Graph Analytics in Big Data

John Feo
Pacific Northwest National Laboratory
A changing World

- The breadth of problems requiring graph analytics is growing rapidly

- Large Network Systems
- Social Networks
- Packet Inspection
- Natural Language Understanding
- Semantic Search and Knowledge Discovery
- CyberSecurity
Graphs are not grids

- Graphs arising in informatics are very different from the grids used in scientific computing.

Scientific Grids
- Static or slowly involving
- Planar
- Nearest neighbor communication
- Work performed per cell or node
- Work modifies local data

Graphs for Data Informatics
- Dynamic
- Non-planar
- Communications are non-local and dynamic
- Work performed by crawlers or autonomous agents
- Work modifies data in many places
Challenges

- Problem size
 - Ton of bytes, not ton of flops

- Little data locality
 - Have only parallelism to tolerate latencies

- Low computation to communication ratio
 - Single word access
 - Threads limited by loads and stores

- Frequent synchronization
 - Node, edge, record

- Work tends to be dynamic and imbalanced
 - Let any processor execute any thread
System requirements

- **Global shared memory**
 - No simple data partitions
 - Local storage for thread private data

- **Network support for single word accesses**
 - Transfer multiple words when locality exists

- **Multi-threaded processors**
 - Hide latency with parallelism
 - Single cycle context switching
 - Multiple outstanding loads and stores per thread

- **Full-and-empty bits**
 - Efficient synchronization
 - Wait in memory

- **Message driven operations**
 - Dynamic work queues
 - Hardware support for thread migration
Our type of problems

- Return all triads such that
 \[(A \rightarrow B), (A \rightarrow C), (C \rightarrow B)\]

- Return all three paths with link types \(\{T_1, T_2, T_3\}\) such that the timestamps of consecutive links overlap by at least 0.5 seconds.

- From Facebook, return the connected subgraph \(G(V, E)\) such that \(G\) includes all the friends of John, the cardinality of \(V\) is minimum, and \(\Sigma \text{NetWorth}(v_i \in V)\) is maximum.
Triads

}
for each node A {
 for each out_edge I of A {
 for each out_edge J of A {
 B = tail of I;
 C = tail of J;

 for each out_edge K of C
 if tail of K == B {... write answer ...}
 }
 }
}
SP2 Benchmarks

- We have written the 12 SP2B queries in C using our graph API.
- Execution time on Cray XMT/2 is from one to three orders magnitude faster than Virtuoso on 3GHz Xeon server.
- Now porting sdb0 to x86 server and cluster systems.
- C code is simple, but:
 - Can we generate it automatically from a high level query language?
 - Can we provide some other more appropriate query interface?
Query 5

Return the names of all persons that occur as author of at least one inproceeding and at least one article.
int PERSON_index = get_Vertex_Index(person);
int ARTICLE_index = get_Vertex_Index(article);
in int INPROC_index = get_Vertex_index(inproc);

int nmbr_Edges = inDegree(PERSON_index);
in_edge_iterator Person_edges = get_InEdges(PERSON_index);

for (i = 0; i < nmbr_Edges; i++) {
 int person = PERSON_edges[i].head;
 int nmbr_Publ = number_edges(person, creator);
 in_edge_iterator Publ_edges = get_InEdges(person, creator);

 for (j = 0; j < nmbr_Publ; j++) {
 int publ_type = edge_Head_Index(Publ_edges[j]);

 if (publ_type == ARTICLE_index) flag |= 1;
 else if (publ_type == INPROC_index) flag |= 2;

 if (flag == 3) {print person; break;}
 }
}

1.29 secs vs. 21 secs in Virtuoso
Conclusions

- Big data graph analytics is fundamentally different than big data science
 - Different algorithms
 - Different challenges
 - Different hardware requirements

- Conventional database systems based tables and join operations are insufficient
 - Data parallel graph crawls can be orders of magnitude faster

- Need new query languages capable of expressing graph analytics operations and compiling to data parallel operations