical object with the desired

mathematical properties is a semiring denoted (V,⊕,⊗, 0, 1),
where 0 is the ⊕ identity and 1 is the ⊗ identity. Some

of the common combinations of addition and multiplication

264

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:43:57 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SELECTED SEMIRINGS

Some semirings that play important roles in many real-world applications. R
are the real numbers. R≥0 are the non-negative real numbers. V is any strict
totally ordered set (i.e., sortable). P() is the power set (set of all subsets). ∅
is the empty set. +∞ is the maximum element of a set. -∞ is the minimal
element of a set.

Set ⊕ ⊗ 0 1
R + × 0 1
R ∪ -∞ max + -∞ 0
R ∪ +∞ min + +∞ 0
R≥0 max × 0 1
R≥0 ∪ +∞ min × +∞ 1
V ∪ ∩ ∅ P(V)
V ∪ -∞ max min -∞ +∞
V ∪ +∞ min max +∞ -∞

operations that have proven valuable are standard arithmetic

addition and multiplication +.×, union and intersection ∪.∩
in relational databases [44]–[46], and various tropical algebras

that are important in finance [47]–[49] and neural networks

[41]–[43]: max.+, min.+, max.×, min.×, max.min, and

min.max. Examples of commonly used semirings are shown

in Table I. For a guide to the literature on semirings and their

applications see [50].

III. ASSOCIATIVE ARRAYS

The full mathematics of associative arrays and the ways they

build on the mathematics of the previous section to encompass

spreadsheets, database tables, matrices, graphs, networks, and

higher dimension tensors are fully described in [10]–[13]. Only

the essential mathematical properties of associative arrays

are reviewed here. The essence of associative array algebra

is three operations: element-wise addition ⊕, element-wise

multiplication ⊗, and array multiplication ⊕.⊗. In brief, the

set of associative arrays are defined as a mapping from sets

of keys to values

A : K1 ×K2 → V

where K1 (the set of row keys) and K2 (the set of column

keys) can be any sortable sets, such as the integers, real

numbers, or strings. V is a set of values that forms a semiring

(V,⊕,⊗,0,1) with addition operation ⊕, multiplication op-

eration ⊗, additive identity/multiplicative annihilator 0, and

multiplicative identity 1. The values can take on many forms,

such as numbers, strings, and sets.

Associative array algebra and its specialization in the Graph-

BLAS reference two main semirings. The first is the element-

wise commutative semiring (A,⊕,⊗, 0, 1) built from the two

commutative monoids

M0 = (A,⊕, 0) M1 = (A,⊗, 1)

where 0 is the array of all 0 and 1 is the array of all 1.

Likewise, the array semiring (A,⊕,⊕.⊗, 0, I) built from a

commutative monoid and non-commutative monoid

M0 = (A,⊕, 0) MI = (A,⊕.⊗, I)

TABLE II
ASSOCIATIVE ARRAYS

Summary of associative array operations and properties. k, k1, k2, and v are
vectors of the row keys, column keys, and values of the nonzero elements of
the associative array A. 0 is an array of all 0. 1 is an array of all 1. | |0 is
the element-wise zero-norm that maps all non-zero elements to 1.

Property Notation
Construction A = A(k1,k2,v)
Extraction (k1,k2,v) = A
Permutation P(k1,k2) = A(k1,k2, 1) k1, k2 unique
Identity I(k) = P(k,k)
Transpose A(k2, k1) = AT(k1, k2)
Row keys k1 = row(A) k1 unique
Column keys k2 = col(A) k2 unique
Nonzero count nnz(A)
Same sparsity |A|0 = |B|0
Element-wise C = A⊕B A⊕ 0 = A

addition C(k1, k2) = A(k1, k2)⊕B(k1, k2)
Element-wise C = A⊗B A⊗ 1 = A A⊗ 0 = 0

multiplication C(k1, k2) = A(k1, k2)⊗B(k1, k2)
Array C = AB = A⊕.⊗B AI = A A0 = 0

multiplication C(k1, k2) =
⊕

k A(k1, k)⊗B(k, k2)
Commutativity A⊕B = B⊕A

A⊗B = B⊗A
(AB)T = BTAT

Associativity (A⊕B)⊕C = A⊕ (B⊕C)
(A⊗B)⊗C = A⊗ (B⊗C)
(AB)C = A(BC)

Distributivity A⊗ (B⊕C) = (A⊗B)⊕ (A⊗C)
A(B⊕C) = (AB)⊕ (AC)

where I(k, k) = 1 and 0 otherwise. Many of the properties of

associative arrays that will be utilized in the semilink discus-

sion are listed in Table II. Of particular practical importance

are the large row and column key spaces typically used in

associative arrays that practically eliminate the dimensional

conformance rules required in matrix operations. As a result,

associative arrays are typically added and multiplied with little

regard for the true dimensions of their large row and column

key spaces. What is more important to producing non-trivial

results that are not all 0 is some overlap in the non-zero row

and column keys of the constituent associative arrays.

IV. SEMIRINGS TO SEMILINKS

The overlap between three monoids and two semirings

commonly used in associative arrays suggests investigating

them as a potentially new mathematical concept referred to

here as a semilink

(A,⊕,⊗,⊕.⊗, 0, 1, I)

Among the standard (albeit somewhat rare) algebraic struc-

tures admitting three binary operations are residuated lattices

[51], Poisson algebras [52], exponential fields [53], and quasi-

groups [54]. The closest in flavor to our semilink that of a

composition ring, though even when working over a ring or

field the semilink above does not satisfy the identities required

to be a composition ring. In addition to being closed under

any combination of operations ⊕, ⊗, and ⊕.⊗ on associative

arrays, such a combination of monoids/semirings would seem

to have several properties. As part of semirings the pairs of

operations (⊕,⊗) and (⊕,⊕.⊗) retain their properties within

265

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:43:57 UTC from IEEE Xplore. Restrictions apply.

each pair such as the distributive property and the additive

identity is the multiplicative annihilator. Important questions

with regards to a semilink are what properties might exist

among the pair of operations (⊗,⊕.⊗) and their respective

identities 1 and I.

It is readily observable that the identities 1 and I preserve

their properties with respect to their corresponding operations.

For example

1⊗ I = I⊗ 1 = I 1⊕.⊗I = I⊕.⊗1 = 1

I behaves like an identity under ⊗ if the array matches the

sparsity structure of I. If |A|0 = I, then

A⊗ I = I⊗A = A

where | |0 is the element-wise zero-norm that maps all non-

zero elements to 1. More generally, if the sparsity pattern of

A is a permutation |A|0 = P, then

A⊗ P = P⊗A = A

In contrast, 1 with ⊕.⊗ projects an array onto its rows or

columns

C = A⊕.⊗1 =⇒ C(k1, :) =
⊕

k2

A(k1, k2)

C = 1⊕.⊗A =⇒ C(:, k2) =
⊕

k1

A(k1, k2)

Interestingly, under certain conditions, ⊕.⊗ distributes over ⊗.

Specifically, if A has the sparsity pattern of a permutation

|A|0 = |A1|0 = |A2|0 = P

and A = A1 ⊗A2, then

A⊕.⊗(B⊗C) = (A1⊕.⊗B)⊗ (A2⊕.⊗C)

Similarly, a hybrid associativity does hold in the trivial case.

If A = 1 or C = I, then

A⊗ (B⊕.⊗C) = (A⊗B)⊕.⊗C

In a related result, if the non-zero entries of A, B, and C do

not have sufficient overlap, then the result will be 0. Using

the row() and col() functions defined in Table II, if

row(A) ∩ row(B) = ∅ or

col(A) ∩ col(C) = ∅ or

col(B) ∩ row(C) = ∅
then

A⊗ (B⊕.⊗C) = 0

Likewise, if

row(A) ∩ row(B) = ∅ or

col(A) ∩ col(B) = ∅ or

col(A) ∩ row(C) = ∅ or

col(B) ∩ row(C) = ∅

then

(A⊗B)⊕.⊗C = 0

which implies that if

row(A) ∩ row(B) = ∅ or

col(B) ∩ row(C) = ∅
then

A⊗ (B⊕.⊗C) = (A⊗B)⊕.⊗C = 0

V. EXAMPLES

An important motivation for exploring the semilink concept

is their common occurrence in practical applications. In this

section several semilinks are explored in the context of graphs,

databases, and neural networks.

A. Graph Analytics

The general semilink

(A,⊕,⊗,⊕.⊗, 0, 1, I)

covers a number of important operations in graph analysis.

Figure 1 illustrates the duality between the fundamental op-

eration of graphs (breadth-first-search) and the fundamental

operation of arrays (array multiplication) ⊕.⊗. Figure 5 shows

how element-wise addition ⊕ and element-wise multiplication

⊗ correspond to graph union and graph intersection, which are

also important graph operations. In these graph operations,

the essence of the calculation is topological and is determined

by the presence of non-zero values in the result and not the

exact value itself. Thus, the core topological aspects of graph

breadth-first-search, graph union, and graph intersection oper-

ations hold for any semiring on the values of the corresponding

associative array, including all the semirings listed in Table I.

B. Database Operations

Many database table operations can be mapped onto well-

defined mathematical operations with known mathematical

properties (see Figure 6). For example, relational (or SQL)

databases [55]–[57] are described by relational algebra [44]–

[46] that corresponds to the union-intersection semiring ∪.∩
[58]. Triple-store databases (NoSQL) [59]–[63] and analytic

databases (NewSQL) [32], [64]–[68] follow similar mathemat-

ics [12]. The table operations of these databases are further

encompassed by associative array algebra, which brings the

beneficial properties of array mathematics and sparse linear

systems theory, such as closure, commutativity, associativity,

and distributivity [13]. These mathematical properties provide

strong correctness and linearity guarantees that are indepen-

dent of scale and particularly helpful when trying to reason

about massively parallel systems.

The full mathematics of associative arrays and the ways

they encompass relational algebra are described in the afore-

mentioned references [12], [13], [58]. In brief, an associative

array A is defined as a mapping from sets of keys to values.

The row keys are equivalent to the sequence ID in a relational

database table. The column keys are equivalent to the column

266

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:43:57 UTC from IEEE Xplore. Restrictions apply.

C
1

3
2

4
5
6
7

4 5 6 7321A
1

3
2

4
5
6
7

4 5 6 7321

4

21

7

B
1

3
2

4
5
6
7

4 5 6 7321

2

57
⊕

⊕

4

21

57
=

=

C
1

3
2

4
5
6
7

4 5 6 7321A
1

3
2

4
5
6
7

4 5 6 7321

4

21

7

B
1

3
2

4
5
6
7

4 5 6 7321

2

57
⊗

⊗

2

7
=

=

Fig. 5. Graph Union and Intersection. (top) Element-wise addition ⊕
of associative arrays corresponds to graph union. (bottom) Element-wise
multiplication ⊗ of associative arrays corresponds to graph intersection.

names or record fields in a database table. Intersection ∩ dis-

tributing over union ∪ is essential to database query planning

and parallel query execution over partioned/sharded database

tables [69]–[75].

Perhaps the most canonical function in a relational database

is the SQL select statement that returns the columns k of rows

in a table A that satisfy a specific condition, such as the value

in column k(i) is v

select k(1), ...,k(n) from A where k(i) = v

In terms of the associative array notation listed in Table II, the

above select can be concisely written as

A(row(A(k(i), :) = v),k)

For many databases, the relevant semilink is

(A,∪,∩,∪.∩, ∅, 1, I)

where each entry in 1 is P(V) and I(k, k) = P(V) and

∅ otherwise. The associative array version of the select
statement can be written in terms of this semilink as

|((A ∪.∩ I(k(i)) ∩ v) ∪.∩ 1|0 ∩A

The term A ∪.∩ I(k(i)) selects column k(i) from A. The

next operation ∩ v selects the entries corresponding to v. A

mask of all the columns in these rows is constructed by ∪.∩ 1,

whose values are converted to P(V) with the zero norm | |0.

Applying the mask with ∩ A selects the corresponding rows.

C. Deep Neural Networks

Machine learning has been the foundation of artificial

intelligence since its inception [76]–[83]. Standard machine

learning applications include speech recognition [78], com-

puter vision [79], and even board games [80], [84].

Drawing inspiration from biological neurons to implement

machine learning was the topic of the first paper presented

at the first machine learning conference in 1955 [76], [77]

(see Figure 7). It was recognized very early on in the field

that direct computational training of neural networks was

computationally unfeasible with the computers that were avail-

able at that time [82]. The many-fold improvement in neural

network computation and theory has made it possible to create

neural networks capable of better-than-human performance in

a variety of domains [85]–[88]. The production of validated

data sets [89]–[91] and the power of graphic processing units

(GPUs) [92]–[95] have allowed the effective training of deep

neural networks (DNNs) with 100,000s of input features, N ,

and 100s of layers, L, that are capable of choosing from among

100,000s categories, M (see Figure 8).

The primary mathematical operation performed by a DNN

network is the inference, or forward propagation, step. Infer-

ence is executed repeatedly during training to determine both

the weight matrix W� and the bias vectors b� of the DNN.

The inference computation shown in Figure 8 is given by

y�+1 = h(y�W� + b�)

where h() is a nonlinear function applied to each element

of the vector. The Sparse DNN Challenge uses the standard

graph community convention whereby W(i, j) �= 0 implies a

connection between neuron i and neuron j. In this convention

y� are row vectors and left array multiplication is used to

progress through the network. A commonly used function is

the rectified linear unit (ReLU) given by

h(y) = max(y, 0)

which sets values less than 0 to 0 and leaves other values

unchanged. When training a DNN, or performing inference

on many different inputs, it is usually necessary to compute

multiple y� vectors at once in a batch that can be denoted as

the array Y�. In array form, the inference step becomes

Y�+1 = h(Y�W� +B�)

where B� is a replication of b� along columns given by

B� = b�|Y�1|0
and 1 is a column array of 1’s, and | |0 is the zero norm.

If h() were a linear function, then the above equation could

be solved exactly and the computation could be greatly simpli-

fied. However, current evidence suggests that the non-linearity

of h() is required for a DNN to be effective. Interestingly, the

inference computation can be rewritten as a linear function

over two different semirings

yk+1 = ykWk ⊗ bk ⊕ 0

267

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:43:57 UTC from IEEE Xplore. Restrictions apply.

v ATvAT

�

�������

�������

�������

���
�	
��	��
����

�����
������	��
�����

ATT

�	����
��
������
�	��
���

��� ���� �	�

��� ������� �

 �������

��� ������� �� �������

�� ������� ��� �������

�	��
���!�"�����#��������$���	��	�
��	�#�%���

�&�&'(�)�	�
)�*+���(
,-&+&�)���.�������)

�������

�������

�������

�

���

Fig. 6. Associative arrays combine the properties of databases, graphs, and matrices and provide common mathematics that span SQL, NoSQL, and NewSQL
databases, and are ideal for analyzing networks. The diagram shows the graph operation of finding the neighbors of 1.1.1.1 in each representation.

Fig. 7. Typical network elements i and j showing connection weights w
(reproduced from [77])

Input
Features

Output
Categories

Edges

Object Parts
Objects

y0 W0

b0

W1

b1

W2

b2

W3

b3

y2 y3

y4

y1
Hidden Layers

Fig. 8. Four layer (L = 4) deep neural network architecture for categorizing
images. The input features y0 of an image are passed through a series of
network layers W�=0,1,2,3, with bias terms b�=0,1,2,3, that produce scores
for categories yL=4. (Figure adapted from [96])

or in array form

Yk+1 = YkWk ⊗Bk ⊕ 0

where the ⊕ = max and ⊗ = +. Thus, ykWk and YkWk

are computed over the standard arithmetic +.× semiring

S1 = (R,+,×, 0, 1)

while the ⊕ and ⊗ operation are performed over the max.+
semiring

S2 = ({-∞∪ R},max,+, -∞, 0)

Thus, the ReLU DNN can be written as a linear system that

oscillates over two semirings S1 and S2. S1 is the most widely

used of semirings and performs standard correlation between

vectors. S2 is also a commonly used semiring for selecting

optimal paths in graphs. Thus, the inference step of a ReLU

DNN can be viewed as combining correlations of inputs to

choose optimal paths through the neural network. This DNN

semiring pair is is more complex than what is described in by

the semilink concept and may require extending the semilink

concept to encompass DNNs.

VI. CONCLUSIONS AND FUTURE WORK

The unstructured data of digital hyperspace can be elegantly

represented, traversed, and transformed via the mathematics

of hypergraphs, hypersparse matrices, and associative array

algebra. Within this context this paper has explored a new

mathematical concept, the semilink, that combines pairs of

semirings to provide the essential operations for graph ana-

lytics, database operations, and machine learning. The formal

mathematical specification of GraphBLAS includes monoid,

semiring, and closure under element-wise addition, element-

wise multiplication, and array multiplication and naturally

supports linked semirings.

The specification was written from an associative array

algebra perspective with intentionally minimal constraints on

the internal implementation of the opaque GrB Matrix data

structure. This has allowed the GraphBLAS (in its SuiteSparse

implementation) to support a myriad of different data struc-

tures: sparse, hypersparse, bitmap, and full. It uses each of

them when appropriate, and switches between them automati-

cally, with little or no involvement from the user application. In

the future, this will enable distributed-memory and GPU accel-

erations as well. This flexibility has enabled the GraphBLAS

standard to support hypergraphs, hypersparse matrices, and the

mathematics required for semilinks, and seamlessly performs

graph, network, and matrix operations. With the addition of

key based indices (such as pointers to strings) and semilinks,

268

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:43:57 UTC from IEEE Xplore. Restrictions apply.

GraphBLAS can become a richer associative array algebra

and be a plug-in replacement for spreadsheets, database tables,

and data centric operating systems [97], [98], enhancing the

navigation of unstructured data found in digital hyperspace.

From an applied mathematical perspective, the more com-

plex pairing of operations in the DNN context is worth addi-

tional exploring. Likewise, in the context of abstract algebra,

[99] considers semirings in which the multiplicative identity

can be local, so that in any small part of the structure there

is a multiplicative identity as far as that part of the structure

is concerned. It would be worth exploring this concept in the

context of infinite key spaces where identity matrices are a

challenge.

ACKNOWLEDGMENTS

The authors wish to acknowledge the following individuals

for their contributions and support: Bob Bond, Alan Edelman,

Jeff Gottschalk, Charles Leiserson, Mimi McClure, Steve

Rejto, Daniela Rus, Allan Vanterpool, Marc Zissman, and the

MIT SuperCloud team: Bill Arcand, Bill Bergeron, David

Bestor, Chansup Byun, Michael Houle, Matthew Hubbell,

Michael Jones, Anna Klein, Peter Michaleas, Julie Mullen,

Andrew Prout, Antonio Rosa, Albert Reuther, Charles Yee.

REFERENCES

[1] “Cisco Visual Networking Index: Forecast and Trends, 20182023.”
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html.

[2] P. Sawadogo and J. Darmont, “On data lake architectures and metadata
management,” Journal of Intelligent Information Systems, pp. 1–24,
2020.

[3] C. Berge, “Graphs and hypergraphs,” 1973.
[4] G. Ghoshal, V. Zlatić, G. Caldarelli, and M. E. Newman, “Random

hypergraphs and their applications,” Physical Review E, vol. 79, no. 6,
p. 066118, 2009.

[5] J. N. Mordeson and P. S. Nair, Fuzzy graphs and fuzzy hypergraphs,
vol. 46. Physica, 2012.

[6] J. Shun, “Practical parallel hypergraph algorithms,” in Proceedings of the
25th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 232–249, 2020.

[7] A. Buluc and J. R. Gilbert, “On the representation and multiplication
of hypersparse matrices,” in 2008 IEEE International Symposium on
Parallel and Distributed Processing, pp. 1–11, IEEE, 2008.

[8] J. Kepner and J. Gilbert, Graph algorithms in the language of linear
algebra. SIAM, 2011.

[9] J. Kepner, T. Davis, C. Byun, W. Arcand, D. Bestor, W. Bergeron,
V. Gadepally, M. Hubbell, M. Houle, M. Jones, A. Klein, P. Michaleas,
L. Milechin, J. Mullen, A. Prout, A. Rosa, S. Samsi, C. Yee, and
A. Reuther, “75,000,000,000 streaming inserts/second using hierarchical
hypersparse graphblas matrices,” IPDPSW GrAPL, 2020.

[10] J. V. Kepner, “Multidimensional associative array database,” Jan. 14
2014. US Patent 8,631,031.

[11] J. Kepner and V. Gadepally, “Adjacency matrices, incidence matrices,
database schemas, and associative arrays,” IPDPS Graph Algorithms
Building Blocks, 2014.

[12] J. Kepner, V. Gadepally, D. Hutchison, H. Jananthan, T. Mattson,
S. Samsi, and A. Reuther, “Associative array model of sql, nosql, and
newsql databases,” in 2016 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–9, 2016.

[13] J. Kepner and H. Jananthan, Mathematics of Big Data: Spreadsheets,
databases, matrices, and graphs. MIT Press, 2018.

[14] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
J. Moreira, J. Owens, C. Yang, M. Zalewski, and T. Mattson, “Mathe-
matical foundations of the GraphBLAS,” in High Performance Extreme
Computing Conference (HPEC), IEEE, 2016.

[15] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang, “Design
of the graphblas api for c,” in 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 643–652,
IEEE, 2017.

[16] M. Kumar, J. E. Moreira, and P. Pattnaik, “Graphblas: handling perfor-
mance concerns in large graph analytics,” in Proceedings of the 15th
ACM International Conference on Computing Frontiers, pp. 260–267,
2018.

[17] T. Mattson, T. A. Davis, M. Kumar, A. Buluc, S. McMillan, J. Moreira,
and C. Yang, “Lagraph: A community effort to collect graph algorithms
built on top of the graphblas,” in 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 276–284,
IEEE, 2019.

[18] T. A. Davis, “Graph algorithms via suitesparse: Graphblas: triangle
counting and k-truss,” in 2018 IEEE High Performance extreme Com-
puting Conference (HPEC), pp. 1–6, IEEE, 2018.

[19] J. Chamberlin, M. Zalewski, S. McMillan, and A. Lumsdaine, “Pygb:
Graphblas dsl in python with dynamic compilation into efficient c++,”
in 2018 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pp. 310–319, IEEE, 2018.

[20] J. E. Moreira, M. Kumar, and W. P. Horn, “Implementing the graphblas
c api,” in 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 298–309, IEEE, 2018.

[21] T. A. Davis, “Algorithm 1000: Suitesparse: Graphblas: Graph algorithms
in the language of sparse linear algebra,” ACM Transactions on Mathe-
matical Software (TOMS), vol. 45, no. 4, pp. 1–25, 2019.

[22] P. Cailliau, T. Davis, V. Gadepally, J. Kepner, R. Lipman, J. Lovitz, and
K. Ouaknine, “Redisgraph graphblas enabled graph database,” in 2019
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pp. 285–286, IEEE, 2019.

[23] A. Buluç and J. R. Gilbert, “The combinatorial blas: Design, implemen-
tation, and applications,” The International Journal of High Performance
Computing Applications, vol. 25, no. 4, pp. 496–509, 2011.

[24] J. Kepner, W. Arcand, W. Bergeron, C. Byun, M. Hubbell, B. Landon,
A. McCabe, P. Michaleas, A. Prout, T. Rosa, et al., “Massive database
analysis on the cloud with d4m,” HPEC, Sep, pp. 21–22, 2011.

[25] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun,
G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P. Michaleas,
A. Prout, A. Reuther, A. Rosa, and C. Yee, “Dynamic distributed
dimensional data model (D4M) database and computation system,”
in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE
International Conference on, pp. 5349–5352, IEEE, 2012.

[26] A. Chen, A. Edelman, J. Kepner, V. Gadepally, and D. Hutchison, “Julia
implementation of the dynamic distributed dimensional data model,” in
2016 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–7, IEEE, 2016.

[27] L. Milechin, V. Gadepally, S. Samsi, J. Kepner, A. Chen, and D. Hutchi-
son, “D4m 3.0: Extended database and language capabilities,” in
2017 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–6, IEEE, 2017.

[28] L. Milechin, V. Gadepally, and J. Kepner, “Database operations in
d4m.jl,” in 2018 IEEE High Performance extreme Computing Confer-
ence (HPEC), pp. 1–5, IEEE, 2018.

[29] J. Kepner, C. Anderson, W. Arcand, D. Bestor, B. Bergeron, C. Byun,
M. Hubbell, P. Michaleas, J. Mullen, D. O’Gwynn, A. Prout, A. Reuther,
A. Rosa, and C. Yee, “D4M 2.0 schema: A general purpose high
performance schema for the Accumulo database,” in High Performance
Extreme Computing Conference (HPEC), IEEE, 2013.

[30] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally,
M. Hubbell, P. Michaleas, J. Mullen, A. Prout, et al., “Achieving
100,000,000 database inserts per second using Accumulo and D4M,”
in High Performance Extreme Computing Conference (HPEC), IEEE,
2014.

[31] V. Gadepally, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun,
L. Edwards, M. Hubbell, P. Michaleas, J. Mullen, et al., “D4M: bringing
associative arrays to database engines,” in High Performance Extreme
Computing Conference (HPEC), IEEE, 2015.

[32] D. Hutchison, J. Kepner, V. Gadepally, and A. Fuchs, “Graphulo
implementation of server-side sparse matrix multiply in the Accu-
mulo database,” in High Performance Extreme Computing Conference
(HPEC), IEEE, 2015.

[33] S. Samsi, L. Brattain, W. Arcand, D. Bestor, B. Bergeron, C. Byun,
V. Gadepally, M. Hubbell, M. Jones, A. Klein, et al., “Benchmarking

269

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:43:57 UTC from IEEE Xplore. Restrictions apply.

scidb data import on hpc systems,” in 2016 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–5, IEEE, 2016.

[34] M. Aznaveh, J. Chen, T. A. Davis, B. Hegyi, S. P. Kolodziej, T. G.
Mattson, and G. Szárnyas, “Parallel graphblas with openmp,” in 2020
Proceedings of the SIAM Workshop on Combinatorial Scientific Com-
puting, pp. 138–148, SIAM, 2020.

[35] X. Wang, Z. Lin, C. Yang, and J. D. Owens, “Accelerating dnn inference
with graphblas and the gpu,” in 2019 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–6, IEEE, 2019.

[36] W. S. Song, J. Kepner, H. T. Nguyen, J. I. Kramer, V. Gleyzer, J. R.
Mann, A. H. Horst, L. L. Retherford, R. A. Bond, N. T. Bliss, et al.,
“3-d graph processor,” in Workshop on High Performance Embedded
Workshop (HPEC), MIT Lincoln Laboratory, 2010.

[37] W. S. Song, “Processor for large graph algorithm computations and
matrix operations,” June 10 2014. US Patent 8,751,556.

[38] W. S. Song, V. Gleyzer, A. Lomakin, and J. Kepner, “Novel graph pro-
cessor architecture, prototype system, and results,” in High Performance
Extreme Computing Conference (HPEC), IEEE, 2016.

[39] Z. Jia, B. Tillman, M. Maggioni, and D. P. Scarpazza, “Dissecting
the graphcore ipu architecture via microbenchmarking,” arXiv preprint
arXiv:1912.03413, 2019.

[40] M. James, M. Tom, P. Groeneveld, and V. Kibardin, “Ispd 2020 physical
mapping of neural networks on a wafer-scale deep learning accelerator,”
in Proceedings of the 2020 International Symposium on Physical Design,
pp. 145–149, 2020.

[41] J. Kepner, M. Kumar, J. Moreira, P. Pattnaik, M. Serrano, and H. Tufo,
“Enabling massive deep neural networks with the graphblas,” in High
Performance Extreme Computing Conference (HPEC), IEEE, 2017.

[42] M. Kumar, W. Horn, J. Kepner, J. Moreira, and P. Pattnaik, “Ibm power9
and cognitive computing,” IBM Journal of Research and Development,
2018.

[43] T. A. Davis, M. Aznaveh, and S. Kolodziej, “Write quick, run fast:
Sparse deep neural network in 20 minutes of development time via
suitesparse: Graphblas,” in 2019 IEEE High Performance extreme Com-
puting Conference (HPEC), pp. 1–6, IEEE, 2019.

[44] E. F. Codd, “A relational model of data for large shared data banks,”
Communications of the ACM, vol. 13, no. 6, pp. 377–387, 1970.

[45] D. Maier, The theory of relational databases, vol. 11. Computer science
press Rockville, 1983.

[46] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases, vol. 8.
Addison-Wesley Reading, 1995.

[47] P. Klemperer, “The product-mix auction: A new auction design for
differentiated goods,” Journal of the European Economic Association,
vol. 8, no. 2-3, pp. 526–536, 2010.

[48] E. Baldwin and P. Klemperer, “Understanding preferences:’demand
types’, and the existence of equilibrium with indivisibilities,” SSRN,
2016.

[49] B. A. Mason, “Tropical algebra, graph theory, & foreign exchange
arbitrage,” 2016.

[50] K. Glazek, A guide to the literature on semirings and their applications
in mathematics and information sciences: with complete bibliography.
Springer Science & Business Media, 2002.

[51] K. Blount and C. Tsinakis, “The structure of residuated lattices,”
International Journal of Algebra and Computation, vol. 13, no. 04,
pp. 437–461, 2003.

[52] M. Aguiar, “Pre-poisson algebras,” Letters in Mathematical Physics,
vol. 54, no. 4, pp. 263–277, 2000.

[53] S. Kuhlmann, Ordered exponential fields, vol. 12. American Mathemat-
ical Soc., 2000.

[54] J. D. Smith, An introduction to quasigroups and their representations.
CRC Press, 2006.

[55] M. Stonebraker, G. Held, E. Wong, and P. Kreps, “The design and
implementation of INGRES,” ACM Transactions on Database Systems
(TODS), vol. 1, no. 3, pp. 189–222, 1976.

[56] C. J. Date and H. Darwen, A guide to the SQL Standard: a user’s guide
to the standard relational language SQL. Addison-Wesley, 1989.

[57] R. Elmasri and S. Navathe, Fundamentals of database systems. Addison-
Wesley Publishing Company, 2010.

[58] H. Jananthan, Z. Zhou, V. Gadepally, D. Hutchison, S. Kim, and
J. Kepner, “Polystore mathematics of relational algebra,” in Big Data
Workshop on Methods to Manage Heterogeneous Big Data and Polystore
Databases, IEEE, 2017.

[59] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007.

[60] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[61] L. George, HBase: The Definitive Guide: Random Access to Your Planet-
Size Data. ” O’Reilly Media, Inc.”, 2011.

[62] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, L. Edwards,
V. Gadepally, M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A. Rosa,
C. Yee, and A. Reuther, “Lustre, hadoop, accumulo,” in 2015 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–5,
Sep. 2015.

[63] A. Cordova, B. Rinaldi, and M. Wall, Accumulo: Application Develop-
ment, Table Design, and Best Practices. ” O’Reilly Media, Inc.”, 2015.

[64] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, et al., “C-Store:
a column-oriented DBMS,” in Proceedings of the 31st international
conference on Very large data bases, pp. 553–564, VLDB Endowment,
2005.

[65] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P.
Jones, S. Madden, M. Stonebraker, Y. Zhang, et al., “H-store: a high-
performance, distributed main memory transaction processing system,”
Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1496–1499,
2008.

[66] P. Cudré-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov,
E. Soroush, P. Velikhov, D. L. Wang, M. Balazinska, J. Becla, J. Becla,
D. DeWitt, B. Heath, D. Maier, S. Madden, J. Patel, M. Stonebraker,
and S. Zdonik, “A demonstration of SciDB: a science-oriented DBMS,”
Proceedings of the VLDB Endowment, vol. 2, no. 2, pp. 1534–1537,
2009.

[67] M. Stonebraker and A. Weisberg, “The VoltDB main memory DBMS,”
IEEE Data Engineering Bulletin, vol. 36, no. 2, pp. 21–27, 2013.

[68] V. Gadepally, J. Bolewski, D. Hook, D. Hutchison, B. Miller, and
J. Kepner, “Graphulo: Linear algebra graph kernels for nosql databases,”
in Parallel and Distributed Processing Symposium Workshop (IPDPSW),
2015 IEEE International, pp. 822–830, IEEE, 2015.

[69] G. M. Booth, “Distributed information systems,” in Proceedings of the
June 7-10, 1976, national computer conference and exposition, pp. 789–
794, ACM, 1976.

[70] D. E. Shaw, “A relational database machine architecture,” in ACM SIGIR
Forum, vol. 15 #2, pp. 84–95, ACM, 1980.

[71] M. Stonebraker, “The case for shared nothing,” IEEE Database Eng.
Bull., vol. 9, no. 1, pp. 4–9, 1986.

[72] L. A. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The
google cluster architecture,” IEEE micro, vol. 23, no. 2, pp. 22–28, 2003.

[73] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a workload-
driven approach to database replication and partitioning,” Proceedings
of the VLDB Endowment, vol. 3, no. 1-2, pp. 48–57, 2010.

[74] A. Pavlo, C. Curino, and S. Zdonik, “Skew-aware automatic database
partitioning in shared-nothing, parallel oltp systems,” in Proceedings of
the 2012 ACM SIGMOD International Conference on Management of
Data, pp. 61–72, ACM, 2012.

[75] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al., “Spanner:
Google’s globally distributed database,” ACM Transactions on Computer
Systems (TOCS), vol. 31, no. 3, p. 8, 2013.

[76] W. H. Ware, “Introduction to session on learning machines,” in Pro-
ceedings of the March 1-3, 1955, western joint computer conference,
pp. 85–85, ACM, 1955.

[77] W. A. Clark and B. G. Farley, “Generalization of pattern recognition
in a self-organizing system,” in Proceedings of the March 1-3, 1955,
western joint computer conference, pp. 86–91, ACM, 1955.

[78] O. G. Selfridge, “Pattern recognition and modern computers,” in Pro-
ceedings of the March 1-3, 1955, western joint computer conference,
pp. 91–93, ACM, 1955.

[79] G. Dinneen, “Programming pattern recognition,” in Proceedings of the
March 1-3, 1955, western joint computer conference, pp. 94–100, ACM,
1955.

[80] A. Newell, “The chess machine: an example of dealing with a complex
task by adaptation,” in Proceedings of the March 1-3, 1955, western
joint computer conference, pp. 101–108, ACM, 1955.

270

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:43:57 UTC from IEEE Xplore. Restrictions apply.

[81] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, “A
proposal for the dartmouth summer research project on artificial intelli-
gence, august 31, 1955,” AI magazine, vol. 27, no. 4, p. 12, 2006.

[82] M. Minsky and O. G. Selfridge, “Learning in random nets,” in Informa-
tion theory : papers read at a symposium on information theory held at
the Royal Institution, London, August 29th to September 2nd, pp. 335–
347, Butterworths, London, 1960.

[83] M. Minsky, “Steps toward artificial intelligence,” Proceedings of the
IRE, vol. 49, no. 1, pp. 8–30, 1961.

[84] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal of research and development, vol. 3, no. 3,
pp. 210–229, 1959.

[85] R. Lippmann, “An introduction to computing with neural nets,” IEEE
Assp magazine, vol. 4, no. 2, pp. 4–22, 1987.

[86] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification
using adapted gaussian mixture models,” Digital signal processing,
vol. 10, no. 1-3, pp. 19–41, 2000.

[87] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, pp. 1097–1105, 2012.

[88] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[89] J. P. Campbell, “Testing with the yoho cd-rom voice verification corpus,”
in Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995
International Conference on, vol. 1, pp. 341–344, IEEE, 1995.

[90] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of
handwritten digits,” 1998.

[91] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 248–
255, IEEE, 2009.

[92] M. Campbell, A. J. Hoane, and F.-h. Hsu, “Deep blue,” Artificial
intelligence, vol. 134, no. 1-2, pp. 57–83, 2002.

[93] M. P. McGraw-Herdeg, D. P. Enright, and B. S. Michel, “Benchmarking
the nvidia 8800gtx with the cuda development platform,” HPEC 2007
Proceedings, 2007.

[94] A. Kerr, D. Campbell, and M. Richards, “Gpu performance assessment
with the hpec challenge,” in HPEC Workshop 2008, 2008.

[95] E. A. Epstein, M. I. Schor, B. Iyer, A. Lally, E. W. Brown, and J. Cwik-
lik, “Making watson fast,” IBM Journal of Research and Development,
vol. 56, no. 3.4, pp. 15–1, 2012.

[96] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical repre-
sentations,” in Proceedings of the 26th annual international conference
on machine learning, pp. 609–616, ACM, 2009.

[97] J. Kepner, R. Brightwell, A. Edelman, V. Gadepally, H. Jananthan,
M. Jones, S. Madden, P. Michaleas, H. Okhravi, K. Pedretti, et al.,
“Tabularosa: Tabular operating system architecture for massively parallel
heterogeneous compute engines,” in 2018 IEEE High Performance
extreme Computing Conference (HPEC), IEEE, 2018.

[98] M. Cafarella, D. DeWitt, V. Gadepally, J. Kepner, C. Kozyrakis,
T. Kraska, M. Stonebraker, and M. Zaharia, “Dbos: A proposal for a
data-centric operating system,” arXiv preprint arXiv:2007.11112, 2020.

[99] D. Wilding, Linear algebra over semirings. The University of Manch-
ester (United Kingdom), 2015.

271

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 12,2022 at 21:43:57 UTC from IEEE Xplore. Restrictions apply.

		2021-06-22T09:10:34-0400
	Preflight Ticket Signature

