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Health care Finding outbreaks, population epidemiology
Social networks Advertising, searching, grouping
3 Intelligence Decisions at scale, regulating algorithms
- Systems biology Understanding interactions, drug design

Power grid Disruptions, conservation

Simulation Discrete events, cracking meshes

» Data analysis runs throughout.
» Many problems can be phrased through graphs.

—

» Any many are changing and dynamic.
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General approaches

» High-performance static graph analysis

» Develop techniques that apply to unchanging massive
graphs.

» Provides useful after-the-fact information, starting points.

» Serves many existing applications well: market research,
much bioinformatics, ...

» Needs to be O(|E|).

» High-performance streaming graph analysis

» Focus on the dynamic changes within massive graphs.

» Find trends or new information as they appear.

» Serves upcoming applications: fault or threat detection,
trend analysis, online prediction...

» Can be O(]AE[)? O(Vol(AV))? Less data = faster, efficient
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Streaming graph data

Data Rates

From www.statisticsbrain. com:
» 58M posts per day on Twitter (671 / sec)
» 1M links shared per 20 minutes on Facebook

Other applications (e.g. network security) need to respond
nearly at line rate, 81k-1.5M pps on gigabit ethernet.

Opportunities

» Do not need to analyze the entire graph.
» Different domains: Throughput & latency
» Expose different levels of concurrency

» Can achieve ridiculous “speed ups.”
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www.statisticsbrain.com

Streaming Queries

Different kinds of questions

» How are individual graph metrics (e.g. clustering
coefficients) changing?
» What are the patterns in the changes?
» Are there seasonal variations?
» What are responses to events?
» What are temporal anomalies in the graph?

» Do key members in clusters / communities change?
» Are there indicators of event responses before they are

obvious?
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On to STING...

STING/STINGER Analysis Framework
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STING'’s focus

Control

action prediction

summary

Source Simulation / query > iz

» STING: Spatio-Temporal Interaction Networks and Graphs
» STING manages queries against changing graph data.

» Visualization and control often are application specific.
» ldeal: Maintain many persistent graph analysis kernels.

» One current graph snapshot, kernels keep smaller histories.
» Also (a harder goal), coordinate the kernels’ cooperation.
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STING: High-level architecture
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Protocol Buffer Edge Batch over TCP

Edge
Generator

Key Stream Algorithm Monitor Shared
Process Process Process Memory

— Protocol Buffer via TCP. —> Shared Memory Reads

Data flows from left to right. Al stages aligned vertically execute on the data in
parallel. All processes i direct contact with shared memory have write access to
that memory. Execution is synchronized by the server. Streams, algorithms, and
monitors can join or leave the workflow at any time.
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» OpenMP + sufficiently POSIX-ish
» Multiple processes for resilience
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STING Extensible Representation: Core data structure

edge type index

vertex
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Initial considerations [Bader, et al.]
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Riedy

Be useful for the entire “large graph” community

Permit good performance: No single structure is optimal for all.
Assume globally addressable memory access and atomic operations

Not a graph database, but supports types, subsets
Large graph = rare conflicts
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Building Blocks for Streaming Graph Data

Building Blocks for Streaming Graph Data
PageRank
Triangle Counting
Agglomerative Communities
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Incremental PageRank

| 4

PageRank: Well-understood method for ranking vertices
based on random walks (related to minimizing
conductance).

Equivalent problem, solve (I— aA"D~1)x = (1 — a)v given
initial weights v.
Goal: Use for seed set expansion, sparse v.

State-of-the-art for updating x when the graph represented
by A changes? Re-start iteration with the previous x.

Can do significantly better for low-latency needs.
Compute the change Ax instead of the entire new x.
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Incremental PageRank: Iteration

Iterative solver

Step k —» k+1:

Ax*HD) — a(A+ AA)T (D + AD)Y 1 ax®) ¢
a[(A+2A)(D+AD) 1 —ATD 1] x

» Additive part: Non-zero only at changes.
» Operator: Pushes changes outward.
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Incremental PageRank: Limiting Expansion

Iterative solver

Step k —» k+1:

AKKHD = oA+ DAY (D + AD) L ARE) + aARjheid

al(A+AA)T(D+AD) 1 —ATD ]k

» Additive part: Non-zero only at changes.
» Operator: Pushes sufficiently large changes outward.
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Incremental PageRank: Test Cases

v

Initial, high-level implementation via sparse matrices in Julia.

» Test graphs from the 10™ DIMACS Implementation Challenge.
» Add uniformly random edges... worst case.

v

Up to 100k in different batch sizes.

» One sequence of edge actions per graph shared across

experiments.

v

Conv. & hold base threshold: 10—12

Graph 14 |E| Avg. Deg. Size (MiB)
caidaRouterLevel 192244 609066 3.17 5.38
coPapersCiteseer 434102 16036720 36.94 124.01

coPapersDBLP 540486 15245729 28.21 118.38
great-britain.osm 7733822 8156517 1.05 91.73
PGPgiantcompo 10680 24316 2.28 0.23

power 4941 6594 1.33 0.07
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Incremental PageRank: Throughput v. latency

Percent of edge traversals relative to re-started iteration:
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Triangle Counting

Current version

» Count all the triangles around each graph vertex.
» Used in clustering coefficients (numerator), etc.
» Up to 130000 graph updates per second on X5570
(Nehalem-EP, 2.93GHz)
» 2000x speed-up over static recomputation
» Main algorithm, for each vertex v:

» Sort its adjacency list.
» For each neighbor w,

» search for w’'s neighbors in the sorted list.
» Could compute diag(A3), more or less...
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Triangle Counting: Small Batches

Low-latency case

A\

In generall, diag(A3) is a silly option.
But A3Ax, a BFS, to count around a few vertices...

Brute force (MTAAP10)

» Roughly 4x slower with moderate batches, and
» less than 2x slower with small batches.

Could be reasonable for a quick hack.

v

v

A\

Small changes (low latency) may find more applications of
linear algebra-like primitives.
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Community Detection

What do we mean?

» Partition a graph’s vertices
into disjoint communities.

» Locally optimize some metric,
e.g. modularity, conductance N

» Try to capture that vertices are
more similar within one
community than between
communities.

» Modularity: More internal
edges than expected.

Jason’s network via LinkedIn Labs
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http://inmaps.linkedinlabs.com/share/Jason_Riedy/135243263311536682812471775171414573322
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Parallel Agglomerative Method

» Use a matching to avoid a serializing
queue.
» Simple greedy algorithm.
» Would require smuggling data and
communication in through element
operators...

» Highly scalable, 5.8 x 106 — 7 x 10°
edges/sec, 8x — 16x speed-up on
80-thread E7-8870 (thanks Intel!)

» Extends to dynamic community
maintenance
» Extract vertices from communities,
re-agglomerate
» Matrix triple product-ish
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Parallel Agglomerative Method
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Seed Set Expansion

» Given a small number of vertices, and
» find a region of interest around them.

» Start with a subset consisting of the selection.
Evaluate the change in modularity around the current
subset.

Absorb all vertices that...

» may increase modularity by a significant amount, or
» are within the top 10% of changes, or...

Repeat until the set is large enough.
» Step-wise guided expansion doesn'’t fit current primitives.

A\

v

A\
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Observations

» Throughput / latency trade offs:

» Different levels of parallelism and optimizations

» Larger batches = higher throughput, more collisions

» Small batches = lower latency, more scattered

» Impact optimizations similarly to direction-optimized BFS
» Can build proposed building blocks against STINGER
» Many algorithms are not naturally expressed:

» Matching
» Guided set expansion by changing criteria
» Streaming versions of these...

» Targets for version 27
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STINGER: Where do you get it?

www.cc.gatech.edu/stinger/

Gateway to
J » code,
Ny h lyti
Lo LA » development,

v

documentation,
presentations...

(working on usage and
J development screencasts)

Remember: Still academic code, but
maturing.
== ‘ Users / contributors / questioners:
Georgia Tech, PNNL, CMU, Berkeley,
Intel, Cray, NVIDIA, IBM, Federal
Government, lonic Security, Citi

v

What does it do? How can | use it? How can | help?

v

-
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