PageRank Pipeline Benchmark: Proposal for a Holistic System Benchmark for Big-Data Platforms

Patrick Dreher^{1,4}, Chansup Byun², Chris Hill³, Vijay Gadepally,^{1,2} Bradley C. Kuszmaul¹, Jeremy Kepner^{1,2}

¹MIT Computer Science & AI Laboratory; ²MIT Lincoln Laboratory Supercomputing Center; ³MIT Department of Earth, Atmospheric and Planetary Sciences; ⁴Department of Computer Science, North Carolina State University

Graph Algorithms Building Blocks Workshop (GABB 2016) 30th IEEE International Parallel & Distributed Processing Symposium Chicago, IL May 2016

> Massachusetts Institute of Technology

Outline

- Growth of Big Data and the Value of Information
- Big Data Attributes
- Benchmarking Big Data Systems
- Benchmark Shortcomings and Ambiguities
- Development of a Simple Big Data Benchmark
- Results
- Summary Next Steps

Growth of Big Data and the Value of Information

- Processing/analysis of data is an essential aspect of many domain/subject matter areas
- Data itself is witnessing large increases in
 - Volume amount of data
 - Velocity rate at which data is being collected
 - Variety/types characteristics and properties of the data
 - Variability complex time dependent changes among volume, variety and variability
- Recognized that valuable information is contained in the data
- To access that information need to develop
 - hardware architectures
 - software environments
- Must validate these big data systems with reliable benchmarks

Common Architecture for Connecting Diverse Data and Users

GABB-2016-4

Plir

High Performance Data Analysis Attributes

Workload Analysis Bottlenecks

GABB-2016- 6

Goal: Develop Benchmark Performance That Correlates with Application Performance

- HPC community benchmarks have
 - Long tradition of developing various methodologies for creating rigorous benchmarks for hardware architectures and software environments
 - Emphasize performance and scalability
- Develop similar rigorous methodologies for creating data intensive benchmark(s) that
 - Test both the hardware architecture and software systems
 - Amenable to implementation in diverse environments
 - Reflect realistic workflows
 - Incorporate kernels emphasizing reads, writes, sorts and shuffles
 - Fully measure the substantial extract-transform-load costs of data movement prior to focusing on higher-order benchmark kernels

14116

Select a Benchmark Appropriate to Measure Big Data Application Performance

- Build a big data benchmark from among a choice of four types of benchmark categories
 - Goal-oriented (Graph500 Sort ^a)
 - Algorithm-oriented (NAS ^b)
 - Code-oriented (Top500^c, HiBench^d)
 - Standards-oriented (HPC Challenge ^e)
- Selected algorithm-oriented benchmark category
 - Allows maximum flexibility to test total system implementation
 - Allows re-implementation in diverse environments
 - Can benchmark both hardware and software

- <u>° http://www.top500.org/project/</u>
- ^d https://www.ibm.com/support/knowledgecenter/SSGSMK 7.1.1/mapreduce integration/map reduce hibench.dita
- <u>e http://icl.cs.utk.edu/hpcc/</u>

GABB-2016-8

^a http://www.graph500.org/

b https://www.nas.nasa.gov/Software/NPB/

PageRank Pipeline Algorithm

- PageRank selected because of algorithm's inherent simplicity and generality
 - Builds on existing prior scalable benchmarks (Graph500, Sort, and PageRank)
 - Well defined mathematically and can be implemented in any programming environment
 - Provides rigorous definition of both the input and the output for each kernel
 - Emulates data operations not solely governed by the CPU speed in the hardware platform
 - Quantitatively compare a wide range of present day and future systems because it is scalable in both problem size and hardware
- Constructs a data pipeline flow that
 - Creates a holistic benchmark with multiple integrated kernels
 - Implements ordered set of kernels with reads, writes, sorts and shuffles with process characteristics and similarities to big data applications
 - Kernels can be run together or independently
 - Reflects characteristics many data analytics workloads
 - Can be used to build a whole-system benchmark focused toward measuring performance of emerging Big-Data architectures

GABB-2016-9

14116

PageRank Pipeline Benchmark

- Construct a pipeline sequence of four benchmark kernels based on the PageRank algorithm that can mimic the full workload required to perform PageRank on a random graph
 - Kernel 0

generate graph edges (Graph 500* generator) and writes output to storage

– Kernel 1

Read files from Kernel 0, sort edges by start vertex, write to non-volatile storage

- Kernel 2

Read files from Kernel 1, construct adjacency matrix Compute in-degree and eliminate high and low degree nodes Normalize each row by total number of edges in row Weight the sparse matrix values

- Kernel 3

From output of Kernel 2 perform 20 iterations of PageRank on normalized adjacency matrix (sparse matrix vector multiply)

* D. Bader, K. Madduri, J. Gilbert, V. Shah, J.y Kepner, T. Meuse, and A. Krishnamurthy, "Designing Scalable Synthetic Compact Applications for Benchmarking High Productivity Computing Systems," CT Watch, Vol 2, Number 4A, November, 2006.

GABB-2016-10

Language	Source Lines of Code
C++	494
Python	162
Python w/Pandas	162
MATLAB	102
Octave	102
Julia	162

Ð	~10 lines of math
	Easy to implement

 References (listed below) for implementation in many popular languages *

Intel Xeon E5-2650 (2 GHz) (16 cores) with 64 Gbytes of memory and InfiniBand and 10 GigE interconnects

- * The source code listing for the PageRank Pipeline Benchmark in each of the languages (C++, Julia, MATLAB, Python and Octave) is located here https://github.com/vijaygadepally/PageRankBenchmark/tree/master/code
 - There is a README.txt with information how to run the benchmark that is located here https://github.com/vijaygadepally/PageRankBenchmark/blob/master/README.txt

GABB-2016-11

PHIE

Measured Problem Size

- There are 2 inputs to the PageRank Pipeline Benchmark Algorithm
 - Scale factor S that determines maximum number of vertices
 - Edges per vertex factor k

•	Maximum number of vertices N = 2 ^s	Scale	Max Vertices	Max Edges	~Memory
•	Maximum number of edges = kN	16	65K	1 M	25MB
•	The scale and vertex factors determine the overall size of the	17	131K	2M	50MB
	graph	18	262K	4M	100MB
•	The speed of the sort ordering varies depending on the matrix size	19	524K	8M	201MB
•	Scale sizes chosen sufficiently large to limit any L3 cache	20	1M	16M	402MB
	advantage for in-memory	21	2M	33M	805MB
	computations	22	4M	67M	1.6GB

Kernel 0: Generate Graph

GABB-2016-13

Kernel 1: Sort Edges

GABB-2016-14

Kernel 2: Filter Vertices

GABB-2016-15

Kernel 3: PageRank

GABB-2016-16

14115

Summary and Next Steps

- PageRank is useful for benchmarking big data workloads in a variety of hardware architectures and software environments
- Allows benchmarks to be measured with variations in platform configurations that include
 - Use of local disks versus remote storage
 - Various network interconnects among servers
 - Different cache sizes in the server
- For each type of platform configuration, various sizes of adjacency matrices can be constructed and sorting speeds measured for each type of hardware and software configuration using the PageRank algorithm
- Next Steps
 - Develop full math specification
 - Serial and parallel reference implementations

Questions *

* Corresponding author dreher@mit.edu

GABB-2016-18