
1 1

GABB’14: Graph Algorithms Building

Blocks workshop
http://www.graphanalysis.org/workshop2014.html

Workshop chair:
• Tim Mattson, Intel Corp

Steering committee:
• Jeremy Kepner, MIT Lincoln Labs
• John Gilbert, UC Santa Barbara
• David A. Bader, Georgia Institute of Technology
• Aydın Buluç, LBNL

Goals for the day

• Graph Algorithm Building Blocks (GABB):

– A series of workshops exploring the fundamental building blocks of

graph algorithms.

– GABB’14 is composed of invited talks.

– Speakers selected to put a wide range of viewpoints “on the table”.

– GABB’XY (XY>14) will be “contributed papers” workshops.

– Stay tuned for CFPs.

• We want GABB to be a real workshop … not a bunch of

boring talks.

– Please interact with the speakers.

– Ask lots of questions, challenge assumptions, and help move the

debate forward.

2

Schedule
09:00 - 09:30 Tim Mattson / Intel Welcome, Goals, and a bit of Math
09:30 - 10:00 John Gilbert / UCSB Examples and applications of graph algorithms

in the language of linear algebra
10:00-10:30 Break
10:30 - 11:00 Joseph Gonzalez / UC Berkeley GraphX and Linear Algebra
11:00 - 11:30 David Mizell and Steven P.

Reinhardt/ YarcData
Effective Graph-algorithmic Building Blocks for
Graph Databases

11:30 - 12:00 Vijay Gadepally and Jeremy
Kepner /MIT

Adjacency Matrices, Incidence Matrices, and
Database Schemas

12:00 - 01:30 Lunch
01:30 - 02:00 Dylan Stark / Sandia Nat Lab. Graph Exploration: to Linear Algebra (and

Beyond?)
02:00 - 02:30 Jason Riedy/ GaTech Multi-threaded graph streaming
02:30 - 03:00 Saeed Maleki, G. Carl Evans,

and David Padua/ UIUC
Linear algebra operator extensions for graph
algorithms

03:00 - 03:30 Break
03:30 - 04:00 Aydin Buluç, et. al.

/ LLBL and UC Berkeley
Communication-Avoiding Linear-Algebraic
Primitives for Graph Analytics

04:00 - 04:30 Andrew Lumsdaine
/Indiana University

Standardization: Lessons Learned

04:30 - 05:00 Panel What’s next for the “BLAS of Graph
Algorithms”?

4 4

GraphBLAS: Motivation and Mathematical

Foundations
http://istc-bigdata.org/GraphBlas/

Tim Mattson

Intel Labs

timothy.g.mattson@intel.com

… and the “GraphBLAS gang”:

David Bader (GATech), Aydın Buluç (LBNL),

John Gilbert (UCSB), Joseph Gonzalez (UCB),

Jeremy Kepner (MIT Lincoln Labs)

5 5

Outline

• Introduction: Graphs and Linear Algebra

• The Draft GraphBLAS primitives

• Conclusion/Summary

Motivation: History of BLAS

• BLAS: The Basic Linear Algebra subroutines

6

BLAS 1 𝑦 ← 𝛼𝑥 + 𝑦 Lawson, Hanson, Kincaid and Krogh,

1979

LINPACK

BLAS 2 𝑦 ← 𝛼𝐴𝑥 + 𝛽𝑦 Dongarra, Du Croz, Hammarling and

Hanson, 1988
LINPACK on vector

machines

BLAS 3 𝐶 ← 𝛼𝐴𝐵 + 𝛽𝐶 Dongarra, Du Croz, Hammarling and

Hanson, 1990
LAPACK on cache

based machines

• The BLAS supported a separation of concerns:

– HW/SW optimization experts tuned the BLAS for specific platforms.

– Linear algebra experts built software on top of the BLAS .. high performance “for free”.

• It is difficult to overestimate the impact of the BLAS … they revolutionized

the practice of computational linear algebra.

Can we standardize “the BLAS” of graph algorithms

• No, it is not reasonable to define a common set of graph

algorithm building blocks:

– Matching Algorithms to the hardware platform results in too much

diversity to support a common set of “graph BLAS”.

– There is little agreement on how to represent graph algorithms and data

structures.

– Early standardization can inhibit innovation by locking in a sub-optimum

status quo

7

• Yes, it is reasonable to define a common set of

graph algorithm building blocks … for Graphs

in the language of Linear algebra.

– Representing graphs in the language of linear

algebra is a mature field … the algorithms, high

level interfaces, and implementations vary, but the

core primitives are well established .

1

2

3

4
7

6

5

AT

1

7

7 1
from

to

These two diagrams are equivalent
representations of a graph.

A = the adjacency matrix … Elements nonzero when vertices are adjacent

Graphs in the Language

of Linear Algebra

9

Multiple-source breadth-first search

X

1 2

3

4 7

6

5

AT

10

Multiple-source breadth-first search

• Sparse array representation => space efficient

• Sparse matrix-matrix multiplication => work efficient

• Three possible levels of parallelism: searches, vertices, edges

X AT ATX



1 2

3

4 7

6

5

Multiplication of sparse matrices captures Breadth first
search and serves as the foundation of all algorithms based

on BFS

Multiplication of sparse matrices captures Breadth first
search and serves as the foundation of all algorithms based

on BFS

Moving beyond BFS with Algebraic Semirings
• A semiring generalizes the operations of traditional linear

algebra by replacing (+,*) with binary operations (Op1, Op2)

– Op1 and Op2 have identity elements sometimes called 0 and 1

– Op1 and Op2 are associative.

– Op1 is commutative, Op2 distributes over op1 from both left and right

– The Op1 identify is an Op2 annihilator.

• A semiring generalizes the operations of traditional linear

algebra by replacing (+,*) with binary operations (Op1, Op2)

– Op1 and Op2 have identity elements sometimes called 0 and 1

– Op1 and Op2 are associative.

– Op1 is commutative, Op2 distributes over op1 from both left and right

– The Op1 identify is an Op2 annihilator.

12

(R, +, *, 0, 1)

Real Field

Standard operations in linear algebra

({0,1}, |, &, 0, 1)

Boolean Semiring

Graph traversal algorithms

(R U {∞},min, +, ∞, 0)
Tropical semiring

Shortest path algorithms

(R U {∞}, min, x, ∞, 1) Selecting a subgraph or contracting

nodes to form a quotient graph.

Notation: (R, +, *, 0, 1)

S
ca

la
r

ty
p
e

O
p
1

O
p
2

Id
e
n
ti
ty

 O
p
1

Id
e
n
ti
ty

 O
p
2

Moving beyond BFS with Algebraic Semirings

• A semiring generalizes the operations of traditional linear

algebra by replacing (+,*) with binary operations (Op1, Op2)

– Op1 and Op2 have identity elements sometimes called 0 and 1

– Op1 and Op2 are associative.

– Op1 is commutative, Op2 distributes over op1 from both left and right

– The Op1 identify is an Op2 annihilator.

13

(R, +, *, 0, 1)

Real Field

Standard operations in linear algebra

({0,1}, |, &, 0, 1)

Boolean Semiring

Graph traversal algorithms

(R U {∞},min, +, ∞, 0)
Tropical semiring

Shortest path algorithms

(R U {∞}, min, *, ∞, 1) Selecting a subgraph or contracting

nodes to form a quotient graph.

Moving beyond BFS with Algebraic Semirings

14

The case for graph primitives based on
sparse matrices

Many irregular applications contain
coarse-grained parallelism that can be exploited

by abstractions at the proper level.

Traditional graph
computations

Data driven,
unpredictable communication.

Irregular and unstructured,
poor locality of reference

Fine grained data accesses,
dominated by latency

15

The case for graph primitives based on
sparse matrices

Many irregular applications contain
coarse-grained parallelism that can be exploited

by abstractions at the proper level.

Traditional graph
computations

Graphs in the language of
linear algebra

Data driven,
unpredictable communication.

Fixed communication patterns

Irregular and unstructured,
poor locality of reference

Operations on matrix blocks
exploit memory hierarchy

Fine grained data accesses,
dominated by latency

Coarse grained parallelism,
bandwidth limited

GraphBLAS launched at HPEC’13 …

co-authors of the GraphBLAS position paper

Tim Mattson Intel Corporation David Bader Georgia Tech

Jon Berry Sandia National

Laboratory

Aydın Buluç Lawrence Berkeley

National Laboratory

Jack Dongarra University of

Tennessee

Christos Faloutsos (Carnegie Melon

University

John Feo Pacific Northwest

National Laboratory

John Gilbert UC Santa Barbara

Joseph Gonzalez UC Berkeley Bruce Hendrickson (Sandia National

Laboratory

Jeremy Kepner MIT Charles Leiserson MIT

 Andrew Lumsdaine Indiana University David Padua (University of Illinois

at Urbana-

Champaign

Stephen Poole Oak Ridge Steve Reinhardt Cray Corporation

Mike Stonebraker MIT Steve Wallach Convey Corp.

 Andrew Yoo Lawrence Livermore

National Laboratory

16

17 17

Outline

• Introduction: Graphs and Linear Algebra

• The Draft GraphBLAS primitives

• Conclusion/Summary

18

Sparse matrix-sparse
matrix multiplication

x

The Combinatorial BLAS implements these, and more,
on arbitrary semirings, e.g. (, +), (and, or), (+, min)

Sparse matrix-sparse
vector multiplication

x

.*

Linear-algebraic primitives

Element-wise operations Sparse matrix indexing

Draft GraphBLAS functions*

Function Parameters Returns Math Notation

SpGEMM - sparse matrices A, B and C
- unary functors (op)

sparse matrix C += op(A) * op(B)

SpM{Sp}V
(Sp: sparse)

- sparse matrix A
- sparse/dense vector x

sparse/dense
vector

y = A * x

SpEWiseX - sparse matrices or vectors
- binary functor and predicate

in place or sparse
matrix/vector

C = A .* B

Reduce - sparse matrix A and functors dense vector y = sum(A, op)

SpRef - sparse matrix A
- index vectors p and q

sparse matrix B = A(p,q)

SpAsgn - sparse matrices A and B
- index vectors p and q

none A(p,q) = B

Scale - sparse matrix A
- dense matrix B or vector X

none ∀ A(i,j)!=0: A(i,j) *=B(i,j)
+ related forms for X

Apply - any matrix or vector X
- unary functor (op)

none op(X)

*based on the Combinatorail BLAS from Buluç and Gilbert

Matrix times Matrix over semiring

Inputs

 matrix A: MxN (sparse or dense)

 matrix B: NxL (sparse or dense)

Optional Inputs

 matrix C: MxL (sparse or dense)

 scalar “add” function 

 scalar “multiply” function 

 transpose flags for A, B, C

Outputs

 matrix C: MxL (sparse or dense)

Specific cases and function names:

SpGEMM: sparse matrix times sparse matrix

SpMSpV: sparse matrix times sparse vector

SpMV: Sparse matrix times dense vector

SpMM: Sparse matrix times dense matrix

Notes

is the set of scalars, user-specified

defaults to IEEE double float

 defaults to floating-point +

 defaults to floating-point *

Implements C = A . B

 for j = 1 : N

 C(i,k) = C(i,k)  (A(i,j)  B(j,k))

 If input C is omitted, implements

 C = A . B

 Transpose flags specify operation

 on AT, BT, and/or CT instead

Sparse Matrix Indexing & Assignment

Inputs

 matrix A: MxN (sparse)

 matrix B: |p|x|q| (sparse)

 vector p  {1, …, M}

 vector q  {1, …, N}

Optional Inputs

 none

Outputs

 matrix A: MxN (sparse)

 matrix B: |p|x|q| (sparse)

Specific cases and function names

SpRef: get sub-matrix

SpAsgn: assign to sub-matrix

Notes

is the set of scalars, user-specified

defaults to IEEE double float

|p| = length of vector p

|q| = length of vector q

SpRef Implements B = A(p,q)

 for i = 1 : |p|

 for j = 1 : |q|

 B(i,j) = A(p(i),q(j))

SpAsgn Implements A(p,q) = B

 for i = 1 : |p|

 for j = 1 : |q|

 A(p(i),q(j)) = B(i,j)

Element-Wise Operations

Inputs

 matrix A: MxN (sparse or dense)

 matrix B: MxN (sparse or dense)

Optional Inputs

 matrix C: MxN (sparse or dense)

 scalar “add” function 

 scalar “multiply” function 

Outputs

 matrix C: MxN (sparse or dense)

Specific cases and function names:

SpEWiseX: matrix elementwise

M=1 or N=1: vector elementwise

Scale: when A or B is a scalar

Notes

is the set of scalars, user-specified

defaults to IEEE double float

 defaults to floating-point +

 defaults to floating-point *

Implements C = A  B

for i = 1 : M

 for j = 1 : N

 C(i,j) = C(i,j)  (A(i,j)  B(i,j))

 If input C is omitted, implements

 C = A  B

Apply/Update

Inputs

 matrix A: MxN (sparse or dense)

Optional Inputs

 matrix C: MxN (sparse or dense)

 scalar “add” function 

 unary function f()

Outputs

 matrix C: MxN (sparse or dense)

Specific cases and function names:

Apply: matrix apply

M=1 or N=1: vector apply

Notes

is the set of scalars, user-specified

defaults to IEEE double float

 defaults to floating-point +

Implements C = f(A)

for i = 1 : M

 for j = 1 : N

 if A(i,j) ≠ 0

 C(i,j) = C(i,j)  f(A(i,j))

 If input C is omitted, implements

 C = f(A)

Matrix/Vector Reductions

Inputs

 matrix A: MxN (sparse or dense)

Optional Inputs

 vector c: M or N (sparse or

dense)

 scalar “add” function 

 dimension d: 1 or 2

Outputs

 matrix c: MxN (sparse or dense)

Specific cases and function names:

Reduce (d = 1): reduce matrix to row vector

Reduce (d = 2): reduce matrix to col vector

Notes

is the set of scalars, user-specified

defaults to IEEE double float

 defaults to floating-point +

d defaults to 2

Implements c(i) = jA(i,j)

for i = 1 : M

 for j = 1 : N

 c(i) = c(i)  A(i,j)

 If input C is omitted, implements

 c(i) = jA(i,j)

25 25

Outline

• Introduction: Graphs and Linear Algebra

• The Draft GraphBLAS primitives

• Conclusion/Summary

26 26

Conclusion/Summary

• The time is right to define a Standard to support
“Graphs in the Language of Linear Algebra”.

• Agreeing on a standard could have a transformative
impact on Graph Algorithms research … much as the
original BLAS did on computational Linear Algebra.

• Starting from the CombBLAS (Buluç and Gilbert),
we have produced an initial Draft set of Primitives.

• Join with us to turn this into a final spec

– Follow our work at: http://istc-bigdata.org/GraphBlas/

– Send email to timothy.g.mattson@intel.com if you want to
be added to the GraphBLAS Google Group and join the effort

mailto:timothy.g.mattson@intel.com

Bonus Slides

Sparse array attribute survey

Function Graph
BLAS

Comb
BLAS

Sparse
BLAS

STINGER D4M SciDB Tensor
Toolbox

Julia GraphLab

Version 1.3.0 2006 r633 2.5 13.9 2.5 0.2.0 2.2

Language any C++ F,C,C++ C Matlab C++ Matlab, C++ Julia C++

Dimension 2 1, 2 2 1, 2, 3 2 1 to 100 2, 3 1,2 2

Index Base 0 or 1 0 0 or 1 0 1 ±N 1 1 0

Index Type uint64 uint64 int int64 double, string int64 double any int uint64

Value Type ? user single,
double,
complex

int64 logical, double,
complex, string

user logical, double,
complex

user user

Null 0 user 0 0 ≤0 null 0 0 int64(-1)

Sparse
Format

? tuple undef linked
list

dense, csc,
tuple

RLE dense, csc csc csr/csc

Parallel ? 2D
block

none block arbitrary N-D block,
cyclic
w/overlap

none N-D
block,
cyclic
w/overlap

Edge based
w/ vertex
split

+ operations
* operations

user?
user?

user
user

+
*

user
user

+,*,max,min,
,

user
user

+
*

user
user

user
user

Sparse Matrix Products
(General Form)

Generalizes:
• SpGEMM
• SpMM
(special case K=1)
• SpMV
• SpMSpV

op(A) : NxM (sparse matrix)

op(B) : MxK (sparse or dense)

 C : NxK (sparse or dense)

 : base type (int, float, double,…)

 op() : transpose or no-op

 * : f().g() matrix multiply operation

 f() : binary function (e.g., addition)

 g() : binary function (e.g., multiply)

C = op(A) * op(B)

Example, let op() be a no-op, then C(i,k) can

be computed as follows:

for j=1:M

C(i,k) = f(C(i,k) , g(A(i,j),B(j,k)))

Sparse Matrix Products
(Triple Store & BFS View)

Extends associative arrays to 2D and mixed data types

 A('alice ','bob ') = 'cited '

 or A('alice ','bob ') = 47.0

Key innovation: 2D is 1-to-1 with triple store
 ('alice ','bob ','cited ')

 or ('alice ','bob ',47.0)

x ATx AT



alice

bob

alice

carl

bob

carl
cited

cited

Sparse Matrix Products
(Functional Interpretation)

E: The edges of the graph
V: The vertices of the graph
B= X<V> is the set of active vertices
A=G<E,V> represents the graph G
C=X’<V> is the new set of active vertices

C = op(A) * op(B)

prod(G<E,V>,X<V>,g(),f())  X’<V>

g: E,V  V

f: V,V  V

X V ,X ' V ÍV

Examples for X<V>:
• Breadth-first search frontier
• The candidate set in Luby’s

maximal independent set alg.
• The active vertices (w/ values

not converged) in PageRank

Sparse Matrix Indexing & Assignment

spref: B = A(p,q)
spasgn: A(p,q)= B

A functional interpretation of SpAsgn on Graphs:

subscript(G E,V ,G ' E ',V , I)®G '' EÈE ',V

G ''i, j =
G 'i, j if (i, j)Î I

Gi, j otherwise

A Î Sn´m

B Î S length(p)´length(q)

A& B are sparse
p& q are integer vectors
p Í {1, 2,...,n}
q Í {1, 2,...,m}

I : vertex pairs

I Î {1,...,n}2

Element-Wise Operations

Matrix: C = A .Ä B

Vector: z = x .Ä y

i, jC ' =

id(A) ×Ä Bi, j if Ai, j = 0,Bi, j ¹ 0

Ai, j ×
Ä id(B) if Ai, j ¹ 0,Bi, j = 0

Ai, j ×
Ä Bi, j if Ai, j ¹ 0,Bi, j ¹ 0

• All operands are sparse
• Zeros are not stored

Ci, j =
C 'i, j if C 'i, j ¹ id(C)

0 otherwise

• Identities id(A),id(B),id(C) defined
per operation, not operand

• sparsity is defined on operand

Apply/Update

B = apply(A, f)

A functional interpretation of Apply:

map(G E,V , f)®G ' E ',V

f (i, j,Gi, j)®G 'i, j

A,B Î Sn´m

sparsity(A) = sparsity(B)
f is a unary operation

f (ai, j) =
f (ai, j) if ai, j ¹ 0

no-op otherwise

ì

í
ï

îï

Matrix/Vector Reductions

v = reduce(A,dim)

Graph in/out degrees

A Î Sn´m

dim = 0(row),1(column)
v is dense

v Î
Sn if dim=0

Sm if dim=1

ì
í
ï

îï

References

• Graph Algorithms in the Language of Linear Algebra,

Edited by J. Kepner and J. Gilbert, SIAM, 2011

• The Combinatorial BLAS: Design, Implementation and

Applications, A. Buluc and J. Gilbert
http://www.cs.ucsb.edu/research/tech_reports/reports/2010-18.pdf

• Standards for Graph Algorithm Primitives, Proceedings of the

IEEE High Performance Extreme Computing Conference 2013,

T. G. Mattson, D. Bader, J. Berry, A. Buluc, J. Dongarra, C.

Jaloutsos, J. Feo, J. Gilbert, J. Gonzalez, B. Hendrickson, J.

Kepner, C. Leiserson, A. Lumsdaine, D. Padua, S. Poole, S.

Reinhardt, M. Stonebraker, S. Wallach,and A. Yoo.
http://www.netlib.org/utk/people/JackDongarra/PAPERS/GraphPrimitives-HPEC.pdf

36

