Jaccard Coefficients as a Potential Graph Benchmark

Peter M. Kogge McCourtney Prof. of CSE Univ. of Notre Dame IBM Fellow (retired)

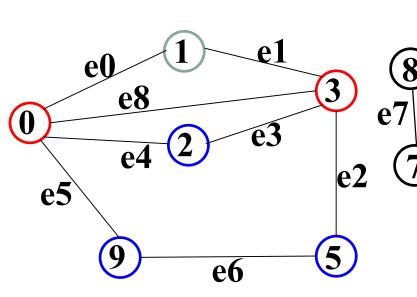
Outline

- Motivation
- Jaccard Coefficients
- A MapReduce Baseline
- Variations
- A Possible Heuristic
- Suggested Benchmarks
- Key Questions

GABB: May 23, 2016

Graph 500

- Start with a root, find reachable vertices
- Simplifications: only 1 kind of edge, no weights
- Performance metric: TEPS: Traversed Edges/sec



				Vertices		Bytes
	Level	Scale	Size	(Billion)	TB	/Vertex
	10	26	Тоу	0.1	0.02	281.8048
	11	29	Mini	0.5	0.14	281.3952
	12	32	Small	4.3	1.1	281.472
	13	36	Medium	68.7	17.6	281.4752
)	14	39	Large	549.8	141	281.475
	15	42	Huge	4398.0	1,126	281.475
					Average	281.5162

Scale = log2(# vertices)

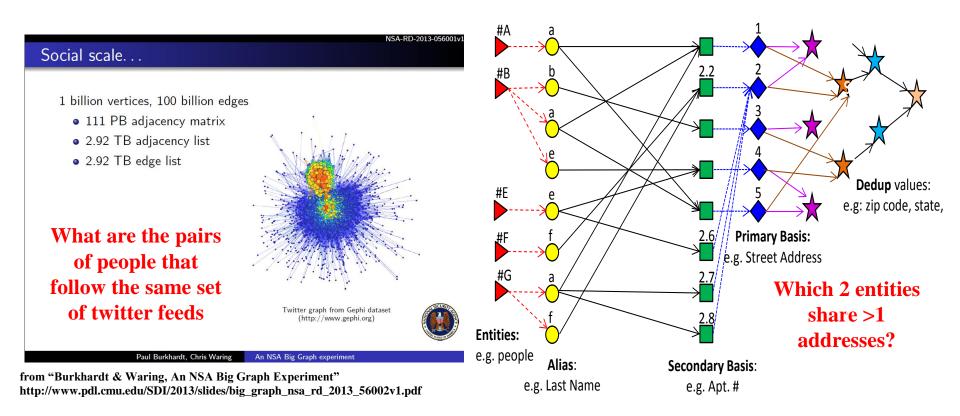
Starting at 1: 1, 0, 3, 2, 9, 5

Limitations of BFS as a Benchmark

Has provided rich set of new algorithms & implementations, BUT:

- Complexity only O(E)
 E = # edges
- Only a batch algorithm
 - Must investigate virtually entire static graph
- No natural incremental variant
- Little non-academic applicability
 - Commercial apps much more focused on limited neighborhoods

Big Graph Relationship Problems



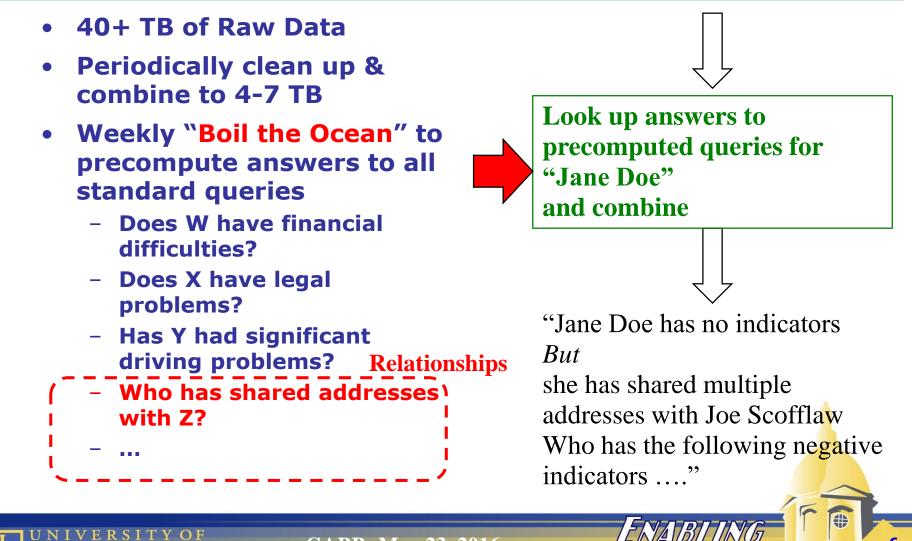
- Tough Problem: Find vertex *pairs* that "share some common property"
- Related graph problem: computing "Jaccard coefficients"

'RE DAME

Commercial version: "Non-obvious Relationship Problems" (NORA)

Sample Real World Problem

Auto Insurance Co: "Tell me about giving auto policy to Jane Doe" in < 0.1sec



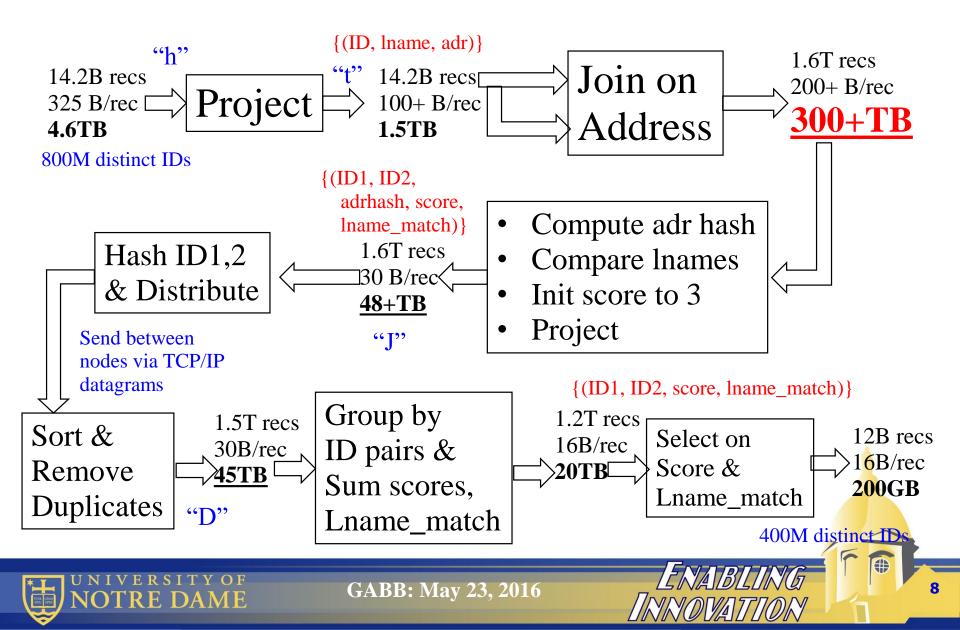
GABB: May 23, 2016

RE

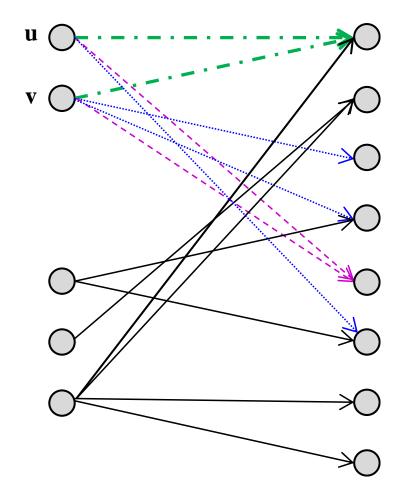
A 2012 Relationship

- Given: 14.2 billion records from
 - 800 million entities (North American people, businesses)
 - 100 million *addresses*
- Goal: given entity, find all other entities that
 - Share at least 2 addresses in common
 - Or have one address in common and last name that is "close"
- Matching last names requires processing to check for typos ("Levenshtein distance")
- Above one of dozens or relationships

2012 Processing Flow



Jaccard Coefficient (u,v)



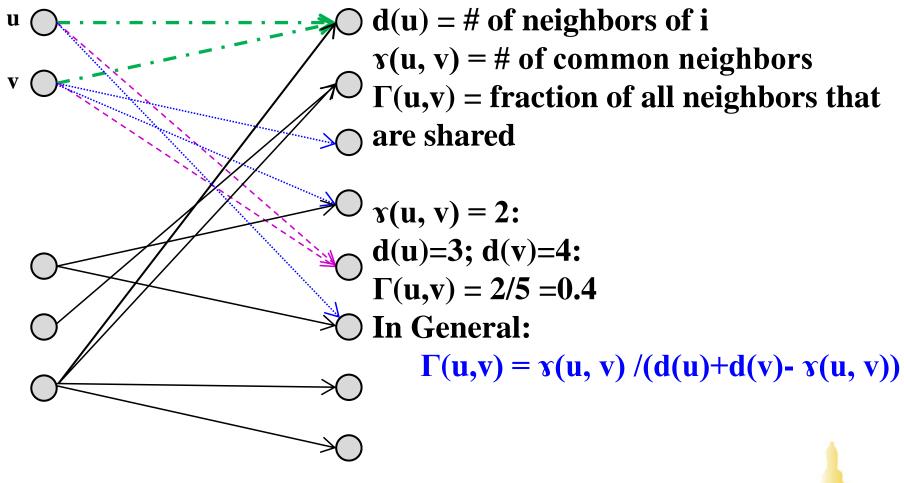
N(u) = set of neighbors of u

 $\Gamma(u,v) =$ fraction of neighbors of u and v that are in common

 $\Gamma(\mathbf{u},\mathbf{v}) = |\mathbf{N}(\mathbf{u}) \cap \mathbf{N}(\mathbf{v})| / (\mathbf{N}(\mathbf{u}) \cup \mathbf{N}(\mathbf{v}))$

Green and Purple lead to common neighbors Blue lead to non-common neighbors

Jaccard Coefficient Γ(u, v)



Green and Purple lead to common neighbors Blue lead to non-common neighbors

RE

DAME

Computing a Single y

- γ(u,v) = # of common neighbors
- Do not need to "visit" neighbors, only enumerate them
- Algorithm requires comparing 2 lists of lengths d(u) & d(v)

- Let d = max(d(u), d(v))

- If lists are sorted, then O(d)
- If lists not sorted, then O(d*log(d))
 - Clever hash algorithms may reduce to almost O(d)

GABB: May 23, 2016

#

Computing all ys

- Apply prior single γ to all pairs
 - $O(V^2d)$ to $O(V^2d*log(d))$
 - Factor of 2 reduction if only do (u,v) where i<j
- Avoid computing all clearly 0 terms
 - For each u, explore each w, (u,w) an edge
 - Compute $\gamma(u,v)$ for each v where (v,w) an edge & u < v
 - O(V*d³) to O(V*d⁴)
- Backwards: compute γs incrementally
 - Group edges so for each w we have $\{x|(x,w)\}$
 - For each x & y in this set, increment $\gamma(x,y)$
 - O(Vd²): Avoid O(V²) initialization by dynamic creation & initialization
- Sparse Matrix Equivalency: A = adjacency matrix
 - $\gamma = AA^{T}; O(nnz(A))$

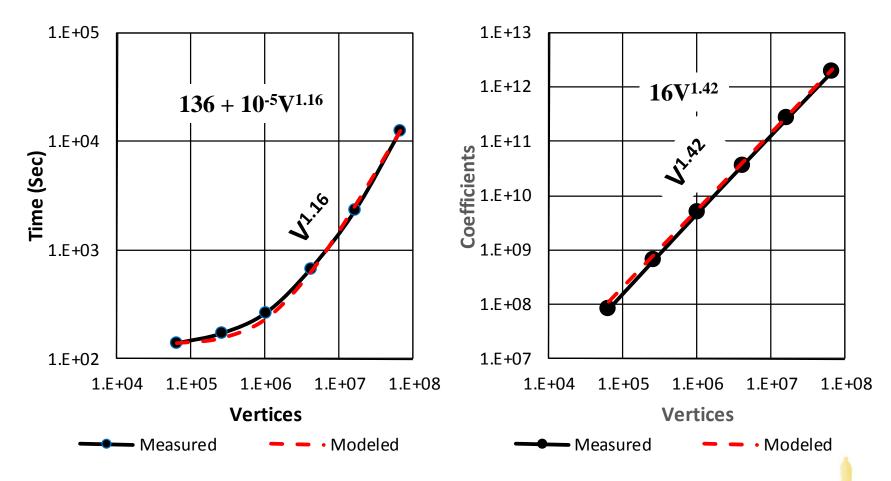
GABB: May 23, 2016

#

Jaccard via MapReduce

- 1 MapReduce step: 3 phases
 - Map some function over all data to (key,value) stream
 - Group pairs by key
 - Reduce each group
- Two reported Jaccard implementations
 - 3-steps with V = 1 million edges on 50 node cluster
 - 5-steps with V = 64 million vertices & 1 billion edges
 - Burkhardt "Asking Hard Graph Questions," Beyond Watson Workshop, Feb. 2014.
 - RMAT matrices, average d(i) = 16
 - 1000 node system, each with 12 cores & 64GB

Measurements & Trends



JACS (Jaccard Coefficients / Sec) = 1.6E6*V^{0.26}

GABB: May 23, 2016

E

Relevant Batch Variations

- Consider graphs with 2 vertex classes
 - A = set of "people", B = set of "addresses"
 - Edges from A to B is person a "resided at" address b
 - $-\gamma(a,b) = #$ of common addresses between a and b
- Real world: for |A| = 8E8, |B| = 1E8,
 |y| = 1.2E12 = |A|^{1.35}
- Variations:
 - >2 classes of vertices
 - Exclude paths thru high in-degree neighbors
 - Weight paths on basis of properties (e.g. same last name)
 - Add threshold

Dynamic Variations

- Many applications with dynamic graphs
 Vertices, edges added/deleted dynamically
- Question: which γs change with edge addition or deletion
 - Perhaps just those that cross threshold, in either direction

Other Variations

- Don't compute/store all possibly O(V²) γs, But store just statistics of set of γs for each vertex
 - Number of non-zero, largest, average, etc.
 - Reduces storage to O(V)
 - Serve as starting point for more complex queries
- Expand "neighbors" beyond "1 hop"
 - Real commercial applications at "1.5" hops

A Possible Heuristic

- Goal: constant time elimination of γs that are zero of less than some threshold
- Build bit vector for each vertex that hashes vertex ids into bits
 - Bit i =1 if one of more neighbors fall into set I
- Estimate γ(u,v) by ANDing u & v's bit vectors
 - If results are 0, then $\gamma = 0$
- Can also estimate upper bound on γ(u,v)
 - Simple function of # of 1s in bit vectors
- If benchmark uses a threshold, this estimate can prevent computation when bound < threshold
- Based on ideas from SpGEMM package

Suggested Benchmarks

- Simple batch: compute all non-zeros
 - Perhaps use same RMAT as for BFS
 - Performance Metric JACS
- Multi-class benchmark
 - One metric: time to compute all γs as above
 - Optionally append Jaccard statistics as properties to each vertex of a class
- Real-time event detection
 - Start with precomputed $\boldsymbol{\gamma}$ statistics
 - Input stream of additions/deletions
 - Check for changes in γs
 - Performance metric: change throughput

Key Questions for More Precise Benchmark Definitions

- Formal definition of batch and incremental
- Where do non-zeros go? File, properties, ...
- Tie data sets to real applications
- Explore real-world distribution of γs and Γs to understand growth rates better
- Build in options such as thresholds
- Develop complexity models, esp. parallel
- Verify correct solutions
- Develop reference implementations

#

Acknowledgements

• Funded in part by the Univ. of Notre Dame, Notre Dame, IN, USA

GABB: May 23, 2016

#