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Daniel Chavarria, Pacific Northwest National Laboratory
– Open Discussion / Challenge Problems
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– Detecting Community Structure in Dynamic Networks Sanjukta Bhowmick, Shweta Bansal, Kelly Fermoyle, and Padma 

Raghavan, Pennsylvania State University 
– Structure of Large Scale Social Contact Graphs and its Effect on Epidemics Anil Vullikanti, Virginia Polytechnic Institute & 

State University 
f C f G S– High Performance Computing for Large Graph Problems Bruce Hendrickson and Jonathan Berry, Sandia National 
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Social Networks: Spatio-Temporal 
Internation Networks and Graphs (STING)Internation Networks and Graphs (STING)
• Facebook has more than 200 million active users

• Example application: Malcolm Gladwell, in The 
Tipping Point, identifies three personality types that 
play central roles in epidemic/viral spread: p y p / p
Connectors, Mavens, and Salespeople.  We can  
identify, for example, Connectors who are people who 
bridge between social communities.

• Traditional graph partitioning often fails:
– Topology: Interaction graph is low-diameter  and has no good – Topology: Interaction graph is low-diameter, and has no good 

separators
– Irregularity: Communities are not uniform in size
– Overlap: individuals are members of one or more communities
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Open Questions: Algorithmic Kernels for 
Spatio-Temporal Interaction Graphs and Networks (STING)Spatio Temporal Interaction Graphs and Networks (STING)

• Traditional graph theory:
– Graph traversal (e g  breadth-first search)– Graph traversal (e.g. breadth-first search)
– S-T connectivity
– Single-source shortest paths
– All-pairs shortest paths
– Spanning Tree
– Connected Components
– Biconnected Components
– Subgraph isomorphism (pattern matching)
– ….
– Others?
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Graph Analytics for Social Networks

• Are there new graph techniques? Do they 
parallelize? Can the computational systems 
(algorithms, machines) handle massive networks 
with millions to billions of individuals?  Can the 
techniques tolerate noisy data, massive data, 
streaming data, etc. …streaming data, etc. …

• Communities may overlap, exhibit different 
properties and sizes, and be driven by 
different models
– Detect communities (static or emerging)
– Identify important individuals

Detect anomalous behavior– Detect anomalous behavior
– Given a community, find a representative 

member of the community
G f f– Given a set of individuals, find the best 
community that includes them
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Centrality in Massive Social Network Analysis

• Centrality metrics: Quantitative measures to capture the importance of 
person in a social network

– Betweenness is a global index related to shortest paths that traverse 
through the person

– Can be used for community detection as well

• Identifying central nodes in large complex networks is the key metric in a 
number of applications:
– Biological networks, protein-protein interactions
– Sexual networks and AIDS
– Identifying key actors in terrorist networksy g y
– Organizational behavior
– Supply chain management
– Transportation networksp

• Current Social Network Analysis (SNA) packages handle 1,000’s of entities, our 
techniques handle BILLIONS (6+ orders of magnitude larger data sets)
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Betweenness Centrality (BC)

• Key metric in social network analysis
[Freeman ’77, Goh ’02, Newman ’03, Brandes ’03][Freeman 77, Goh 02, Newman 03, Brandes 03]
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BC Algorithms

• Brandes [2003] proposed a faster sequential algorithm for BC on sparse 
graphs

– time and          space for weighted graphs
– time for unweighted graphs

• We designed and implemented the first parallel algorithm:
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• Approximating Betweenness Centrality
[Bader Kintali Madduri Mihail 2007]

– Novel approximation algorithm for determining  the
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betweenness of a specific vertex or edge in a graph
– Adaptive in the number of samples
– Empirical result: At least 20X speedup over exact BC
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Graph: 4K vertices and 32K edges,
System: Sun Fire T2000 (Niagara 1)



IMDB Movie Actor Network (Approx BC)
An undirected graph of 1.54 million vertices (movie actors) and 78 million edges. An 
edge corresponds to a link between two actors, if they have acted together in a movie. 
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HPC Challenges for Massive SNA

• Algorithms that work on complex networks 
f fwith hundreds to thousands of vertices often 

disintegrate on real networks with millions (or 
) f i  more) of vertices 

– For example, betweenness centrality is not 
frobust to noisy data (biased sampling of the 

actual network, missing friendship edges, etc.)
R i  i h  ti g t  th t  ff  – Requires niche computing systems that can offer 
irregular and random access to large global 
address spacesaddress spaces.

David A. Bader 10



k-Betweenness Centrality, BCk

A new twist on betweenness centrality:
Count short paths in addition to shortest pathsCount short paths in addition to shortest paths
Captures wider connectivity information

Applying BC to a real data set:Applying BCk to a real data set:
How do the BC indices behave with increasing k?
Which vertices have zero scores?

(Directed and undirected graphs are different.)

Can we approximating by BCk random sampling?

Scalability on the Cray XMT with RMAT graphs 
(generated by sampling from a Kronecker product).
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k-Betweenness Centrality

Measure centrality of a vertex v by the number of paths 
passing through v between s and t relative to the number of p g g
paths connecting s and t.
High betweenness centrality (BC): many shortest paths
High k-betweenness centrality (BCk): many short paths

All paths no longer than the shortest + parameter k counted.
0-Betweenness centrality is simply betweenness centrality.0 et ee ess ce t a ty s s p y bet ee ess ce t a ty
1-BC also counts paths one step longer than the shortest.

BCk captures more connectivity information with k.
Expensive to compute as k grows, but approximated...

David A. Bader



Betweenness Centrality

v1

v2

How important are v1 and v2?  Use betweenness centrality.
The betweenness centrality of v1, BC(v1):e bet ee ess ce t a ty o 1, C( 1)

Consider shortest paths between any two vertices s, t ≠ v1.
Sum over all such s, t: fraction of paths passing through v1

David A. Bader



BC: Need More Than the Shortest Path?
v1

s t
v2

Consider the view from a particular vertex pair s, t.
Total of five paths, so the st contributions to v1, v2 = 1/5.ota o e pat s, so t e st co t but o s to 1, 2 /5
But there is more redundancy through v2, more nodes 
influence / are influenced by v2...
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k-Betweenness Centrality: Shortest + k

v1

s t
v2

Consider counting paths one longer than the shortest.
Nothing new through v1. Two new paths cross through v2!
k-Betweenness Centrality (BCk):

Consider paths within k of the shortest path. Above is BC1.
0-Betweenneess centrality is regular BC  BC (v) = BC(v)0-Betweenneess centrality is regular BC, BC0(v) = BC(v).
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BCk for k > 0: More Path Information

Exact BCk for k = 0, 1, 2
O  di d b hOn directed web graph
Vertices in increasing 
BCk order BCk order 
(independently)
Large difference going 
from k = 0 to k > 0
Few additional paths 
found in k = 2found in k  2
k > 0 captures more 
path information, 
somewhat converges
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BCk for k > 0: More Path Information

Exact BCk for k = 0, 1, 2k , ,
On directed web graph
Vertices in increasing 
BCk order (by k = 0)
Large difference going 
from k = 0 to k > 0from k = 0 to k > 0
Few additional paths 
found in k = 2
Note how many vertices 
jump from BC0 = 0 to  
BC > 0!BCk > 0!
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Scalability of k-Betweenness Centrality

52x speedup for k=1 on a 64p Cray XMT
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Open Questions

• Improve models for representing massive, dynamic 
social networkssocial networks

• Can we design community structure detection 
algorithms that overcome the serious limitations of algorithms that overcome the serious limitations of 
the current literature (performance, scale, accuracy, 
resolution limits, etc.) eso ut o ts, etc )

• Explore community detection on real data, rather 
than toy networks. Real data is often noisy, y y,
massive, streaming, biased, … 
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Center for Adaptive Supercomputing 
Software (CASS-MT)Software (CASS-MT)

• CASS-MT, launched July 2008
• Pacific-Northwest Lab

– Georgia Tech, Sandia, WA State, Delaware
• The newest breed of supercomputers have hardware set up not just for 

speed, but also to better tackle large networks of seemingly random data. 
And now, a multi-institutional group of researchers has been awarded 
$4 0 illi   d l  f  f  h   A li i  $4.0 million to develop software for these supercomputers. Applications 
include anywhere complex webs of information can be found: from 
internet security and power grid stability to complex biological networks.
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