- 2 | <

B T |
STINGER: Multi-threaded Graph
Streaming

Jason Riedy and David Bader

Georgia Institute of Technology

Graph Algorithms Building Blocks (GABB), 19 May 2014

Health care Finding outbreaks, population epidemiology
Social networks Advertising, searching, grouping
3 Intelligence Decisions at scale, regulating algorithms
- Systems biology Understanding interactions, drug design

Power grid Disruptions, conservation

Simulation Discrete events, cracking meshes

» Data analysis runs throughout.
» Many problems can be phrased through graphs.

—

» Any many are changing and dynamic.

[SS o) \
Report on Blackout Is Said To Describe Failure to ReactJ N“‘ ° Ma
Riedy, Bader— STINGER: Building Blocks 19 May 2014 2/24

Georgia

Tech||

Outline

Motivation: Graph Algorithms for Analysis
Graphs and Streaming Data
STING/STINGER Analysis Framework
Building Blocks for Streaming Graph Data
PageRank
Triangle Counting

Agglomerative Communities

Observations

Riedy, Bader— STINGER: Building Blocks 19 May 2014 3/24

General approaches

» High-performance static graph analysis

» Develop techniques that apply to unchanging massive
graphs.

» Provides useful after-the-fact information, starting points.

» Serves many existing applications well: market research,
much bioinformatics, ...

» Needs to be O(|E|).

» High-performance streaming graph analysis

» Focus on the dynamic changes within massive graphs.

» Find trends or new information as they appear.

» Serves upcoming applications: fault or threat detection,
trend analysis, online prediction...

» Can be O(]AE[)? O(Vol(AV))? Less data = faster, efficient

Riedy, Bader— STINGER: Building Blocks 19 May 2014 4/24

Streaming graph data

Data Rates

From www.statisticsbrain. com:
» 58M posts per day on Twitter (671 / sec)
» 1M links shared per 20 minutes on Facebook

Other applications (e.g. network security) need to respond
nearly at line rate, 81k-1.5M pps on gigabit ethernet.

Opportunities

» Do not need to analyze the entire graph.
» Different domains: Throughput & latency
» Expose different levels of concurrency

» Can achieve ridiculous “speed ups.”

Riedy, Bader— STINGER: Building Blocks 19 May 2014 5/24

www.statisticsbrain.com

Streaming Queries

Different kinds of questions

» How are individual graph metrics (e.g. clustering
coefficients) changing?
» What are the patterns in the changes?
» Are there seasonal variations?
» What are responses to events?
» What are temporal anomalies in the graph?

» Do key members in clusters / communities change?
» Are there indicators of event responses before they are

obvious?

Riedy, Bader— STINGER: Building Blocks 19 May 2014 6/24

On to STING...

STING/STINGER Analysis Framework

Riedy, Bader— STINGER: Building Blocks 19 May 2014 7124

STING'’s focus

Control

action prediction

summary

Source Simulation / query > iz

» STING: Spatio-Temporal Interaction Networks and Graphs
» STING manages queries against changing graph data.

» Visualization and control often are application specific.
» ldeal: Maintain many persistent graph analysis kernels.

» One current graph snapshot, kernels keep smaller histories.
» Also (a harder goal), coordinate the kernels’ cooperation.

Riedy, Bader— STINGER: Building Blocks 19 May 2014 8/24

STING: High-level architecture

Templated
JSON B Comn

Parser Comp

Templated
csv
Parser

B Page
STINGER Rank
Server

Templated

Clust.

Parser Coeft.

Random

Shared Memory Mapped STINGER Data Structure

SMM

Results EC

Results

SMM SMM
Results Results

@oepelUl dLIH

SMM
Results

Protocol Buffer Edge Batch over TCP

Edge
Generator

Key Stream Algorithm Monitor Shared
Process Process Process Memory

— Protocol Buffer via TCP. —> Shared Memory Reads

Data flows from left to right. Al stages aligned vertically execute on the data in
parallel. All processes i direct contact with shared memory have write access to
that memory. Execution is synchronized by the server. Streams, algorithms, and
monitors can join or leave the workflow at any time.

Riedy, Bader— STINGER: Building Blocks

Slide credit: Rob McColl and David Ediger

» OpenMP + sufficiently POSIX-ish
» Multiple processes for resilience

19 May 2014

9/24

STING Extensible Representation: Core data structure

edge type index

vertex

. — —
index Source
vertex

r A

N
edge
type

adj. vtx | weight |mod. time |first time

Initial considerations [Bader, et al.]

>
| 4
>
>
| 4

Riedy

Be useful for the entire “large graph” community

Permit good performance: No single structure is optimal for all.
Assume globally addressable memory access and atomic operations

Not a graph database, but supports types, subsets
Large graph = rare conflicts

, Bader— STINGER: Building Blocks

19 May 2014

10/24

Georgia

Tech||

Building Blocks for Streaming Graph Data

Building Blocks for Streaming Graph Data
PageRank
Triangle Counting
Agglomerative Communities

Riedy, Bader— STINGER: Building Blocks 19 May 2014 11/24

Incremental PageRank

| 4

PageRank: Well-understood method for ranking vertices
based on random walks (related to minimizing
conductance).

Equivalent problem, solve (I— aA"D~1)x = (1 — a)v given
initial weights v.
Goal: Use for seed set expansion, sparse v.

State-of-the-art for updating x when the graph represented
by A changes? Re-start iteration with the previous x.

Can do significantly better for low-latency needs.
Compute the change Ax instead of the entire new x.

Riedy, Bader— STINGER: Building Blocks 19 May 2014 12 /24

Incremental PageRank: Iteration

Iterative solver

Step k —» k+1:

Ax*HD) — a(A+ AA)T (D + AD)Y 1 ax®) ¢
a[(A+2A)(D+AD) 1 —ATD 1] x

» Additive part: Non-zero only at changes.
» Operator: Pushes changes outward.

Riedy, Bader— STINGER: Building Blocks 19 May 2014 13/24

Incremental PageRank: Limiting Expansion

Iterative solver

Step k —» k+1:

AKKHD = oA+ DAY (D + AD) L ARE) + aARjheid

al(A+AA)T(D+AD) 1 —ATD]k

» Additive part: Non-zero only at changes.
» Operator: Pushes sufficiently large changes outward.

Riedy, Bader— STINGER: Building Blocks 19 May 2014 14 /24

Georgia
Tech

Incremental PageRank: Test Cases

v

Initial, high-level implementation via sparse matrices in Julia.

» Test graphs from the 10™ DIMACS Implementation Challenge.
» Add uniformly random edges... worst case.

v

Up to 100k in different batch sizes.

» One sequence of edge actions per graph shared across

experiments.

v

Conv. & hold base threshold: 10—12

Graph 14 |E| Avg. Deg. Size (MiB)
caidaRouterLevel 192244 609066 3.17 5.38
coPapersCiteseer 434102 16036720 36.94 124.01

coPapersDBLP 540486 15245729 28.21 118.38
great-britain.osm 7733822 8156517 1.05 91.73
PGPgiantcompo 10680 24316 2.28 0.23

power 4941 6594 1.33 0.07

Riedy, Bader— STINGER: Building Blocks

19 May 2014 15/24

Georgia

Tech

Incremental PageRank: Throughput v. latency

Percent of edge traversals relative to re-started iteration:

1000 100 10

[

ey

P N oA
§ %8

g

53

]

g

Fraction of edges v. restarted PR
232

]
1

GAiiGaIEd5d | | WSO UG WEalb | | dTBGSIa0ede

N
|

o 2500 s000 7500 10000 © 2500 5000 7500 10000 © 2500 5000 7500 10000
“Time"
Graph name |+ |caidaRouterLevel| & coapersCieseer = coPapersDBLP -+ great_britin.osm| 8 |PGPgiantcompo) # power
Held vertex hreshod / 10°-12 | /10000010000 — 1000 — 100

Riedy, Bader— STINGER: Building Blocks 19 May 2014 16/24

Triangle Counting

Current version

» Count all the triangles around each graph vertex.
» Used in clustering coefficients (numerator), etc.
» Up to 130000 graph updates per second on X5570
(Nehalem-EP, 2.93GHz)
» 2000x speed-up over static recomputation
» Main algorithm, for each vertex v:

» Sort its adjacency list.
» For each neighbor w,

» search for w’'s neighbors in the sorted list.
» Could compute diag(A3), more or less...

Riedy, Bader— STINGER: Building Blocks 19 May 2014 17 /24

Triangle Counting: Small Batches

Low-latency case

A\

In generall, diag(A3) is a silly option.
But A3Ax, a BFS, to count around a few vertices...

Brute force (MTAAP10)

» Roughly 4x slower with moderate batches, and
» less than 2x slower with small batches.

Could be reasonable for a quick hack.

v

v

A\

Small changes (low latency) may find more applications of
linear algebra-like primitives.

Riedy, Bader— STINGER: Building Blocks 19 May 2014 18 /24

Community Detection

What do we mean?

» Partition a graph’s vertices
into disjoint communities.

» Locally optimize some metric,
e.g. modularity, conductance N

» Try to capture that vertices are
more similar within one
community than between
communities.

» Modularity: More internal
edges than expected.

Jason’s network via LinkedIn Labs

Riedy, Bader— STINGER: Building Blocks 19 May 2014 19/24

http://inmaps.linkedinlabs.com/share/Jason_Riedy/135243263311536682812471775171414573322

Georgia
) a

Tecl

Parallel Agglomerative Method

» Use a matching to avoid a serializing
queue.
» Simple greedy algorithm.
» Would require smuggling data and
communication in through element
operators...

» Highly scalable, 5.8 x 106 — 7 x 10°
edges/sec, 8x — 16x speed-up on
80-thread E7-8870 (thanks Intel!)

» Extends to dynamic community
maintenance
» Extract vertices from communities,
re-agglomerate
» Matrix triple product-ish

Riedy, Bader— STINGER: Building Blocks 19 May 2014 20/24

Georgia
) a

Tecl

Parallel Agglomerative Method

» Use a matching to avoid a serializing
queue.
» Simple greedy algorithm.
» Would require smuggling data and
communication in through element
operators...

» Highly scalable, 5.8 x 10 - 7 x 10°
edges/sec, 8x — 16x speed-up on
80-thread E7-8870 (thanks Intel!)

» Extends to dynamic community
maintenance

» Extract vertices from communities,
re-agglomerate
» Matrix triple product-ish

Riedy, Bader— STINGER: Building Blocks 19 May 2014 20/24

Georgia
) a

Tecl

Parallel Agglomerative Method

» Use a matching to avoid a serializing
queue.
P » Simple greedy algorithm.
W] » Would require smuggling data and
» communication in through element
A operators...

» Highly scalable, 5.8 x 10 - 7 x 10°
edges/sec, 8x — 16x speed-up on
80-thread E7-8870 (thanks Intel!)

» Extends to dynamic community
maintenance

» Extract vertices from communities,
re-agglomerate
» Matrix triple product-ish

Riedy, Bader— STINGER: Building Blocks 19 May 2014 20/24

Seed Set Expansion

» Given a small number of vertices, and
» find a region of interest around them.

» Start with a subset consisting of the selection.
Evaluate the change in modularity around the current
subset.

Absorb all vertices that...

» may increase modularity by a significant amount, or
» are within the top 10% of changes, or...

Repeat until the set is large enough.
» Step-wise guided expansion doesn'’t fit current primitives.

A\

v

A\

Riedy, Bader— STINGER: Building Blocks 19 May 2014 21/24

Observations

» Throughput / latency trade offs:

» Different levels of parallelism and optimizations

» Larger batches = higher throughput, more collisions

» Small batches = lower latency, more scattered

» Impact optimizations similarly to direction-optimized BFS
» Can build proposed building blocks against STINGER
» Many algorithms are not naturally expressed:

» Matching
» Guided set expansion by changing criteria
» Streaming versions of these...

» Targets for version 27

Riedy, Bader— STINGER: Building Blocks 19 May 2014 22 /24

Georgia

Tech||

STINGER: Where do you get it?

www.cc.gatech.edu/stinger/

Gateway to
J » code,
Ny h lyti
Lo LA » development,

v

documentation,
presentations...

(working on usage and
J development screencasts)

Remember: Still academic code, but
maturing.
== ‘ Users / contributors / questioners:
Georgia Tech, PNNL, CMU, Berkeley,
Intel, Cray, NVIDIA, IBM, Federal
Government, lonic Security, Citi

v

What does it do? How can | use it? How can | help?

v

-

Riedy, Bader— STINGER: Building Blocks 19 May 2014 23/24

http://www.cc.gatech.edu/stinger/

Georgia

Tech||

Acknowledgment of support

Smalhome Pacific Northwest Laboratories P bt

NATIONAL LABORATORY

M‘ﬁiosoft' " @ T @ LexisNexis SONY
NVIDIA.

{intel ANy @::@Sun SIXILINX' rosHisa

microsystems

Riedy, Bader— STINGER: Building Blocks 19 May 2014 24 /24

	Motivation: Graph Algorithms for Analysis
	Graphs and Streaming Data
	STING/STINGER Analysis Framework
	Building Blocks for Streaming Graph Data
	PageRank
	Triangle Counting
	Agglomerative Communities

	Observations
	Appendix

