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Exascale Streaming Data Analytics:
Real-world challenges

All involve analyzing massive
streaming complex networks:

Health care = disease spread, detection
and prevention of epidemics/pandemics
(e.g. SARS, Avian flu, HIN1 “swine” flu)

Massive social networks 2>
understanding communities, intentions,
population dynamics, pandemic spread,
transportation and evacuation

Intelligence = business analytics,
anomaly detection, security, knowledge
discovery from massive data sets

Systems Biology = understanding
complex life systems, drug design,
microbial research, unravel the mysteries
of the HIV virus; understand life, disease,

Electric Power Grid = communication,
transportation, energy, water, food supply

Modeling and Simulation = Perform full-
scale economic-social-political
simulations
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Ex: discovered minimal
changes in O(billions)-size
complex network that could
hide or reveal top influencers
in the community

Sample queries:
Allegiance switching:
identify entities that switch
communities.

Community structure:
identify the genesis and
dissipation of communities
Phase change: identify
significant change in the
network structure

REQUIRES PREDICTING / INFLUENCE CHANGE IN REAL-TIME AT SCALE
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[ GRATEFUL: Graph Analysis Tackling power Efficiency, Uncertainty, and Locality ]

David A. Bader and Jason Riedy

[ OBJECTIVE ]
Research and develop new algorithms and

software for crucial graph analysis problems Photo © CTL Corp, - Photo © e
in cybersecurity, intelligence integration, 9 E.
and network analysis.
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[ DESCRIPTION ]
GRATEFUL will contribute to achieving A
resilience against errors and also extreme f ik ) e
power efficiency through DARPA's Power —— : N w1 /
Efficiency Revolution for Embedded ; -k Y
Computing Technologies (PERFECT)
program, continuing the trend of algorithms
and software contributing along side of
hardware advances to reduce power and
increasing performance.

GRATEFUL enables deployment of
advanced, mission-critical graph analysis
applications within DARPA's power,
performance, and resilience constraints.

Plot from Yifan Hu, AT&T
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Example: Mining Twitter for SdCiaI Good

ICPP 2010

Massive Social Network Analysis:
Mining Twitter for Social Good

David Ediger Karl Jiang
Jason Riedy David A. Bader
Georgia Institute of Technology

Atlanta. GA. USA
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Pacific Northwest National Lab.
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William N. Reynolds
Least Squares Software, In
Albuquerque, NM. USA

involves over 400 million active users with an ave
120 *friendship” connections each and sharing 5
to items each month [11].

One analysis approach treats the interactions as
and applies tools from graph theory, social ¢
analysis, and scale-free networks [29]. Howey
volume of data that must be processed to appl
techniques overwhelms current computational cap:
Even well-understood analytic methodologies
advances in both hardware and software to proc
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Subcommunity filtering on Twitter data sets
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Emcien: Automatically Connects the Dots To Deliver Insight

. 6 .

emcien*

Converting Data into Value .
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Graph500 Benchmark, www.graph500.org

Defining a new set of benchmarks to guide the design of hardware architectures and
software systems intended to support such applications and to help procurements.
Graph algorithms are a core part of many analytics workloads.

Executive Committee: D.A. Bader, R. Murphy, M. Snir, A. Lumsdaine
* Five Business Area Data Sets:

e Cybersecurity e Data Enrichment
- 15 Billion Log Entires/Day (for large - Easily PB of data
enterprises) - Example: Maritime Domain
- Full Data Scan with End-to-End Join Awareness
Required * Hundreds of Millions of Transponders

* Tens of Thousands of Cargo Ships
* Tens of Millions of Pieces of Bulk

e Medical Informatics

- 50M patient records, 20-200 Cargo
records/patient, billions of individuals . May involve additional data (images,
- Entity Resolution Important etc.)
e Social Networks e Symbolic Networks
- Example, Facebook, Twitter - Example, the Human Brain
- Nearly Unbounded Dataset Size - 25B Neurons

- 7,000+ Connections/Neuron
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The Cray XMT

Tolerates latency by massive multithreading
— Hardware support for 128 threads on each processor
— Globally hashed address space
— No data cache
— Single cycle context switch
— Multiple outstanding memory requests

Support for fine-grained,

word-level synchronization
— Full/empty bit associated with every
memory word

Flexibly supports dynamic load balancing

Image Source: cray.com

Our graph SW currently tested on a 512 processor XMT: 64K threads

— 4 TB of globally shared memory
— XMT2 supports 512 processors and 64TB of globally shared memory

Georgia GCdllege of
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Comparing Performance of Large Grap
MapReduce and the Cray XMT

Bin Wu [Wu & Du, AICI 2010; Wu et al. ICNC 2011] present results on connected
components and clustering coefficients using Hadoop on a commodity cluster.
- Wu et al. use label propagation for the determination of the connected components of a static graph.
- The test platform is a cluster containing 8 servers with 4 GB main memory each

- The test data set is extracted from a telephone call graph containing 1.2 million vertices and 16 million
edges.

- The execution time presented in Figure 3 of their paper indicates that the computation of connected
components required approximately 40 minutes.

e Using our code running on a 128-processor Cray XMT.

- Using a synthetic RMAT graph generator with a power-law distribution in the number of neighbors, we
obtained a graph with 134 million vertices and 2.1 billion edges.

- The connected components computation took 15.1 seconds.
- A good estimate of I/0 time is about 3 minutes.

- Processing rates: 6K edges/sec vs. 139M edges/sec !!

- Our implementation on the Cray XMT is 159 times faster than the Hadoop results
presented, on a graph with 133 times as many edges.
- Over 4 orders of magnitude FASTER edge processing rate!

Georgia GCaollege of
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STINGER Software Dissemination

* Handles high-rates of streaming
data, concurrently ingested with
complex analytics

 Semantic relations (vertices and
edges have types)

e Streaming analytics for
maintaining graph properties,
anomaly detection, temporal
analytics

=>» Predictive analytics in real-time
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Conclusions

* Need solutions that can handle unstructured ‘Big
Data’ in motion, complex analytics, and fast
transactions

e Solving massive scale analytic problems in real-time
requires strategic investments in a portfolio of
- high performance computing architectures
— data-intensive programming models, and
- parallel algorithms.

 Mapping applications to high performance
architectures may yield 6 or more orders of
magnitude performance improvements
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Workshop on Computational Methods for Dynamic Interaction Networks, DIMACS Center, Rutgers University, Piscataway, NJ, September
24-25, 2007.

J D.A. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approximating Betewenness Centrality,” The 5th Workshop on Algorithms and Models for
the Web-Graph (WAW2007), San Diego, CA, December 11-12, 2007.
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exploration of large-scale networks,” 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS), Miami, FL, April 14-
18, 2008.
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David Ediger, Karl Jiang, Jason Riedy, David A. Bader, Courtney Corley, Rob Farber and William N. Reynolds. “Massive Social
Network Analysis: Mining Twitter for Social Good,” The 39th International Conference on Parallel Processing (ICPP 2010), San
Diego, CA, September 2010.

Virat Agarwal, Fabrizio Petrini, Davide Pasetto and David A. Bader. “Scalable Graph Exploration on Multicore Processors,” The
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Z.Du, Z.Yin, W. Liu, and D.A. Bader, “On Accelerating Iterative Algorithms with CUDA: A Case Study on Conditional Random
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Workshop on Data-Mining of Next Generation Sequencing Data (NGS2010), Hong Kong, December 20, 2010.
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7203:286-296, 2012.
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E.J. Riedy, H. Meyerhenke, D.A. Bader, D. Ediger, and T. Mattson, “Analysis of Streaming Social Networks and Graphs on Multicore
Architectures,” The 37th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, March 25-30, 2012.
J. Riedy, H. Meyerhenke, and D.A. Bader, “Scalable Multi-threaded Community Detection in Social Networks,” 6th Workshop on Multithreaded
Architectures and Applications (MTAAP), Shanghai, China, May 25, 2012.

P. Pande and D.A. Bader, “Computing Betweenness Centrality for Small World Networks on a GPU,” The 15th Annual High Performance
Embedded Computing Workshop (HPEC), Lexington, MA, September 21-22, 2011.

H. Meyerhenke, E.J. Riedy, and D.A. Bader, “Parallel Community Detection in Streaming Graphs,” Minisymposium on Parallel Analysis of Massive
Social Networks, 15th SIAM Conference on Parallel Processing for Scientific Computing (PP12), Savannah, GA, February 15-17, 2012.

D. Ediger, E.J. Riedy, H. Meyerhenke, and D.A. Bader, “Analyzing Massive Networks with GraphCT,” Poster Session, 15th SIAM Conference on
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R.C. McColl, D. Ediger, and D.A. Bader, “Many-Core Memory Hierarchies and Parallel Graph Analysis,” Poster Session, 15th SIAM Conference on
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E.J. Riedy, D. Ediger, H. Meyerhenke, and D.A. Bader, “STING: Software for Analysis of Spatio-Temporal Interaction Networks and Graphs,”
Poster Session, 15th SIAM Conference on Parallel Processing for Scientific Computing (PP12), Savannah, GA, February 15-17, 2012.

David A. Bader, Christine Heitsch, and Kamesh Madduri, “Large-Scale Network Analysis,” in J. Kepner and J. Gilbert, editor, Graph Algorithms in
the Language of Linear Algebra, SIAM Press, Chapter 12, pages 253-285, 2011.

Jeremy Kepner, David A. Bader, Robert Bond, Nadya Bliss, Christos Faloutsos, Bruce Hendrickson, John Gilbert, and Eric Robinson, “Fundamental

Questions in the Analysis of Large Graphs,” in J. Kepner and J. Gilbert, editor, Graph Algorithms in the Language of Linear Algebra, SIAM Press,
Chapter 16, pages 353-357, 2011.
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