Updating PageRank for Streaming Graphs

E. Jason Riedy Graph Algorithms Building Blocks 23 May 2016

School of Computational Science and Engineering Georgia Institute of Technology

Streaming Graph Analysis

(insert prefix here)-scale data analysis

Cyber-security Identify anomalies, malicious actors
 Health care Finding outbreaks, population epidemiology
 Social networks Advertising, searching, grouping
 Intelligence Decisions at scale, regulating algorithms
 Systems biology Understanding interactions, drug design
 Power grid Disruptions, conservation
 Simulation Discrete events, cracking meshes

00

• Graphs are a motif / theme in data analysis. • Changing and dynamic graphs are important!

E E-MAJ

3/32

- 1. Motivation and background
- 2. Incremental PageRank
 - Linear algebra & streaming graph data
 - Maintaining accuracy!
- 3. Performance and implementation aspects
 - Requests for GraphBLAS implementations

Potential Applications

- Social Networks
 - Identify *communities*, influences, bridges, trends, anomalies (trends *before* they happen)...
 - Potential to help social sciences, city planning, and others with large-scale data.
- Cybersecurity
 - Determine if new connections can access a device or represent new threat in < 5ms...
 - Is the transfer by a virus / persistent threat?
- Bioinformatics, health
 - Construct gene sequences, analyze protein interactions, map brain interactions
- Credit fraud forensics \Rightarrow detection \Rightarrow monitoring

Networks data rates:

- Gigabit ethernet: 81k 1.5M packets per second
- + Over 130 000 flows per second on 10 GigE (< 7.7 μ s)

Person-level data rates:

- 500M posts per day on Twitter (6k / sec)¹
- 3M posts per minute on Facebook (50k / sec)²

We need to analyze only changes and not entire graph.

Throughput & latency trade offs expose different levels of concurrency.

1 www.internetlivestats.com/twitter-statistics/ 2 www.ipeffbullas.com/2015/04/17/21-awesome-facebook-facts-and-statistics-you-need-to-check-out/ Riedy, GABB 2016 Terminology:

- Streaming changes into a massive, evolving graph
- Not CS streaming algorithm (tiny memory)
- Need to handle *deletions* as well as insertions

Previous throughput results (not comprehensive review):

Data ingest >2M up/sec [Ediger, McColl, Poovey, Campbell, & Bader 2014]

Clustering coefficients >100K up/sec [R, Meyerhenke,

Bader, Ediger, & Mattson 2012]

Connected comp. >1M up/sec [McColl, Green, & Bader 2013] **Community clustering** >100K up/sec* [R & Bader 2013]

Incremental PageRank

PageRank

Everyone's "favorite" metric: PageRank.

- Stationary distribution of the random surfer model.
- Eigenvalue problem can be re-phrased as a linear system³

$$(I - \alpha A^T D^{-1}) x = kv,$$

with

- $\alpha \;$ teleportation constant < 1
- A adjacency matrix
- D diagonal matrix of out degrees, with x/0 = x (self-loop)
- v personalization vector, $\|v\|_1 = 1$
- k scaling constant

Incremental PageRank: Goals

- Efficiently update for streaming data; update PageRank without touching the entire graph.
- Keep the results accurate.
 - Updates can wander, and ranks deceive...
- Existing methods:
 - Compute "summaries" of non-changed portions: Walk whole graph per change. [Langville & Meyer, 2006]
 - Maintain databases of walks for dynamic resampling [Bahmani, Chowdhury, & Goel 2010]
 - Statistically based idea, very similar but... [Ohsaka, *et al.* 2015]

Incremental PageRank: First pass

- Let $A_{\Delta} = A + \Delta A$, $D_{\Delta} = D + \Delta D$ for the new graph, want to solve for $x + \Delta x$.
 - A: sparse and row-major, $A_{i,j} = 1$ if $i \rightarrow j \in$ edges
- Simple algebra:

$$(I - \alpha A_{\Delta}^{\mathsf{T}} D_{\Delta}^{-1}) \Delta x = \alpha (A_{\Delta} D_{\Delta}^{-1} - A D^{-1}) x$$

- The operator on the right-hand side, $A_{\Delta}D_{\Delta}^{-1} AD^{-1}$, is sparse; non-zero only adjacent to changes in Δ .
- Re-arrange for Jacobi (stationary iterative method),

$$\Delta x^{(k+1)} = \alpha A_{\Delta}^{\mathsf{T}} D_{\Delta}^{-1} \Delta x^{(k)} + \alpha \left(A_{\Delta} D_{\Delta}^{-1} - A D^{-1} \right) x,$$

iterate, ...

Incremental PageRank: Accumulating error

• And fail. The updated solution wanders away from the true solution. Top *rankings* stay the same... Riedy, GABB 2016

Incremental PageRank: Think instead

- Backward error view: The new problem is close to the old one, solution may be close.
- How close? Residual:

$$\begin{aligned} \mathbf{r}' &= \mathbf{k}\mathbf{v} - \mathbf{x} + \alpha \mathbf{A}_{\Delta} \mathbf{D}_{\Delta}^{-1} \mathbf{x} \\ &= \mathbf{r} + \alpha \left(\mathbf{A}_{\Delta} \mathbf{D}_{\Delta}^{-1} - \mathbf{A} \mathbf{D}^{-1} \right) \mathbf{x} \end{aligned}$$

- Solve $(I \alpha A_{\Delta} D_{\Delta}^{-1}) \Delta x = r'$ (iterative refinement).
- Cheat by not refining *all* of *r*', only region growing around the changes:

$$(I - \alpha A_{\Delta} D_{\Delta}^{-1}) \Delta x = r'_{|\Delta}$$

• (Also cheat by updating *r* rather than recomputing at the changes.)

Incremental PageRank: Works

alg 🔶 dpr 🍝 dprheid 🔸 pr 🛶 pr_restart

Performance / Latency

Performance discussion

- Inherent trade-off between high throughput and low latency.
 - **Throughput** Large batches imply great parallelism **Latency** Small batches are highly independent
- Restarting PR iteration exposes massive parallelism
 - Sparse matrix dense vector mult. (SpMV)
- Incremental is highly sparse, pays in overhead
 - Sparse matrix sparse vector mult. (SpMSpV)
- Results are worst-case: changes are not related to conductance communities.
- (Also, very un-tuned SpMSpV...)

Using one CPU in an 8-core Intel Westmere-EX (E7-4820), 2.00GHz and 18MiB L3...

Graph	V	<i>E</i>	Avg. Degree	Size (MiB)
power	4941	6594	1.33	0.07
power grid				
PGPgiantcompo	10680	24316	2.28	0.23
social network				
caidaRouterLevel	192244	609066	3.17	5.38
networking				
belgium.osm	1441295	1549970	1.08	22.82
road map				
coPapersCiteseer	434102	16036720	36.94	124.01
citation				

Incremental PageRank: Worst latency

Incremental: Best at 4 threads. RPR: Best at 8.

Riedy, GABB 2016

Incremental PageRank: Worst throughput

Incremental: Best at 4 threads. RPR: Best at 8.

Median update time (s)

Graph	Batch	dpi	r	dpr_h	eld	pr_restart
power	10	.00304	$1.8 \times$.00008	68×	.00535
	100	.0109	$.79 \times$.00707	$1.2 \times$.00860
	1000	.0126	$.67 \times$.0124	.68×	.00843
PGPgiantcompo	10	.00211	$4.3 \times$.00023	39×	.00916
	100	.0257	$.81 \times$.00874	$2.4 \times$.0207
	1000	.0372	$.67 \times$.0341	.73×	.0249
caidaRouterLeve	el 10	.00710	$16 \times$.00199	$57 \times$.112
	100	.0314	$7.1 \times$.00477	$47 \times$.224
	1000	1.30	.68×	.2290	3.9×	.889
belgium.osm	10	.0118	$42 \times$.0128	39×	.498
	100	.0127	$39 \times$.0131	$38 \times$.499
	1000	.0461	$52 \times$.0171	$140 \times$	2.41
coPapersCitesee	r 10	.0729	$27 \times$.0128	$155 \times$	1.98
	100	.8650	2.3×	.130	$15 \times$	1.98
	1000	2.97	$1.3 \times$	1.13	3.5×	3.95

Graph	Batch	dp	r	dpr_	held	pr_restart
power	10	7.54	2.4×	0.0229	790×	18
	100	29.2	$1.2 \times$	18.2	1.9 $ imes$	34
	1000	38.3	1.0 imes	37.1	1.0 imes	39
PGPgiantcompo	10	1.58	$5.1 \times$	0.0453	180 $ imes$	8
	100	21.3	1.1 imes	6.82	3.6×	24
	1000	31.2	1.0 imes	28.4	1.1 imes	32
caidaRouterLeve	l 10	0.0625	32×	0.00252	790×	2
	100	0.409	9.8×	0.0301	$130 \times$	4
	1000	15.2	$1.1 \times$	3.07	5.2×	16
belgium.osm	10	0.00020	$9800 \times$	0.00007	$30000 \times$	2
	100	0.00203	990 ×	0.00066	$3000 \times$	2
	1000	0.120	$84 \times$	0.00660	$1500 \times$	10
coPapersCitesee	r 10	0.0563	$36 \times$	0.00646	$310 \times$	2
	100	0.689	2.9×	0.0952	$21 \times$	2
	1000	2.32	$1.7 \times$	0.864	$4.6 \times$	4

GraphBLAS Requests: Beat Down Overhead!

GraphBLAS background

- Provide a means to express linear-algebra-like graph algorithms
- Graphs can be modeled as (sparse) matrices
 - Adjacency (used here)
 - Vertex-edge
 - Bipartite...
- Some graph algorithms iterate as if applying a linear operator
 - BFS
 - Betweenness centrality
 - PageRank
- Ok, PageRank actually **is** linear algebra...

Lessons from sparse linear algebra

- Overhead is important.
 - Small average degree
 - O(|E|) is O(|V|)...
 - If the average degree is 8, 8|V| storage is the matrix.
 - Graphs: Some very large degrees
 - Graphs: Low average diameter
- Details matter
 - Entries that disappear are painful
 - Take care with definitions on |V|...

dpr core (A, z, r, Δ) Let *D* = diagonal matrix of vertex out-degrees $z = \alpha (A^T D^{-1} x_{| \wedge} - z)$ Note: $z = A^T D^{-1} x$ before update $\Delta x^{(1)} = z + r_{1z}$ For $k = 1 \dots$ it max $\Delta X^{(k+1)} = \alpha A^{T} D^{-1} \Delta X^{(k)}_{|>\gamma} + \alpha \Delta X^{(k)}_{|<\gamma} + Z$ $\Delta x^{(k+1)} = \Delta x^{(k+1)} + r_{|\Delta x^{(k+1)}|}$ Stop if $||x^{(k+1)} - x^{(k)}||_1 < \tau$ $\Delta r = z + \Delta x^{(k+1)} - \alpha A^T D^{-1} \Delta x^{(k+1)}$ Return $\Delta x^{(k+1)}$ and Δr

Fuse common sparse operation sequences to reduce overhead. Riedy, GABB 2016

dpr core (A, z, r, Δ) Let *D* = diagonal matrix of vertex out-degrees $\mathbf{z} = \alpha (\mathbf{A}^{\mathsf{T}} \mathbf{D}^{-1} \mathbf{X}_{| \boldsymbol{\Delta}} - \mathbf{z})$ Note: $z = A^T D^{-1} x$ before update $\Delta x^{(1)} = z + r_{1z}$ For $k = 1 \dots$ it max $\Delta \mathbf{X}^{(k+1)} = \alpha \mathbf{A}^T \mathbf{D}^{-1} \Delta \mathbf{X}^{(k)}_{|>\gamma} + \alpha \Delta \mathbf{X}^{(k)}_{|<\gamma} + \mathbf{Z}$ $\Delta x^{(k+1)} = \Delta x^{(k+1)} + r_{|\Delta x^{(k+1)}|}$ Stop if $||x^{(k+1)} - x^{(k)}||_1 < \tau$ $\Delta r = z + \Delta x^{(k+1)} - \alpha A^T D^{-1} \Delta x^{(k+1)}$ Return $\Delta x^{(k+1)}$ and Δr Region-growing: Don't duplicate / realloc only-extended patterns.

dpr core (A, z, r, Δ) Let *D* = diagonal matrix of vertex out-degrees $z = \alpha (A^T D^{-1} x_{| \Delta} - z)$ Note: $z = A^T D^{-1} x$ before update $\Delta x^{(1)} = z + r_{1z}$ For $k = 1 \dots$ it max $\Delta \mathbf{X}^{(k+1)} = \alpha \mathbf{A}^T \mathbf{D}^{-1} \Delta \mathbf{X}^{(k)}_{|>\gamma} + \alpha \Delta \mathbf{X}^{(k)}_{|<\gamma} + \mathbf{Z}$ $\Delta x^{(k+1)} = \Delta x^{(k+1)} + r_{|\Delta x^{(k+1)}|}$ Stop if $||x^{(k+1)} - x^{(k)}||_1 < \tau$ $\Delta r = z + \Delta x^{(k+1)} - \alpha A^T D^{-1} \Delta x^{(k+1)}$ Return $\Delta x^{(k+1)}$ and Δr

Fuse tests into loops when feasible.

means all steps matter.

Riedy, GABB 2016

dpr core (A, z, r, Δ) Let *D* = diagonal matrix of vertex out-degrees $z = \alpha (A^T D^{-1} x_{| \Delta} - z)$ Note: $z = A^T D^{-1} x$ before update $\Delta x^{(1)} = z + r_{1z}$ For $k = 1 \dots$ it max $\Delta \mathbf{X}^{(k+1)} = \alpha \mathbf{A}^T \mathbf{D}^{-1} \Delta \mathbf{X}^{(k)}_{|>\gamma} + \alpha \Delta \mathbf{X}^{(k)}_{|<\gamma} + \mathbf{Z}$ $\Delta x^{(k+1)} = \Delta x^{(k+1)} + r_{|\Delta x^{(k+1)}|}$ Stop if $||x^{(k+1)} - x^{(k)}||_1 < \tau$ $\Delta r = z + \Delta x^{(k+1)} - \alpha A^T D^{-1} \Delta x^{(k+1)}$ Return $\Delta x^{(k+1)}$ and Δr Looks like the optimization point? Few vertices in Δ

dpr core (A, z, r, Δ) Let *D* = diagonal matrix of vertex out-degrees $z = \alpha (A^T D^{-1} x_{| \Delta} - z)$ Note: $z = A^T D^{-1} x$ before update $\Delta x^{(1)} = \mathbf{Z} + \mathbf{r}_{1\mathbf{Z}}$ For $k = 1 \dots$ it max $\Delta X^{(k+1)} = \alpha A^{T} D^{-1} \Delta X^{(k)}_{|>\gamma} + \alpha \Delta X^{(k)}_{|<\gamma} + Z$ $\Delta x^{(k+1)} = \Delta x^{(k+1)} + r_{|\Delta x^{(k+1)}|}$ Stop if $||x^{(k+1)} - x^{(k)}||_1 < \tau$ $\Delta r = z + \Delta x^{(k+1)} - \alpha A^T D^{-1} \Delta x^{(k+1)}$ Return $\Delta x^{(k+1)}$ and Δr

Support fast restrictions to a known pattern.

dpr core (A, z, r, Δ) Let *D* = diagonal matrix of vertex out-degrees $z = \alpha (A^T D^{-1} x_{| \Delta} - z)$ Note: $z = A^T D^{-1} x$ before update $\Delta x^{(1)} = z + r_{1z}$ For $k = 1 \dots$ it max $\Delta X^{(k+1)} = \alpha A^{T} D^{-1} \Delta X^{(k)}_{|>\gamma} + \alpha \Delta X^{(k)}_{|<\gamma} + Z$ $\Delta x^{(k+1)} = \Delta x^{(k+1)} + r_{|\Delta x^{(k+1)}|}$ Stop if $\|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|_1 < \tau$ $\Delta r = z + \Delta x^{(k+1)} - \alpha A^T D^{-1} \Delta x^{(k+1)}$ Return $\Delta x^{(k+1)}$ and Δr

Keep growth in order, no need to subtract on new entries. Riedy, GABB 2016

New experience from streaming graphs

For GraphBLAS-ish low-latency streaming algorithms:

- Fuse common sparse operation sequences to reduce overhead.
- Region-growing: Don't duplicate / realloc only-extended patterns.
- Fuse tests into loops when feasible.
- Remember the sparse vector set case!
- Support fast restrictions to a known pattern.
- Keep growth in order, no need to subtract on new entries.

STINGER: Where do you get it?

Riedy, GABB 2016

Home: www.cc.gatech.edu/stinger/

Code: git.cc.gatech.edu/git/u/eriedy3/stinger.git/

This code: src/clients/algorithms/pagerank_updating/.
Gateway to

- code,
- development,
- documentation,
- presentations...

Remember: Academic code, but maturing with contributions.

Users / contributors / questioners: Georgia Tech, PNNL, CMU, Berkeley, Intel, Cray, NVIDIA, IBM, Federal Government, Ionic Security, Citi_{82/32}