

Communication-Avoiding Linear-Algebraic Primitives For Graph Analytics

Aydın Buluç Berkeley Lab (LBNL) May 19, 2014 GABB'14 at IPDPS

Linear-algebraic primitives for graphs

Sparse matrix-sparse matrix multiplication

Element-wise operations

Sparse matrix-sparse vector multiplication

Sparse matrix indexing

The Combinatorial BLAS implements these, and more, on arbitrary semirings, e.g. $(\times, +)$, (and, or), (+, min)

Some Combinatorial BLAS functions

* Grossly simplified (parameters, semiring)

Function	Parameters	Returns	Math Notation
SpGEMM	 sparse matrices A and B unary functors (op) 	sparse matrix	C = op(A) * op(B)
SpM{Sp}V (Sp: sparse)	- sparse matrix A - sparse/dense vector x	sparse/dense vector	y = A * x
SpEWiseX	 sparse matrices or vectors binary functor and predicate 	in place or sparse matrix/vector	C = A .* B
Reduce	- sparse matrix A and functors	dense vector	y = sum(A , op)
SpRef	 sparse matrix A index vectors p and q 	sparse matrix	B = A(p,q)
SpAsgn	 sparse matrices A and B index vectors p and q 	none	A(p,q) = B
Scale	 sparse matrix A dense matrix or vector X 	none	check manual
Apply	 any matrix or vector X unary functor (op) 	none	op(X)

Many irregular applications contain coarse-grained parallelism that can be exploited by abstractions at the proper level.

Traditional graph	Graphs in the language of
computations	linear algebra
Data driven, unpredictable communication.	Fixed communication patterns
Irregular and unstructured, poor locality of reference	Operations on matrix blocks exploit memory hierarchy
Fine grained data accesses,	Coarse grained parallelism,
dominated by latency	bandwidth limited

2D layout for sparse matrices & vectors

Matrix/vector distributions, interleaved on each other.

Default distribution in Combinatorial BLAS.

Scalable with increasing number of processes

- 2D matrix layout wins over 1D with large core counts and with limited bandwidth/compute
- 2D vector layout sometimes important for load balance

B., Gilbert. The Combinatorial BLAS: Design, implementation, and applications. *The International Journal of High Performance Computing Applications*, 2011.

2D parallel BFS algorithm

ALGORITHM:

- 1. Gather vertices in *processor column* [communication]
- 2. Find owners of the current frontier's adjacency [computation]
- 3. Exchange adjacencies in processor row [communication]
- 4. Update distances/parents for unvisited vertices. [computation]

Outline

- Communication-avoiding graph/sparse-matrix algorithms
- Why do they matter in science?
 - Isomap (non-linear dimensionality reduction) needs APSP
 - Parallel betweenness centrality needs sparse matrix-matrix product
- What kind of infrastructure/software support they need?

Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. "A global geometric framework for nonlinear dimensionality reduction." Science 290.5500 (2000): 2319-2323.

Communication-avoiding algorithms: Save time

Communication-avoiding algorithms: Save energy

Communication-avoidance motivation

Two kinds of costs: Arithmetic (FLOPs) Communication: moving data

Develop faster algorithms: minimize communication (to lower bound if possible)

Running time = $\gamma \cdot \#FLOPs + \beta \cdot \#Words + (\alpha \cdot \#Messages)$

Communication crucial for graphs

- Often no surface to volume ratio.
- Very little data reuse in existing algorithmic formulations *
- Already heavily communication bound

2D sparse matrix-matrix multiply emulating:

- Graph contraction
- AMG restriction operations

Scale 23 R-MAT (scale-free graph) **times** order 4 restriction operator

Cray XT4, Franklin, NERSC

B., Gilbert. Parallel sparse matrix-matrix multiplication and indexing: Implementation and experiments. *SIAM Journal of Scientific Computing*, 2012

Graph Analysis for the Brain

- Connective abnormalities in schizophrenia [van den Heuvel et al.]
 - Problem: understand disease from anatomical brain imaging
 - Tools: betweenness centrality (BC), shortest path length
 - Results: global statistics on connection graph correlate w/ diagnosis

BC measures "influence" $C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}$

Among all the shortest paths, what fraction passes through v?

Cost = O(mn)

-unweighted-

Computationally intensive !

Input type	Resolution	Time
ROIs	256	seconds
Voxels	60,000	hours
Neurons	1M+	years???

Work-efficient parallel breadth-first search via **parallel sparse matrix-matrix multiplication over semirings**

Encapsulates three level of parallelism:

- 1. columns(B): multiple BFS searches in parallel
- 2. $columns(A^{T})+rows(B)$: parallel over frontier vertices in each BFS
- 3. $rows(A^T)$: parallel over incident edges of each frontier vertex

A. Buluç, J.R. Gilbert. The Combinatorial BLAS: Design, implementation, and applications. IJHPCA, 2011.

Parallel sparse matrix-matrix multiplication algorithms

2D algorithm: Sparse SUMMA (based on dense SUMMA) General implementation that handles rectangular matrices

B., Gilbert. Challenges and advances in parallel sparse matrix-matrix multiplication. In ICPP'08

1D vs. 2D scaling for sparse matrix-matrix multiplication

SpSUMMA = 2-D data layout (Combinatorial BLAS) EpetraExt = 1-D data layout (Trilinos)

In practice, 2D algorithms have the potential to scale, but not linearly $T_{comm}(2D) = \alpha p \sqrt{p} + \beta c n \sqrt{p}$ $T_{comp}(optimal) = c^2 n$ Almost linear scaling until bandwidth costs starts to dominate

Seconds

The computation cube and sparsity-independent algorithms

Matrix multiplication: $\forall (i,j) \in n \times n$, $C(i,j) = \Sigma_k A(i,k)B(k,j)$,

The computation (discrete) cube:

- A face for each (input/output) matrix
- A grid point for each multiplication ٠

How about sparse algorithms?

1D algorithms

2D algorithms

3D algorithms

Matrix multiplication: $\forall (i,j) \in n \times n$, $C(i,j) = \Sigma_k A(i,k)B(k,j)$,

Sparsity independent algorithms: assigning grid-points to processors is independent of sparsity structure. - In particular: if C_{ii} is non-zero, who holds it?

- all standard algorithms
 - are sparsity independent

Assumptions:

- Sparsity independent algorithms
- input (and output) are sparse:
- The algorithm is load balanced

1D algorithms

2D algorithms

3D algorithms

Previous Sparse Classical:

$$\Omega\left(\frac{\#FLOPs}{\left(\sqrt{M}\right)^3} \cdot \frac{M}{P}\right) = \Omega\left(\frac{d^2n}{P\sqrt{M}}\right) \qquad \text{No algorithm attain this bound!}$$

[Ballard, et al. SIMAX'11]

New Lower bound for Erdős-Rényi(*n*,*d*) :

$$\Omega\left(\min\left\{\frac{dn}{\sqrt{P}},\frac{d^2n}{P}\right\}\right)$$

[here] Expected (Under some technical assumptions)

No previous algorithm attain these.

Two new algorithms achieving the bounds (Up to a logarithmic factor)

- i. Recursive 3D, based on [Ballard, et al. SPAA'12]
- ii. Iterative 3D, based on[Solomonik & Demmel EuroPar'11]

Ballard, **B.**, Demmel, Grigori, Lipshitz, Schwartz, and Toledo. Communication optimal parallel multiplication of sparse random matrices. In SPAA 2013.

3D Iterative Sparse GEMM

[Dense case: Solomonik and Demmel, 2011]

Optimal replicas: $c = \Theta\left(\frac{p}{d^2}\right)$ (theoretically)

3D Algorithms:

Using extra memory (c replicas) reduces communication volume by a factor of c^{1/2} compared to 2D

Rerformance results (Erdős-Rényi graphs)

Iterative 2D-3D performance results (R-MAT graphs)

All-pairs shortest-paths problem

- <u>Input:</u> Directed graph with "costs" on edges
- Find least-cost paths between all reachable vertex pairs
- Classical algorithm: Floyd-Warshall

```
for k=1:n // the induction sequence
for i = 1:n
for j = 1:n
if(w(i \rightarrow k) + w(k \rightarrow j) < w(i \rightarrow j))
w(i \rightarrow j):= w(i \rightarrow k) + w(k \rightarrow j)
```


 It turns out a previously overlooked recursive version is more parallelizable than the triple nested loop

- 0	5	9	∞	∞	4
∞	0	1	-2	∞	∞
3	∞	0	4	∞	3
∞	∞	5	0	4	∞
∞	∞	-1	∞	0	∞
	∞	∞	∞	7	0

V1 V2 C D A B C D C D

+ is "min", × is "add"

- **A** = **A***; % recursive call
- B = AB; C = CA;
- D = D + CB;
- **D** = **D***; % recursive call
- B = BD; C = DC;
- A = A + BC;

Communication-avoiding APSP on distributed memory

Bandwidth: $W_{\text{bc-2.5D}}(n,p) = O(n^2/\sqrt{cp})$ Latency: $S_{\text{bc-2.5D}}(p) = O(\sqrt{cp}\log^2(p))$ c: number of replicasOptimal for any memory size !

Communication-avoiding APSP on distributed memory

65K vertex dense problem solved in about two minutes

Solomonik, B., and J. Demmel. "Minimizing communication in all-pairs shortest paths", IPDPS. 2013.

Software for communication-avoiding graph kernels and beyond

- Combinatorial BLAS used a static 2D block data distribution
 - Significantly better than 1D in almost all cases
 - Most *communication-avoiding algorithms are 3D*
 - Infrastructure for *recursion in distributed-memory* is needed
 - Support for *automatic switching between dense/sparse formats*
- Combinatorial BLAS used text I/O and non-portable binary
 - Move onto future proof self-describing format such as HDF5
 - Build a community file format on top of HDF5
- Combinatorial BLAS accepts graphs as input
 - Often the graph needs to be constructed from data (G=A^TT)
- Combinatorial BLAS API developed organically
 - Need to contribute to a standard interface

Conclusions

- Parallel graph libraries are crucial for analyzing big data.
- In addition to being high performance and scalable, the library should be flexible and simple to use.
- Linear-algebraic primitives should provide the core library.
- Avoiding communication improves performance and energy.
- KDT + Combinatorial BLAS was an excellent proof of concept.
- A more elegant, simpler, complete system to emerge that:
 - Is developed *concurrently with the Graph BLAS standard*
 - Implements *communication-avoiding algorithms*
 - Interoperates seamlessly with non-linear algebraic pieces such as the native graph systems like GraphLab and graph databases.

Acknowledgments

- Grey Ballard (UCB)
- Jarrod Chapman (JGI)
- Jim Demmel (UC Berkeley)
- John Gilbert (UCSB)
- Evangelos Georganas (UCB)
- Laura Grigori (INRIA)
- Ben Lipshitz (UCB)
- Adam Lugowski (UCSB)
- Steve Reinhardt (Cray)
- Dan Rokhsar (JGI/UCB)

- Lenny Oliker (Berkeley Lab)
- Oded Schwartz (UCB)
- Edgar Solomonik (UCB)
- Veronika Strnadova (UCSB)
- Sivan Toledo (Tel Aviv Univ)
- Dani Ushizima (Berkeley Lab)
- Kathy Yelick (Berkeley Lab/UCB)

This work is funded by:

Questions?

Large-scale bounds dense graph Communication Inherent Betweenness multiplication centrality matrix-matrix poor algebra all attaining algebraic language Floyd-Warshall quantum contraction reachable assigning multiply lower classical distributed Communication-avoiding se setween Find Allows communication-optimal energy less compare SD2 structure operation of reduces cycle data extensive gues paths edges parallel bandwidth detection bottom-up primitives replicas majority search New enable holds bottom-up primitives extraction chemistry shortest-paths Significant saves all-pairs least-cost clustering computations scalable Cij match gap processors Breadth-first independent memory PMAT = Frdos-Renvi gorithms costs reuse subgraph linear Erdos-Renyi particular computation approach APSP