Jaccard Coefficients
as a
Potential Graph Benchmark

Peter M. Kogge
McCourtney Prof. of CSE
Univ. of Notre Dame
IBM Fellow (retired)

E UNIVERSITY OF

) NOTRE DAME

Outline

e Motivation

e Jaccard Coefficients

e A MapReduce Baseline
e Variations

e A Possible Heuristic

e Suggested Benchmarks
e Key Questions

UNIVERSITY OF

NOTRE DAME CARE I iﬁ@%ﬁi@ﬁ

e Start with a root, find reachable vertices

Graph 500

e Simplifications: only 1 kind of edge, no weights

e Performance metric: TEPS: Traversed Edges/sec

E UNIVERSITY OF

1) NOTRE DAME

Vertices Bytes
Level Scale Size (Billion) TB /Vertex

10 26 Toy 0.1 0.02 281.8048
11 29 Mini 0.5 0.14 [281.3952
12 32 Small 4.3 1.1 281.472
13 36 Medium 68.7 17.6 | 281.4752
14 39 Large 549.8 141 281.475
15 42 Huge 4398.0 1,126 | 281.475

Average | 281.5162

Scale = log2(# vertices)

Limitations of BFS
as a Benchmark

Has provided rich set of new algorithms &
implementations, BUT:

e Complexity only O(E)
- E = # edges
e Only a batch algorithm

— Must investigate virtually entire static graph

e No natural incremental variant

e Little non-academic applicability

— Commercial apps much more focused on limited
neighborhoods

E UNIVERSITY OF

'5) NOTRE DAME

Big Graph Relationship Problems

NSA-RD-2013-056001v.
Social scale. .. '
#B

1 billion vertices, 100 billion edges W
@ 111 PB adjacency matrix k -
@ 2.92 TB adjacency list . f
@ 2.92 TB edge list

Dedup values:

’ ______ * e.g: zip code, state,

Primary Basis:

What are the pairs /)
e g. Street Address

of people that i i
follow the same set R ' > Which 2 entities
of twitter feeds Tl il AR share >1
=7 Entities: addresses?
eg.people . Secondary Basis

from “Burkhardt & Waring, An NSA Big Graph Experiment”

http://www.pdl.cmu.edu/SD1/2013/slides/big_graph_nsa_rd_2013_56002v1.pdf e.g. Last Name e.g Apt.#

e Tough Problem: Find vertex pairs that “share some common property”
e Related graph problem: computing “Jaccard coefficients”
e Commercial version: "Non-obvious Relationship Problems” (NORA)

E UNIVERSITY OF

NOTRE DAME

Sample Real World Problem

Auto Insurance Co: “Tell me about giving auto policy to Jane Doe” in < (.1sec

e 40+ TB of Raw Data @

2

e Periodically clean up &
combine to 4-7 TB

e Weekly "Boil the Ocean” to
precompute answers to all
standard queries

- Does W have financial -
difficulties?

- Does X have legal iL
problems?

- Has Y had significant
driving problems? Relationships BUt

Look up answers to
precomputed queries for
“Jane Doe”

and combine

“Jane Doe has no indicators

[~ ""Who has shared addresses she has shared multiple

| with Z2? : addresses with Joe Scofflaw

L e : Who has the following negative
N e e ———— - —— / indicators”

UNIVERSITY OF

1) NOTRE DAME

A 2012 Relationship

e Given: 14.2 billion records from

— 800 million entities (North American people, businesses)
— 100 million addresses

e Goal: given entity, find all other entities that
— Share at least 2 addresses in common

— Or have one address in common and last name that is
“close”

e Matching last names requires processing to
check for typos ("Levenshtein distance”)

e Above one of dozens or relationships

E UNIVERSITY OF

5)NOTRE DAME

2012 Processing Flow

b {(ID, Iname, adr)} L6T recs
14.2B recs : “t” 14.2Brecs— JOIN ON 200+ B/rec
325 Blrec 100+ Blrec | >
4.6TB —1Project = 1518 L ——xy Address 300+T1B

800M distinct IDs
{(ID1, ID2,

adrhash, score,

Iname_match)} |« Compute adr hash
Hash 1D1,2 16T reCS: Compare Inames :
& Distribute Cz'ng,BT/rBeC * Initscoreto 3

Send between “J” * PrOJeCt

nodes via TCP/IP
J0 datagrams {(1D1, 1D2, score, Iname_match)}

15T recs | Group by 1.2T recs
Sort & 30Birec, | 1D pairs & 16B/rec | Select on 12B recs
Remove [—ausTRC —\20TB—} Score & [—>16B/rec
. —— 7| Sum scores, Lname match | 200GB
Duplicates | «py» _
LLhame_match

400M di}tin
— o (e
"T.J]UNIVERSITY OF » r]«: —_—
8

5 NOTRE DAME i DNNOYATHON,

Jaccard Coefficient r(u, v)

N(u) = set of neighbors of u

I'(u,v) = fraction of neighbors of u
and v that are in common

I'(u,v) = [N(u) N N(V)[/(N(u) U N)|

Green and Purple lead to common neighbors
Blue lead to non-common neighbors

- UNIVERSITY OF " B */‘//T’BZ /
) NOTRE DAME " " NN

oy,

Jaccard Coefficient r(u, v)

UQk:-=-=-=-=---=-50 d(u) =# of neighbors of i
‘{ ’’’’’’ ¥(u, v) = # of common neighbors
Jeta ~ I(u) = fraction of all neighbors that

s ¥v(u, v) =2:
\: NN d (u) =3 : d (V) =4-
gO I'(uv)=2/5=0.4

Green and Purple lead to common neighbors

Blue lead to non-common neighbors
F. ﬁ
o an
T JUNIVERSITY OF s A / rr o
NOTRE DAME : Tl INNOW/

Computing a Single y

e y(u,v) = # of common neighbors

e Do not need to “visit” neighbors, only
enumerate them

e Algorithm requires comparing 2 lists of
lengths d(u) & d(v)
- Let d = max(d(u), d(v))

o If lists are sorted, then O(d)
e If lists not sorted, then O(d*log(d))

— Clever hash algorithms may reduce to almost O(d)

E UNIVERSITY OF

5)NOTRE DAME

Computing all ys

e Apply prior single y to all pairs
- 0O(V2d) to O(V2d*log(d))
— Factor of 2 reduction if only do (u,v) where i<j

e Avoid computing all clearly 0 terms
— For each u, explore each w, (u,w) an edge
— Compute y(u,v) for each v where (v,w) an edge & u<v
- O(V*d3) to O(V*d4)
e Backwards: compute ys incrementally
— Group edges so for each w we have {x|(x,w)}
— For each x & y in this set, increment y(X,y)
- O(Vd?): Avoid O(V?2) initialization by dynamic creation &
initialization

e Sparse Matrix Equivalency: A = adjacency matrix

E UNIVERSITY OF

5)NOTRE DAME

Jaccard via MapReduce

e 1 MapReduce step: 3 phases
— Map some function over all data to (key,value) stream

— Group pairs by key
— Reduce each group

e Two reported Jaccard implementations
— 3-steps with V = 1 million edges on 50 node cluster

— 5-steps with V = 64 million vertices & 1 billion edges

e Burkhardt “"Asking Hard Graph Questions,” Beyond Watson
Workshop, Feb. 2014.

e RMAT matrices, average d(i) = 16
e 1000 node system, each with 12 cores & 64GB

E UNIVERSITY OF

5)NOTRE DAME

Measurements & Trends

1.E+05 1.E+13
1.E+12
136 + 10°V116

1.E+04 2 o 1L.E+11
o €
a o

o '\(/° é 1.E+10
= o T
= 3 S

1.E+03 1.E+09

1.E+08

1.E+02 1.E+07

1E+04 1.E+05 1.E+06 1.E+07 1.E+08 1E+04 1.E+05 1.E+06 1.E+07 1.E+08
Vertices Vertices
——f=— [\easured = «= .[|\odeled —f— |\/easured = «= . odeled

JACS (Jaccard Coefficients / Sec) = 1.6E6*\V0-26

TL]UNIVERSITY OF _ e BN Tﬁm

) NOTRE DAME - HMWZVAWWN B

Relevant Batch Variations

e Consider graphs with 2 vertex classes
- A = set of “people”, B = set of "addresses”
— Edges from A to B is person a “resided at” address b
- v(a,b) = # of common addresses between a and b

e Real world: for |A| = 8ES8, |B| = 1ES,
~ |yl = 1.2E12 = |A|135

e \/ariations:
— >2 classes of vertices
— Exclude paths thru high in-degree neighbors

— Weight paths on basis of properties (e.g. same last name)
- Add threshold

E UNIVERSITY OF

5)NOTRE DAME

Dynamic Variations

e Many applications with dynamic graphs
— Vertices, edges added/deleted dynamically

e Question: which ys change with edge

addition or deletion

— Perhaps just those that cross threshold, in either
direction

UNIVERSITY OF

* NOTRE DAME

Other Variations

e Don’t compute/store all possibly O(V?2) ys,
But store just statistics of set of ys for

each vertex

- Number of non-zero, largest, average, etc.

— Reduces storage to O(V)

— Serve as starting point for more complex queries

e Expand “neighbors” beyond “1 hop”

— Real commercial applications at "1.5” hops

E UNIVERSITY OF

5)NOTRE DAME

A Possible Heuristic

e Goal: constant time elimination of ys that are zero of
less than some threshold

e Build bit vector for each vertex that hashes vertex ids
into bits
— Bit i =1 if one of more neighbors fall into set I

e Estimate y(u,v) by ANDing u & v's bit vectors
— If results are 0, theny =0

e Can also estimate upper bound on y(u,v)
— Simple function of # of 1s in bit vectors

e If benchmark uses a threshold, this estimate can
prevent computation when bound<threshold

e Based on ideas from SpGEMM package)

UNIVERSITY OF

&5/ NOTRE DAME

Suggested Benchmarks

e Simple batch: compute all non-zeros
— Perhaps use same RMAT as for BFS
— Performance Metric JACS

e Multi-class benchmark
— One metric: time to compute all ys as above

— Optionally append Jaccard statistics as properties to
each vertex of a class

e Real-time event detection
— Start with precomputed y statistics
- Input stream of additions/deletions
— Check for changes in ys
— Performance metric: change throughput

E UNIVERSITY OF

5)NOTRE DAME

Key Questions for More Precise

Benchmark Definitions
e Formal definition of batch and incremental

e Where do non-zeros go? File, properties, ...
e Tie data sets to real applications

e Explore real-world distribution of ys and I's
to understand growth rates better

e Build in options such as thresholds

e Develop complexity models, esp. parallel
e Verify correct solutions

e Develop reference implementations

/fi
Cu B UNIVERSITY OF = - F:

Acknowledgements

e Funded in part by the Univ. of Notre Dame,
Notre Dame, IN, USA

UNIVERSITY OF

) NOTRE DAME

