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0 Introduction
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LPG and HAL

The context of HAL: designing & implementing LPG
LPG (Language for Processing Graphs):

@ A declarative DSL for medium-size' graph processing.
@ Goal: Architecture Neutral

@ Goal: Maximize implicit parallelism
HAL (Hierarchical Array Language):

@ adeclarative array language,

@ the primary abstraction between our graph algorithms and the parallel
architecture.

'Fit on single-host.
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Why an Intermediate Array Language?
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Why an Intermediate Array Language?

@ Graph algorithms

e Need many data structures, not just graphs
e Often look like array-processing

@ Very natural when thinking in terms of adjacency matrices
o Classes of Graphs have analogs in HALs various array structures
@ We expect this will enable more efficient code

e More parallelism
e Have a richer set of laws (for transformation)
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HAL (Hierarchical Array Language)

@ Declarative
@ A very expressive type system

captures more structure
@ provides more laws

@ sums!

o allows bijections and views

@ Sparse/associative arrays
@ First class index spaces
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HAL (Hierarchical Array Language)

@ Declarative

@ A very expressive type system
captures more structure

@ provides more laws

@ sums!

o allows bijections and views

@ Sparse/associative arrays
@ First class index spaces

CAVEAT:
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HAL (Hierarchical Array Language)

@ Declarative

@ A very expressive type system
captures more structure

@ provides more laws

@ sums!

o allows bijections and views

@ Sparse/associative arrays
@ First class index spaces

CAVEAT:

@ HAL is in the design & prototype stage: no compiler and no
performance figures yet.

Mark Tullsen and Matt Sottile (Galois, Inc.)  Array Types for a Graph Processing Language GABB, May 2016



@ Capturing Structure
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A simple matrix, m

0000

0100

0 0 20

0 0 0 3

my = arr[ZsxZs]1 [0 O O O
0100
0 0 20
0 0 0 3]

m, = unnest(arr[Z4]
[ arr[Z4]
, arr[Z4]
, arr[Zs]
, arr[Z4]
D

lm| =

storage requirements of m,

m
m

[0 0 0 0]
[6 1 0 0]
[0 0 2 0]
[0 0 0 3]

Zs X Z4s = 7

11 VEC3(Zy) = Z

lmy| =

lmo| =

in machine words

1+4x4

1+4%4
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Upper triangular, all zeros

000 u :: SET3(Z) = Z
00
0
u; = arr[SET?(Z4)] [0 0 0 6 0 0] lus| = 146
Up = const[SET?(Zs)] © lug| = 1
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Upper triangular, all zeros

000 u :: SET3(Z) = Z
0 0
0
Uy = arr[SET?(Z4+)] [0 0 0 6 0 0] lus| = 146
Up = const[SET?(Zs)] © lug| = 1

VEC?(Z4)

(0,0)] (0,1)1(0,2)] (0,3)

(1,0)] (1,1)| (1,2)| (1,3)

(2,0)] (2,1)| (2,2)| (2,3)

(3,0) (3,1)| (3,2)| (3,3)
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Upper triangular, all zeros

000 u :: SET3(Z) = Z
0 0
0
Uy = arr[SET?(Z4+)] [0 0 0 6 0 0] lus| = 146
Up = const[SET?(Zs)] © lug| = 1

SET?(Z4)

{0,1}] {0,2} | {0,3}

{1,2}| {1,3}

{2.8}
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A sequence on the diagonal

0 d :: Z4 =>Z4
1
2
3
dy = arr[Z4] [0 1 2 3] |dy| = 1+4
do = smart[Zs] id |do| =1
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Combining ... to define min HAL

0000 m :: VEC3(Zy) = Z
0100

00 20

0 0 0 3

my = arr[ZsxZs]1 [0 0 0 0 O 1 ...] |my| = 1+4x4
mg; = fromTris ( const[SET?(Zs)] © Img| = 1+1+1+1

, smart[Z4] id
, const[SET2(Z4s)]1 0 )

@ same type, same interface
@ const & smart provide

@ correctness by construction
e smaller representations
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© Representations
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smart/const/... are represented by “tagged values”

fromTris( const.., smart.., const..) || = 1+1+1+1

| fromTris const
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smart/const/... are represented by “tagged values”

fromTris( const.., smart.., const..) || = 1+1+1+1

| fromTris const

@ Could nest arbitrarily, thus “Hierarchical Array Language”
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Converting to Expanded Representations

fromTris( const.., @smart.., const..) |] = 1+1+4+1

| fromTris const

@ The @ operator expands our const/smart constructors to arr-like, flat
representations. Thus, we can define things semantically then get
either

e compact representation
o flattened representation
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Converting to Expanded Representations (2)

@fromTris( const.., smart.., const..) |] = 1+16

[arr |
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Compact and Expanded Arrays, Mixed

m2 :: VEC3(Z4) = Z

(=2 — I — ]
[=I— I — IV, ]
@@ N v
S w U

m2 = fromTris ( arr[SET?(Z4)] [59 125 3]
, const[Z4] 0
, const[SET?(Z4)] ©
)
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Compact and Expanded Arrays, Mixed

m2 :: VEC3(Z4) = Z

(=2 — I — ]
[=I— I — IV, ]
@@ N v
S w U

m2 = fromTris ( arr[SET?(Z4)] [59 125 3]
, const[Z4] 0
, const[SET?(Z4)] ©
)

@ NOTE: This is not a substitute for explicitly defining
symmetric/triangular matrices.
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A Triangular Matrix

59 m3 :: SET3(Z4) = Z
2

w v =

m3 = arr[SET?(Z4)] [5 9 1 2 5 3]

Im3| = 1 + (4 choose 2) =1 + 6

Mark Tullsen and Matt Sottile (Galois, Inc.)  Array Types for a Graph Processing Language GABB, May 2016 17/38



e “Partial Arrays” (l.e., Maps, Dictionaries, Etc.)
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Partial Arrays

@ Partial Array = map, dictionary, associative array, .. .

@ Examples:
{1: 2, 5: 3, ...} al :: Zgg > Z
|lal| = 1+2xnnz(al)
{1: 2, 5: 3, ...} DFLT © a2 :: Zgg = Z
|a2| = 1+2xnnz(al)

@ nnz - number of non zeros, loosely
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© Transforming Index Spaces
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Index Space Transformation + Bijection

(0,0)] (0,1){ (0,2)| (0,3) 0,0)](0,1)] | (0,0)] (0,1)
(1,0 (1,1] (1,2)] (1,3) (10| (1.1)] ] (1.0)] (1,1)
(2,0)] (2,1)] (2,2)] (2,3) 0,0)](0,1)] ] (0,0)] (0,1)
(3,00 (3,1)[(3,2)| (3,3) 1,010 1,0]1,1)

(0,0)| (0,1)] (0,0)| (0,1)

(1,0)| (1,1)] (1,0)] (1,1)
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A Very Useful Bijection

(0,0)| (0,1)] (0,0)| (0,1) ol 0| o0 0 112 |3 (0,0)](0,0){ (0.1)| (0,1)
(1,0)| (1,1)| (1,00 (1,1) 1 1 1 0 1] 2|3 (1,0)| (1,0)| (1.1){ (1.1)
(0,0)| (0,1) 2| 2| 2 o 1]|2]|3 (20)[(20)| 2.1)[(2.1)




A Very Useful Bijection

@ l.e., if we can partition the index-space (via a bijection)
e we can decompose the array

@ This allows for
@ processor partitioning
e divide-and-conquer algorithms
@ nice interactions with the smart/const constructors
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A Very Useful Bijection

(0,0)] (0,1){ (0,0)| (0,1) ol 0| o0 0 112 |3 (0,0)](0,0){ (0.1)| (0,1)
(1,0)| (1,1)| (1,00 (1,1) 1 1 1 0 1] 2|3 (1,0)| (1,0)| (1,1)] (1,1)
(0,0) (0,1) 2l 2| 2 0 1] 2|3 (2,0)[(2,0)] (2,1)](2,1)

0 |{0,1}{{0,2}|{0,3} {0.3}|{0,2}| {0,1}| © {0.0}| {0,1}|{0.2} | {0.,3} 0 (0.1)](0,2)] (0,3
{01} 1 |{1.2}]{1.3} {1,3}]{1.2}| 1 [{0,1} {0,1}| {1,1} | {1.2}| {1.,3} (1,00 1 |(1,2)|(1,3)
{0.2}|{1.2}| 2 |{2.3} 2.3} 2 |{1,2}]{0.2} {02} {1,2}| {22} | {2,3} (201 2 |23
{03} {1.3}| {23} 3 3 |{2,3}|{1.3}|{0.3} {03} {1,3}| {2,3} | {3,3} (3.0)B.1)]@B2)| 3
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A Very Useful Bijection

(0,0)] (0,1){ (0,0)| (0,1) ol 0| o0 0 112 |3 (0,0)](0,0){ (0.1)| (0,1)
(1,0)| (1,1)| (1,00 (1,1) 1 1 1 0 1] 2|3 (1,0)| (1,0)| (1,1)] (1,1)
(0,0) (0,1) 2l 2| 2 0 1] 2|3 (2,0)[(2,0)] (2,1)](2,1)

0 |{0,1}{{0,2}|{0,3} {0.3}|{0,2}| {0,1}| © {0.0}| {0,1}|{0.2} | {0.,3} 0 (0.1)](0,2)] (0,3
{01} 1 |{1.2}]{1.3} {1,3}{{1,2}| 1 |{0,1} {0,1} | {1,1}| {1.2}| {1.3} 1,0 1 [(1.2)](1,3)
{0.2}|{1.2}| 2 |{2.3} 2.3} 2 |{1.2}|{0.2} {02} {1,2}| {22} | {2,3} (20)] 1)] 2 |3
{03} {1.3}| {23} 3 3 [{2.8}]{1.3}|{0.3} {03} {1,3}| {2,3} | {3,3} (3.0)| 8.1)| (3.2)| 3

@ Without sums, we’d only be able to partition into equal sized parts.
e The indices remain unique and form a valid type
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G Larger Examples
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A Diagonal Block Array

mi, m2, m3 :: Z;XZ; = Zp

*ﬂ dba :: Zot X 2oy = Zo
dba =
unblock
ﬁ (fromTris
( const[SET4Zs)] (const[Z;xZ;] 0)
, arr[Zs] [m1, m2, m3]
, const[SET4Zs;)] (const[Z;xZ;] 0)

)

@ using Z, to represent booleans (1 signifies edge between)
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A Diagonal Block Array, with Sparse Off-Diagonals

mi, m2, m3 :: Z;XZ; = Zp

i l [] [
ﬂ I I dba’ i ZoyXZoy = Zp
dba’ = unblock (arr [Z3xZj]

- -
i [ mi , {..} DFLT 0, {..} DFLT
- - , {..} DFLT 0, me2 , {..} DFLT 0

, {..} DFLT 0, {..} DFLT 0, m3
S
L] ]

@ if adjacency matrix of graph, 3 graphs with sparse connectivity
between

o
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An Unfortunate Situation

@ Many data-structures have “clean” decompositions
e E.g., tree -> tree + tree
e These help us write divide-and-conquer algorithms
@ Graphs are not one of these

e Though we do have some divide-and-conquer schemes, such as
map-reduce.
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One Method to Divide-And-Conquer Graphs

Incomplete Graphs:
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One Method to Divide-And-Conquer Graphs

Incomplete Graphs:

@ ... generalize graphs
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One Method to Divide-And-Conquer Graphs

Incomplete Graphs:

@ ... generalize graphs

@ ... allow us to group vertices (similar to super-vertices)
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Incomplete Graphs Visualized

The adjacency matrix of graph:

Mark Tullsen and Matt Sottile (Galois, Inc.)

Array Types for a Graph Processing Language GABB, May 2016

28/38



Incomplete Graphs Visualized

The graph:
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Incomplete Graphs Visualized

Extract blue nodes; edges get “split in half”:
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Incomplete Graphs Visualized

Extract green nodes, edges get “split in half”:
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Incomplete Graphs Visualized

Extract green nodes, edges get “split in half”:

@ Can merge IGs in any order (associative and commutative)
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Incomplete Graphs Visualized

Extract green nodes, edges get “split in half”:

@ Can merge IGs in any order (associative and commutative)
@ Can do computations on IGs, computations updated when we merge
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Q Conclusion
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@ Multiple features are working synergistically:
e smart/const arrays (with a default tagged rep.)
@ bijections
@ expressive types
e @, the expansion operator

@ Novel features

e powerful index space transformations
e use of sums in an array language
e type system (more expressive than most)

@ Results

e separation of interface and representation
@ expressive, high level array transformations
@ Dijections give us views & in-place updates
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Conclusion

@ In the paper, we discuss many more aspects of the language
o types
o functors (map-like functions)
e program laws and transformations
o the four combinatorial collections: SET, VEC, PERM, MSET

@ Current status of project

o A proof of concept embedded in Haskell
e A few graph algorithms (Borlivka, Triangle Counting)
e See the github project: https://github.com/GaloisInc/lpg

@ Future

o Need to “test drive” on more algorithms
e Exploring yet more expressiveness in the type system
o ...
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https://github.com/GaloisInc/lpg

Thank You
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Supplementary Slides
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Partial Arrays: representation and partiality are

orthogonal

@ sparse rep. of total arrays
{1: 2, 5: 3, 7: 0, ...} DFLT o i1 Zsg > Z , | |=2Xnn:
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Partial Arrays: representation and partiality are

orthogonal

@ sparse rep. of total arrays
{1: 2, 5: 3, 7: 0, ...} DFLT ©
@ aflattened rep. of partial arrays
t2p(@p2t{1: 2, 5: 3, 7: 0, ...})

Z5o = 7Z , ||=2Xnn:

Zeo I Z , | |=1+50
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Partial Arrays: representation and partiality are

orthogonal

@ sparse rep. of total arrays
{1: 2, 5: 3, 7: 0, ...} DFLT ©
@ aflattened rep. of partial arrays
t2p(@p2t{1: 2, 5: 3, 7: 0, ...})

AAAAAA ZSO @Z AAAAAAAA

Z5o = 7Z , ||=2Xnn:

Zeo I Z , | |=1+50
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Partial Arrays: representation and partiality are

orthogonal

@ sparse rep. of total arrays
{1: 2, 5: 3, 7: 0, ...} DFLT ©
@ aflattened rep. of partial arrays
t2p(@p2t{1: 2, 5: 3, 7: 0, ...})

AAAAAAAA AAAAAAAA
Zsg = 1 + Z

Z5o = 7Z , ||=2Xnn:

Z50 = 7 y | |=1+5®
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Partial Arrays: representation and partiality are

orthogonal

@ sparse rep. of total arrays
{1: 2, 5: 3, 7: 0, ...} DFLT ©
@ aflattened rep. of partial arrays
t2p(@p2t{1: 2, 5: 3, 7: 0, ...})

AAAAAAAA ZSO D:Z AAAAAAAAAAAANAAAA

Z5o = 7Z , ||=2Xnn:

Z50 = 7 y | |=1+5®
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What is a graph?

Graphs parameterized by vertex and edge:

type DG v e = VECG3(v) o= e -- directed

type UG v e = MSET?(v) O= e -- undirected
No edge data:

type DG’ v = VEC3(V) = Z -- directed

type UG’ v = MSET?(v) = Z -- undirected
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An aside: transformations

mapRes compare (smart[t] id)
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An aside: transformations

mapRes compare (smart[t] id)

= smart[t] (compare . id)
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An aside: transformations

mapRes compare (smart[t] id)

smart[t] (compare . id)

smart[t] compare
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An aside: transformations

mapRes compare (smart[t] id)

smart[t] (compare . id)

smart[t] compare

smart[t] (id . compare)
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An aside: transformations

mapRes compare (smart[t] id)
= smart[t] (compare . id)
= smart[t] compare
= smart[t] (id . compare)

= mapIdx compare (smart[t] id)

Mark Tullsen and Matt Sottile (Galois, Inc.)  Array Types for a Graph Processing Language

GABB, May 2016

36/38



compare (and other bijections on indices)

compare :: VEC?’(a) & LT: SET?(a) = COMPARE(a)
+ EQ: a
+ GT: SET?(a)
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compare (and other bijections on indices)

compare :: VEC?’(a) & LT: SET?(a) = COMPARE(a)
+ EQ: a
+ GT: SET?(a)

less 11 VEC?(a) = LT: SET%(a)
+ GTE: MSET2(a)
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compare (and other bijections on indices)

compare :: VEC?’(a) & LT: SET?(a) = COMPARE(a)
+ EQ: a
+ GT: SET?(a)

less 11 VEC?(a) = LT: SET%(a)
+ GTE: MSET2(a)

eq 11 VEC2(a) EQ: a
+ NE: PERM?(a)
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compare (and other bijections on indices)

compare :: VEC?’(a) & LT: SET?(a) = COMPARE(a)
+ EQ: a
+ GT: SET?(a)

less 11 VEC?(a) = LT: SET%(a)
+ GTE: MSET2(a)

eq 11 VEC2(a) EQ: a
+ NE: PERM?(a)

Z(nxm) < Zp X Zn
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Generalizing ‘fromTris’

smart[Z4] id i Zs = Z4

(0,0) (0,1 (0,2) (9,3)
(1,0 (1,1) (1,2) (1,3
(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (3,3
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Generalizing ‘fromTris’

smart[Z4] id i Zs = Z4

(0,0) (0,1 (0,2) (9,3)
(1,0 (1,1) (1,2) (1,3
(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (3,3

mapRes compare’ (smart[Z4] id) :: Z4 = LT+EQ+GT

EQ LT LT LT
GT EQ LT LT
GT GT EQ LT
GT GT GT EQ
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Generalizing ‘fromTris’

mapRes compare’ (smart[Z4] id) :: Z4s = LT+EQ+GT

EQ LT LT LT
GT EQ LT LT
GT GT EQ LT
GT GT GT EQ

mapRes compare (smart[Z4] id) :: Zs = COMPARE(Z4)
EQ:0 LT:(0,1) LT:(0,2) LT:(0,3)
GT:(0,1) EQ:1 LT:(1,2) LT:(1,3)
GT:(0,2) GT:(1,2) EQ:2 LT:(2,3)

GT:(0,3) GT:(1,3) GT:(2,3) EQ:3
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Generalizing ‘fromTris’

mapRes compare (smart[Z4] id) :: Z4 = COMPARE(Z4)
EQ:0 LT:(0,1) LT:(0,2) LT:(9,3)
GT:(0,1) EQ:1 LT:(1,2) LT:(1,3)
GT:(0,2) GT:(1,2) EQ:2 LT:(2,3)

GT:(0,3) GT:(1,3) GT:(2,3) EQ:3
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