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Abstract—Neuromorphic computers offer the opportunity for
low-power, efficient computation. Though they have been pri-
marily applied to neural network tasks, there is also the oppor-
tunity to leverage the inherent characteristics of neuromorphic
computers (low power, massive parallelism, collocated processing
and memory) to perform non-neural network tasks. Here, we
demonstrate how an approach for performing sparse binary
matrix-vector multiplication on neuromorphic computers. We
describe the approach, which relies on the connection between
binary matrix-vector multiplication and breadth first search, and
we introduce the algorithm for performing this calculation in a
neuromorphic way. We validate the approach in simulation. Fi-
nally, we provide a discussion of the runtime of this algorithm and
discuss where neuromorphic computers in the future may have
a computational advantage when performing this computation.

Index Terms—neuromorphic computing, graph algorithms,
matrix-vector multiplication, spiking neural networks

I. INTRODUCTION

Neuromorphic computers are a compelling complementary

technology to traditional von Neumann computers. Neuromor-

phic computers are custom hardware systems that are inspired

by the brain in both their structure and their functionality. Most

neuromorphic system implement a form of spiking neural

network computation. The fundamental computational compo-

nents in a neuromorphic architecture are neurons and synapses,

and communication in neuromorphic architectures is typically

done via spikes. Neurons receive information in the form of

charge either from an external source or from a synapse; they

accumulate charge and upon reaching a threshold, they fire and

create spikes. Synapses communicate spikes between neurons

and have associated weights and delays. The weight value

governs how spikes along that synapse affects that charge

value of the post-synaptic neuron and delay values govern

how long it takes for spike to propagate from the pre-synaptic

neuron to the post-synaptic neuron.

Neuromorphic computers are inherently parallel, have collo-

cated processing and memory, and tend to consume less power

than their more conventional computing counterparts. Though
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neuromorphic systems are primarily targeted towards perform-

ing neural network tasks [1], there is increasing evidence that

they may be useful in a variety of other computing applications

and algorithms as well [2], specifically be exploiting the

inherent computational characteristics of these systems.

In this work, we describe for the first time how binary

matrix-vector multiplication can be computed using networks

of spiking neurons and how this approach can be mapped onto

neuromorphic computers. We validate the described approach

using the NEST neural simulator [3]. We describe a runtime

analysis of the neuromorphic computation and discuss where

neuromorphic computers in the future may have a computa-

tional advantage over traditional CPU, specifically for sparse

binary matrices.

II. RELATED WORK

Sparse matrix-vector multiplication (SPMV) is a

performance-critical sparse basic linear algebra subroutine

(BLAS). SPMVis applied in various numerical applications

such as conjugate gradient (CG), generalized minimum

residual (GMRES), and scientific applications such as solving

partial differential equations (PDEs), graph and machine

learning applications, and scientific simulations. Researchers

have studied optimizing SPMVon single-core CPU [4],

multicore CPUs [5], GPUs [6], and Xeon-Phi [7]. Optimizing

SPMVon Von Neumann architecture reduces to designing

new sparse matrix storage formats to exploit cache-hierarchy

and SIMD/SIMT units to optimize data movements. Note that

accelerators such as GPUs and Xeon-Phi, despite operating

on lower frequencies, outperform CPUs both in terms of

time and energy by employing a large number of simple

compute cores. Neuromorphic hardware can be seen as one

extreme of this architecture spectrum, since it use extreme

simple compute element operating on low frequency, but it

can provide much higher concurrency.

While the typical use-case of neuromorphic systems is

neural network centric, spike-based neuromorphic systems

are well poised for many application areas (edge computing,

autonomous vehicles, internet of things etc.) due to their low

energy costs and intrinsic parallelism. Indeed, neuromorphic

systems have been used to address several non-neural network-

based tasks [2]. In addition, multiple graph algorithms like

shortest path, longest shortest path, neighborhood subgraph

extraction, minimum spanning trees, graph centrality measures

and others have been proposed in the literature [8]–[11].
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Neuromorphic systems have also been used to model epidemi-

ological simulations [12]. Smith et al. used Intel Loihi [13] and

IBM TrueNorth [14] neurosynaptic systems to solve steady

state partial differential equations [15]. Further application

areas include energy-efficiency in signal processing [16] and

resilience in high performance computing [17].

III. METHOD

To calculate binary matrix-vector multiplication using a

network of spiking neurons, we take the opposite approach

of GraphBLAS, which translates the problem of calculating

a breadth first search (BFS) in an unweighted graph into a

problem of binary matrix vector multiplications [18]. At every

step, BFS explores all of the neighbor nodes that have not been

visited so-far at the present depth prior to moving on to the

nodes at the next depth level. BFS terminates when all the

nodes in the graph are visited. Here, we translate the problem

of computing a binary matrix vector multiplication into this

single step of BFS and utilize a network of spiking neurons.

A. BFS via Binary Matrix-Vector Multiplication

As described in [18], a BFS calculation on an unweighted

graph can be calculated using binary-matrix vector calcula-

tions. Suppose we have an undirected graph G(V,E). We can

begin the BFS calculation by constructing a binary vector x
of length |V | where all elements are zeroes, except for the

element corresponding to the source node for the BFS. To

perform the BFS, this vector x is multiplied by the transpose

of the adjacency matrix, Aᵀ. The resulting Aᵀx is a vector

where there are ones in all locations that correspond to nodes

that are directly connected to the source node.

B. BFS via Spiking Neural Networks

In contrast, neuromorphic systems can very naturally com-

pute BFS-style computation. In particular, a graph G(V,E)
can be used to construct a corresponding network of spiking

neurons, where each node becomes a neuron and each edge

becomes a synaptic connection between two neurons. As has

been described in multiple previous works [8]–[10], a single

source shortest path calculation can be performed on this

graph by stimulating the source neuron and allowing spikes

to propagate throughout the graph. The time that each neuron

fires indicates the length of the shortest path to that node. To

account for multiple source nodes (i.e., multiple ones in the

vector), we will simply stimulate multiple neurons at time 0.

C. Binary Matrix-Vector Multiplication via Spiking Neural
Networks

Using this approach, we now describe in this work how

to utilize spiking neuromorphic systems to compute binary

matrix-vector multiplication. Given a matrix A ∈ {0, 1}n×n

and a binary vector x ∈ {0, 1}n, we can treat Aᵀ as the

adjacency matrix of a graph G(V,E), where |V | = n. We can

construct the corresponding spiking neural network (SNN) for

a neuromorphic system by creating a neuron for each node

in the graph and a synapse for each edge. In order to allow
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Fig. 1. Example of the process to perform binary matrix vector multiplication
with a neuromorphic network. The network created from the matrix A by
using Aᵀ as the adjacency matrix for the network. Then, all of the neurons
that correspond to ones in the vector x are spiked as input. Spikes travel
along all of the outgoing edges and cause corresponding spikes on the neurons
they’re connected to (shown in the last graph). The neurons that spike once
are shown in yellow, and the neuron that spikes twice (6) is shown in green.
The number of spikes are shown in the resulting vector, which equals Ax.

for multiple ones in the binary vector x (i.e., multiple source

nodes in the VFE), we must guarantee that all edges have a

unique value. In [10], we have previously shown that this

can be achieved by setting the delay value of each edge to
1
2j , where j ∈ {1, ..., |E|}. This guarantees that each spike

will arrive at a unique time and that the sum will be less

than one simulation time step. We discuss the practicality of

implementing this on hardware in the following section.

To calculate Ax, we will simply stimulate all of the neurons

indicated in the vector x and run the simulation of the SNN

long enough for spikes to propagate along the immediate

adjacent synapses. The output nodes that fire in that period

correspond to the ones in the resulting Ax vector. An example

of this process is given in Figure 1. It is worth noting that

we are only performing a single step of the BFS here to

accomplish a single matrix-vector multiplication.
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D. Neuromorphic Implementation Practicalities

Physical neuromorphic hardware implementations have pre-

cision limits, for example, on the synaptic delay value. Thus,

allowing for 1
2|E| is not practical to realize on a neuromorphic

implementation. In this work, we utilize the NEST neural

simulator and we use the default synaptic precision for NEST.

The minimum granularity on the synaptic delay is 0.1. Unlike

[10] in which we require that the sum of any combination of

synaptic delays also be unique, in this case, we only require

that the delays be unique values. Therefore, we can realize

unique delays values by setting each value to simply be 0.1j
for j ∈ {1, ..., |e|}. We will then simulate for 0.1|e| time

steps to allow spikes to propagate along at most one edge.

In general, if the minimum synaptic delay value is α, then the

edge delays should be set to be αj for j ∈ {1, ..., |e|}.

E. Runtime Analysis

A matrix-vector calculation on a conventional computing

system require O(|V |2) operations. Traditional Big-O notation

does not make sense for a neuromorphic implementation.

There are different ways that computational complexity can be

quantified for a neuromorphic system: one is the number of

synaptic and/or neuronal operations (e.g., fires) and the other

is the amount of simulation time required to produce the result.

In this work, we focus on the second, and we use a notation

similar to Big-O, ON , to denote this neuromorphic quantity.

We assume that the neuromorphic system will be oper-

ating as a co-processor alongside a conventional CPU. In

this case, the CPU converts the matrix to a network of

spiking neurons, loads the network onto the neuromorphic

co-processor, simulates the neuromorphic co-processor, and

extracts the spikes to calculate the appropriate vector. The

network graph construction requires O(|V |+ |E|) and occurs

on a conventional CPU. The neuromorphic simulation time is

O(α|E|) (where α is the minimum value of a synaptic delay),

which we simplify as ON (|E|). There is also cost for loading

the network and extracting spikes, though these values will

be specific to the neuromorphic hardware and communication

hardware between the CPU and neuromorphic system.

IV. PRELIMINARY RESULTS

A. Verification via Simulation

To confirm that the approach is valid on a system of spiking

neurons, we performed the binary matrix-vector multiplication

for all binary matrices A of up to size n × n and for all

binary vectors x of size n or n = 3. We further verified the

performance of the approach by evaluated all binary vectors

of size n for each of 1000 randomly selected matrices, for

n ∈ {4, ..., 10}. The results of each of these binary matrix-

vector multiplications via neuromorphic simulation matched

the output of numpy’s matrix-vector multiplication result.

B. Runtime Analysis and Neuromorphic Advantage

To understand when a neuromorphic system will have

an advantage when performing this type of calculation, we

provide a brief analysis of CPU run time when compared with

neuromorphic run time. As discussed in Section III-E, if a ma-

trix is size N×N , and the vector is size N , the corresponding

graph has N vertices (N = |V |). Because the neuromorphic

algorithm depends on the number of edges or synapses in the

network, it depends on the sparsity of the matrix (the adjacency

matrix of the network). Additionally, neuromorphic systems

are expected to be slower than their CPU counterparts with

respect to clock speed or even asynchronous altogether. In this

section, we assume that the neuromorphic system performs

|E| simulation time steps and that each of those time steps

requires γT , where T is the amount of time it takes the CPU

to perform a computation and γ ≤ 1.

In Figure 2, we illustrate how the neuromorphic implemen-

tation will perform with different matrix sparsities. The naı̈ve

CPU-only implementation does not depend on the sparsity of

the matrix, so only one CPU line is plotted. We show different

sparsity values (up to sparsity 0.5) as well as how the speed

of the neuromorphic system (with respect to the CPU) affects

performance. Note that the neuromorphic implementation of

this algorithm has both a CPU component (to construct the

graph) and a neuromorphic component (to run the simulation).

We can see that when the neuromorphic system is reasonably

fast, it is beneficial to perform the calculation on the neu-

romorphic system. However, when the neuromorphic system

becomes substantially slower than the CPU and/or if the matrix

is sufficiently dense, it is no longer worthwhile to move the

computation to the neuromorphic system. It is also worth

noting that time to load the network onto the neuromorphic

hardware and communicate spikes to and from the hardware

can also affect the performance, though there may still be

an advantage in using a neuromorphic co-processor if that

communication can be optimized.

C. Computational Analysis

We can further probe into the analysis of when it will

be worthwhile to perform the calculation on a neuromorphic

hardware system. The neuromorphic pre-processing step on

the CPU requires |V |+ |E| time steps, which, with a sparsity

of ρ and |V | = N , becomes N + ρN2. The neuromorphic

component of the computation requires |E| time steps in the

worst case (when minimum synaptic delay values are 1).

With a slowdown of γ, as described in the previous section,

we would expect the neuromorphic system to require γρN2

time steps. Additionally, we can factor in a time cost for

communication to and from the neuromorphic system, which

we will call C. If working with a particular neuromorphic

hardware system, γ and C will be known. One can calculate

if it will be worthwhile to perform the computation on the

neuromorphic system if the following is true:

N + ρN2 + γ(ρN2) + C < N2 (1)

V. FUTURE WORK AND CONCLUSIONS

Since the only walks of length 1 are single edges, the entries

of adjacency matrix of a directed graph A satisfy (A)ij is

the number of walks of length 1 from i to j. In general,
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Fig. 2. Effect of sparsity of the matrix (shown as different lines in each
plot) and speed of the neuromorphic processor (each of the four plots)
on neuromorphic algorithmic performance. The units for the y-axis are the
amount of time it takes for one computation on a CPU. We show different
neuromorphic speeds in terms of how much slower the neuromorphic system
is to perform one simulation time step than the CPU system takes to perform
one computation.

it is true that (Ak)ij is the number of walks of length k
from i to j. However, the methods herein do not translate

to computing Akx, as two length k walks that start at i, end

at j, and use all of the same edges (in a different order) count

as two walks but should be regarded as only one walk in our

methodologies. Also, our preprocessing step which prevents

one neuron from being spiked simultaneously breaks down

when dealing with walks (i.e., paths with repeated edges). With

a goal of computing Akx, the former problem will require a

deeper analysis of the neuromorphic interpretation of Ak while

the latter problem can be resolved with more refined future

neuromorphic systems that have a built in mechanism for han-

dling tied spikes. In this way, the future research will highlight

the relationships between linear algebra, GraphBLAS, and

neuromorphic systems and will also inform more advanced

functionality in future neuromorphic hardware.
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