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GABB’14: Graph Algorithms Building 

Blocks workshop 
http://www.graphanalysis.org/workshop2014.html 

Workshop chair:  
• Tim Mattson, Intel Corp  

 
Steering committee:  
• Jeremy Kepner, MIT Lincoln  Labs 
• John Gilbert, UC Santa Barbara 
• David A. Bader, Georgia Institute of Technology 
• Aydın Buluç, LBNL 



Goals for the day 

• Graph Algorithm Building Blocks (GABB): 

– A series of workshops exploring the fundamental building blocks of 

graph algorithms. 

– GABB’14 is composed of invited talks. 

– Speakers selected to put a wide range of viewpoints “on the table”. 

– GABB’XY (XY>14) will be “contributed papers” workshops. 

– Stay tuned for CFPs.   

 

• We want GABB to be a real workshop … not a bunch of 

boring talks. 

– Please interact with the speakers. 

– Ask lots of questions, challenge assumptions, and help move the 

debate forward. 
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Schedule 
09:00 - 09:30 Tim Mattson / Intel Welcome, Goals, and a bit of Math 
09:30 - 10:00 John Gilbert / UCSB Examples and applications of graph algorithms 

in the language of linear algebra 
10:00-10:30 Break 
10:30 - 11:00 Joseph Gonzalez / UC Berkeley GraphX and Linear Algebra 
11:00 - 11:30 David Mizell  and Steven P. 

Reinhardt/ YarcData 
Effective Graph-algorithmic Building Blocks for 
Graph Databases 

11:30 - 12:00 Vijay Gadepally and Jeremy 
Kepner /MIT 

Adjacency Matrices, Incidence Matrices, and 
Database Schemas 

12:00 - 01:30 Lunch   
01:30 - 02:00 Dylan Stark / Sandia Nat Lab. Graph Exploration: to Linear Algebra (and 

Beyond?)  
02:00 - 02:30 Jason Riedy/ GaTech Multi-threaded graph streaming 
02:30 - 03:00 Saeed Maleki, G. Carl Evans, 

and David Padua/ UIUC 
Linear algebra operator extensions for graph 
algorithms 

03:00 - 03:30 Break   
03:30 - 04:00 Aydin Buluç, et. al. 

/ LLBL and UC Berkeley 
Communication-Avoiding Linear-Algebraic 
Primitives for Graph Analytics 

04:00 - 04:30 Andrew Lumsdaine 
/Indiana University 

Standardization: Lessons Learned 

04:30 - 05:00 Panel What’s next for the “BLAS of Graph 
Algorithms”?      
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GraphBLAS: Motivation and Mathematical 

Foundations 
http://istc-bigdata.org/GraphBlas/ 

Tim Mattson 

Intel Labs 

timothy.g.mattson@intel.com 

… and the “GraphBLAS gang”: 

David Bader (GATech), Aydın Buluç (LBNL),  

John Gilbert (UCSB), Joseph Gonzalez (UCB),  

Jeremy Kepner (MIT Lincoln Labs) 
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Outline 

• Introduction: Graphs and Linear Algebra  

 

• The Draft GraphBLAS primitives 

 

• Conclusion/Summary 



Motivation: History of BLAS 

• BLAS:  The Basic Linear Algebra subroutines 
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BLAS 1 𝑦 ← 𝛼𝑥 + 𝑦 Lawson, Hanson, Kincaid and Krogh, 

1979 

LINPACK 

BLAS 2 𝑦 ← 𝛼𝐴𝑥 + 𝛽𝑦 Dongarra, Du Croz, Hammarling and 

Hanson, 1988 
LINPACK on vector 

machines 

BLAS 3 𝐶 ← 𝛼𝐴𝐵 + 𝛽𝐶 Dongarra, Du Croz, Hammarling and 

Hanson, 1990 
LAPACK on cache 

based machines 

• The BLAS supported a separation of concerns: 

– HW/SW optimization experts tuned the BLAS for specific platforms. 

– Linear algebra experts built software on top of the BLAS .. high performance “for free”. 

 

• It is difficult to overestimate the impact of the BLAS … they revolutionized 

the practice of computational linear algebra. 



Can we standardize “the BLAS” of graph algorithms 

• No, it is not reasonable to define a common set of graph 

algorithm building blocks: 

– Matching Algorithms to the hardware platform results in too much 

diversity to support  a common set of “graph BLAS”. 

– There is little agreement on how to represent graph algorithms and data 

structures. 

– Early standardization can inhibit innovation by locking in a sub-optimum 

status quo 
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• Yes, it is reasonable to define a common set of 

graph algorithm building blocks … for Graphs 

in the language of Linear algebra. 

– Representing graphs in the language of linear 

algebra is a mature field …  the algorithms, high 

level interfaces, and implementations vary, but the 

core primitives are well established . 
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These two diagrams are equivalent 
representations of a graph. 

A = the adjacency matrix … Elements nonzero when vertices are adjacent 

Graphs in the Language 

of Linear Algebra 
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Multiple-source breadth-first search 
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Multiple-source breadth-first search 

• Sparse array representation => space efficient 

• Sparse matrix-matrix multiplication => work efficient 

• Three possible levels of parallelism:  searches, vertices, edges 

X AT ATX 
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Multiplication of sparse matrices captures Breadth first 
search and serves as the foundation of all algorithms based 

on BFS 

Multiplication of sparse matrices captures Breadth first 
search and serves as the foundation of all algorithms based 

on BFS 



Moving beyond BFS with Algebraic Semirings 
• A semiring generalizes the operations of traditional linear 

algebra by replacing (+,*) with binary operations (Op1, Op2) 

– Op1 and Op2 have identity elements sometimes called 0 and 1  

– Op1 and Op2 are associative.  

– Op1 is commutative,   Op2 distributes over op1 from both left and right 

– The Op1 identify is an Op2 annihilator. 



• A semiring generalizes the operations of traditional linear 

algebra by replacing (+,*) with binary operations (Op1, Op2) 

– Op1 and Op2 have identity elements sometimes called 0 and 1  

– Op1 and Op2 are associative.  

– Op1 is commutative,   Op2 distributes over op1 from both left and right 

– The Op1 identify is an Op2 annihilator. 
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(R, +, *, 0, 1) 

Real Field 

Standard operations in linear algebra 

({0,1}, |, &, 0, 1) 

Boolean Semiring 

Graph traversal algorithms  

(R U {∞},min, +, ∞, 0) 
Tropical semiring 

Shortest path algorithms 

(R U {∞}, min, x, ∞, 1) Selecting a subgraph or contracting 

nodes to form a quotient graph.  

Notation:   (R,      +,        *,        0,       1) 
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Moving beyond BFS with Algebraic Semirings 



• A semiring generalizes the operations of traditional linear 

algebra by replacing (+,*) with binary operations (Op1, Op2) 

– Op1 and Op2 have identity elements sometimes called 0 and 1  

– Op1 and Op2 are associative.  

– Op1 is commutative,   Op2 distributes over op1 from both left and right 

– The Op1 identify is an Op2 annihilator. 
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(R, +, *, 0, 1) 

Real Field 

Standard operations in linear algebra 

({0,1}, |, &, 0, 1) 

Boolean Semiring 

Graph traversal algorithms  

(R U {∞},min, +, ∞, 0) 
Tropical semiring 

Shortest path algorithms 

(R U {∞}, min, *, ∞, 1) Selecting a subgraph or contracting 

nodes to form a quotient graph.  

Moving beyond BFS with Algebraic Semirings 
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The case for graph primitives  based on  
sparse matrices 

Many irregular applications contain  
coarse-grained parallelism that can be exploited  

by abstractions at the proper level. 

Traditional graph 
computations 

Data driven, 
unpredictable communication. 

Irregular and unstructured,  
poor locality of reference 

Fine grained data accesses, 
dominated by latency 
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The case for graph primitives  based on  
sparse matrices 

Many irregular applications contain  
coarse-grained parallelism that can be exploited  

by abstractions at the proper level. 

Traditional graph 
computations 

Graphs in the language of 
linear algebra 

Data driven, 
unpredictable communication. 

Fixed communication patterns 

Irregular and unstructured,  
poor locality of reference 

Operations on matrix blocks 
exploit memory hierarchy 

Fine grained data accesses, 
dominated by latency 

Coarse grained parallelism, 
bandwidth limited 



GraphBLAS launched at HPEC’13 …  

co-authors of the GraphBLAS position paper 

Tim Mattson  Intel Corporation David Bader  Georgia Tech 

Jon Berry  Sandia National 

Laboratory  

Aydın Buluç  Lawrence Berkeley 

National Laboratory 

Jack Dongarra  University of  

Tennessee 

Christos Faloutsos  (Carnegie Melon 

University 

John Feo  Pacific Northwest 

National Laboratory  

John Gilbert  UC Santa Barbara  

Joseph Gonzalez  UC Berkeley Bruce Hendrickson  (Sandia National 

Laboratory 

Jeremy Kepner  MIT Charles Leiserson  MIT 

 Andrew Lumsdaine  Indiana University David Padua  (University of Illinois 

at Urbana-

Champaign 

Stephen Poole  Oak Ridge Steve Reinhardt  Cray Corporation 

Mike Stonebraker  MIT  Steve Wallach  Convey Corp. 

 Andrew Yoo  Lawrence Livermore 

National Laboratory 
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Outline 

• Introduction: Graphs and Linear Algebra  

 

• The Draft GraphBLAS primitives 

 

• Conclusion/Summary 
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Sparse matrix-sparse 
matrix  multiplication 

x 

The Combinatorial BLAS implements these, and more, 
on arbitrary semirings, e.g. (, +), (and, or), (+, min) 
 

Sparse matrix-sparse 
vector multiplication 

 

 

 

 

          

x 

.* 

Linear-algebraic primitives 

Element-wise operations Sparse matrix indexing 



Draft GraphBLAS functions* 

Function Parameters Returns Math Notation 

SpGEMM - sparse matrices A, B and C 
- unary functors (op) 

sparse matrix C += op(A) * op(B) 

SpM{Sp}V 
(Sp: sparse) 

- sparse matrix A  
- sparse/dense vector x 

sparse/dense 
vector 

y = A * x 

SpEWiseX - sparse matrices or vectors 
- binary functor and predicate 

in place or sparse 
matrix/vector 

C = A .* B 

Reduce - sparse matrix A and functors dense vector y = sum(A, op) 

SpRef - sparse matrix A 
- index vectors p and q 

sparse matrix B = A(p,q) 

SpAsgn - sparse matrices A and B 
- index vectors p and q 

none A(p,q) = B 
 

Scale - sparse matrix A 
- dense matrix B or vector X 

none ∀ A(i,j)!=0:  A(i,j) *=B(i,j) 
+ related forms for X 

Apply - any matrix or vector X 
- unary functor (op) 

none op(X) 

*based on the Combinatorail BLAS from  Buluç and Gilbert 



Matrix times Matrix over semiring 

Inputs 

 matrix A: MxN (sparse or dense) 

 matrix B: NxL   (sparse or dense) 

Optional Inputs 

 matrix C: MxL (sparse or dense) 

 scalar “add” function  

 scalar “multiply” function  

 transpose flags for A, B, C 

Outputs 

 matrix C: MxL (sparse or dense) 

Specific cases and function names: 

SpGEMM: sparse matrix times sparse matrix 

SpMSpV: sparse matrix times sparse vector 

SpMV:  Sparse matrix times dense vector 

SpMM: Sparse matrix times dense matrix 

Notes 

is the set of scalars, user-specified 

defaults to IEEE double float

 defaults to floating-point + 

 defaults to floating-point * 

Implements   C = A . B 
 

 for j = 1 : N 

    C(i,k) = C(i,k)  (A(i,j)  B(j,k)) 
 

  If input C is omitted, implements 

     C = A . B 
 

  Transpose flags specify operation  

      on AT, BT, and/or CT instead 

 



Sparse Matrix Indexing & Assignment 

Inputs 

 matrix A: MxN  (sparse) 

 matrix B: |p|x|q|   (sparse)  

 vector p  {1, …, M} 

 vector q  {1, …, N} 

Optional Inputs 

 none 

Outputs 

 matrix A: MxN  (sparse) 

 matrix B: |p|x|q|   (sparse)  

Specific cases and function names 

SpRef: get sub-matrix 

SpAsgn: assign to sub-matrix 

 

 

Notes 

is the set of scalars, user-specified 

defaults to IEEE double float 

|p| = length of vector p 

|q| = length of vector q 

SpRef Implements  B = A(p,q) 
 

 for i = 1 : |p| 

   for j = 1 : |q| 

     B(i,j) = A(p(i),q(j)) 

 

SpAsgn Implements  A(p,q) = B 
 

 for i = 1 : |p| 

   for j = 1 : |q| 

     A(p(i),q(j)) = B(i,j) 



Element-Wise Operations 

Inputs 

 matrix A: MxN (sparse or dense) 

 matrix B: MxN  (sparse or dense) 

 

Optional Inputs 

 matrix C: MxN (sparse or dense) 

 scalar “add” function  

 scalar “multiply” function  

Outputs 

 matrix C: MxN (sparse or dense) 

Specific cases and function names: 

SpEWiseX: matrix elementwise 

M=1 or N=1: vector elementwise 

Scale: when A or B is a scalar 

 

Notes 

is the set of scalars, user-specified 

defaults to IEEE double float

 defaults to floating-point + 

 defaults to floating-point * 

Implements   C = A  B 
 

for i = 1 : M 

  for j = 1 : N 

    C(i,j) = C(i,j)  (A(i,j)  B(i,j)) 
 

  If input C is omitted, implements 

     C = A  B 
 

   

 



Apply/Update 

Inputs 

 matrix A: MxN (sparse or dense) 

 

Optional Inputs 

 matrix C: MxN (sparse or dense) 

 scalar “add” function  

 unary function f() 

 

Outputs 

 matrix C: MxN (sparse or dense) 

Specific cases and function names: 

Apply: matrix apply 

M=1 or N=1: vector apply 

 

 

Notes 

is the set of scalars, user-specified 

defaults to IEEE double float

 defaults to floating-point + 

 

Implements   C = f(A) 
 

for i = 1 : M 

  for j = 1 : N 

    if A(i,j) ≠ 0 

      C(i,j) = C(i,j)  f(A(i,j)) 
 

  If input C is omitted, implements 

     C = f(A) 
 

   



Matrix/Vector Reductions 

Inputs 

 matrix A: MxN (sparse or dense) 

Optional Inputs 

 vector c: M or N (sparse or 

dense) 

 scalar “add” function  

 dimension d: 1 or 2 

Outputs 

 matrix c: MxN (sparse or dense) 

Specific cases and function names: 

Reduce (d = 1): reduce matrix to row vector 

Reduce (d = 2): reduce matrix to col vector 

 

 

Notes 

is the set of scalars, user-specified 

defaults to IEEE double float

 defaults to floating-point + 

d defaults to 2 

Implements   c(i) = jA(i,j) 
 

for i = 1 : M 

  for j = 1 : N 

    c(i) = c(i)  A(i,j) 
 

  If input C is omitted, implements 

     c(i) = jA(i,j) 
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Outline 

• Introduction: Graphs and Linear Algebra  

 

• The Draft GraphBLAS primitives 

 

• Conclusion/Summary 
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Conclusion/Summary 

• The time is right to define a Standard to support 
“Graphs in the Language of Linear Algebra”. 

 

• Agreeing on a standard could have a transformative 
impact on Graph Algorithms research … much as the 
original BLAS did on computational Linear Algebra. 

 

•  Starting from the CombBLAS (Buluç and Gilbert), 
we have produced an initial Draft set of Primitives. 

 

• Join with us to turn this into a final spec 

– Follow our work at:   http://istc-bigdata.org/GraphBlas/ 

– Send email to timothy.g.mattson@intel.com if you want to 
be added to the GraphBLAS Google Group and join the effort 

mailto:timothy.g.mattson@intel.com


Bonus Slides 



Sparse array attribute survey 

Function Graph 
BLAS 

Comb 
BLAS 

Sparse 
BLAS 

STINGER D4M SciDB  Tensor 
Toolbox 

Julia GraphLab 

Version 1.3.0 2006 r633 2.5 13.9 2.5 0.2.0 2.2 

Language any C++ F,C,C++ C Matlab C++ Matlab, C++ Julia C++ 

Dimension 2 1, 2 2 1, 2, 3 2 1 to 100 2, 3 1,2 2 

Index Base 0 or 1 0 0 or 1 0 1 ±N 1 1 0 

Index Type uint64 uint64 int int64 double, string int64 double any int uint64 

Value Type ? user single, 
double, 
complex  

int64 logical, double, 
complex, string 

user logical, double, 
complex 

user user 

Null 0 user 0 0 ≤0 null 0 0 int64(-1) 

Sparse           
Format 

? tuple undef linked 
list 

dense, csc, 
tuple 

RLE dense, csc csc csr/csc 

Parallel ? 2D 
block 

none block arbitrary N-D block, 
cyclic 
w/overlap 

none N-D 
block, 
cyclic 
w/overlap 

Edge based 
w/ vertex 
split 

+ operations 
* operations 

user? 
user? 

user 
user 

+ 
* 

user 
user 

+,*,max,min,
, 

user 
user 

+ 
* 

user 
user 

user 
user 



Sparse Matrix Products 
(General Form) 

Generalizes: 
• SpGEMM 
• SpMM 
(special case K=1) 
• SpMV  
• SpMSpV 

op(A) : NxM  (sparse matrix) 

op(B) : MxK  (sparse or dense) 

     C : NxK  (sparse or dense) 

     : base type (int, float, double,…) 

  op() : transpose or no-op 

     * : f().g() matrix multiply operation 

    f() : binary function (e.g., addition) 

    g() : binary function (e.g., multiply) 

C = op(A) * op(B)  

Example, let op() be a no-op, then C(i,k) can 

be computed as follows: 

 

for j=1:M 

C(i,k) = f( C(i,k) ,  g(A(i,j),B(j,k)) ) 



Sparse Matrix Products 
(Triple Store & BFS View) 

Extends associative arrays to 2D and mixed data types  

     A('alice ','bob ') = 'cited ' 

     or A('alice ','bob ') = 47.0 

Key innovation: 2D is 1-to-1 with triple store 
 ('alice ','bob ','cited ') 

     or ('alice ','bob ',47.0) 

x ATx AT 

 

alice 

bob 

alice 

carl 

bob 

carl 
cited 

cited 



Sparse Matrix Products 
(Functional Interpretation) 

E: The edges of the graph 
V: The vertices of the graph 
B= X<V> is the set of active vertices  
A=G<E,V> represents the graph G 
C=X’<V> is the new set of active vertices 
 

C = op(A) * op(B)  

prod(G<E,V>,X<V>,g(),f())  X’<V> 

g: E,V  V 

f: V,V  V 

X V ,X ' V ÍV

 
 

Examples for X<V>: 
• Breadth-first search frontier 
• The candidate set in Luby’s 

maximal independent set alg. 
• The active vertices (w/ values 

not converged) in PageRank 



Sparse Matrix Indexing & Assignment 

spref:     B = A(p,q)
spasgn:  A(p,q)= B

A functional interpretation of SpAsgn on Graphs: 

subscript(G E,V ,G ' E ',V , I )®G '' EÈE ',V

G ''i, j =
G 'i, j  if (i, j)Î I

Gi, j     otherwise

A Î Sn´m

B Î S length( p)´length(q)

A& B are sparse
p& q are integer vectors
p Í {1, 2,...,n}
q Í {1, 2,...,m}

I  : vertex pairs

I Î {1,...,n}2



Element-Wise Operations 

Matrix: C = A .Ä  B

Vector: z = x .Ä  y

i, jC ' =

id(A) ×Ä Bi, j    if Ai, j = 0,Bi, j ¹ 0

Ai, j ×
Ä id(B)   if Ai, j ¹ 0,Bi, j = 0

Ai, j ×
Ä Bi, j       if Ai, j ¹ 0,Bi, j ¹ 0

• All operands are sparse 
• Zeros are not stored 

Ci, j =
C 'i, j  if C 'i, j ¹ id(C)

0           otherwise

• Identities id(A),id(B),id(C) defined 
per operation, not operand 

• sparsity is defined on operand 



Apply/Update 

B = apply(A, f )

A functional interpretation of Apply: 

map(G E,V , f )®G ' E ',V

f (i, j,Gi, j )®G 'i, j

A,B Î Sn´m

sparsity(A) = sparsity(B)
f  is a unary operation

f (ai, j ) =
f (ai, j )   if ai, j ¹ 0

no-op  otherwise

ì

í
ï

îï



Matrix/Vector Reductions 

v = reduce(A,dim)

Graph in/out degrees 

A Î Sn´m

dim = 0(row),1(column)
v is dense

v Î
Sn  if dim=0

Sm  if dim=1

ì
í
ï

îï
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