
Graph Analytics in Big Data

1

John Feo
Pacific Northwest National Laboratory

A changing World

The breadth of problems requiring graph analytics is growing rapidly

Large Network
Systems

Social Networks

CyberSecurity
Semantic Search and
Knowledge Discovery

Natural Language
Understanding

Packet Inspection

Graphs are not grids

Graphs arising in informatics are very different from the
grids used in scientific computing

Static or slowly involving

Planar

Nearest neighbor communication

Work performed per cell or node

Work modifies local data

Scientific Grids

Dynamic

Non-planar

Communications are non-local and dynamic

Work performed by crawlers or autonomous agents

Work modifies data in many places

Graphs for Data Informatics

Challenges

Problem size
Ton of bytes, not ton of flops

Little data locality
Have only parallelism to tolerate latencies

Low computation to communication ratio
Single word access
Threads limited by loads and stores

Frequent synchronization
Node, edge, record

Work tends to be dynamic and imbalanced
Let any processor execute any thread

System requirements
Global shared memory

No simple data partitions
Local storage for thread private data

Network support for single word accesses
Transfer multiple words when locality exists

Multi-threaded processors
Hide latency with parallelism
Single cycle context switching
Multiple outstanding loads and stores per thread

Full-and-empty bits
Efficient synchronization
Wait in memory

Message driven operations
Dynamic work queues
Hardware support for thread migration

Cray XMT

Our type of problems

Return all triads such that
(A  B), (A  C), (C  B)

Return all three paths with link types
{T1, T2, T3} such that the timestamps of
consecutive links overlap by at least
0.5 seconds.

From Facebook, return the connected
subgraph G(V, E) such that G includes
all the friends of John, the cardinality of
V is minimum, and Σ NetWorth(vi ε V)
is maximum.

Triads

SELECT ?A ?B ?C
WHERE { ?A ?a ?B .

?A ?b ?C .
?C ?c ?B.

}

A B A C A CB B C

A

CB

Simple C code !?!?!

8

for each node A {
for each out_edge I of A {
for each out_edge J of A {

B = tail of I;
C = tail of J;

for each out_edge K of C
if tail of K == B {… write answer …}

} } }

No memory explosion

15 secs

9

SP2 Benchmarks

We have written the 12 SP2B queries in C using our graph API

Execution time on Cray XMT/2 is from one to three orders magnitude faster
than Virtuoso on 3GHz Xeon server

Now porting sdb0 to x86 server and cluster systems

C code is simple, but
Can we generate it automatically from a high level query language?
Can we provide some other more appropriate query interface?

Query 5

PERSON

Return the names of all persons that occur as author of at least one
inproceeding and at least one article

John

Bill

“pub 1”

“pub 2”

“pub 3”

ARTICLE

InPROC

Data parallel code for Query 5

11

int PERSON_index = get_Vertex_Index(person);
int ARTICLE_index = get_Vertex_Index(article);
int INPROC_index = get_Vertex_index(inproc);

int nmbr_Edges = inDegree(PERSON_index);
in_edge_iterator Person_edges = get_InEdges(PERSON_index);

for (i = 0; i < nmbr_Edges; i++) {
int person = PERSON_edges[i].head;
int nmbr_Publ = number_edges(person, creator);
in_edge_iterator Publ_edges = get_InEdges(person, creator);

for (j = 0; j < nmbr_Publ; j++) {
int publ_type = edge_Head_Index(Publ_edges[j]);

if (publ_type == ARTICLE_index) flag |= 1;
else if (publ_type == INPROC_index) flag |= 2;

if (flag == 3) {print person; break;}
} }

1.29 secs vs. 21 secs in Virtuoso

12

Conclusions

Big data graph analytics is fundamentally different than big data science

Different algorithms

Different challenges

Different hardware requirements

Conventional database systems based tables and join operations are
insufficient

Data parallel graph crawls can be orders of magnitude faster

Need new query languages capable of expressing graph analytics operations
and compiling to data parallel operations

