Parallel Combinatorial BLAS and
Applications in Graph Computations

Aydin Bulug
John R. Gilbert

University of California, Santa Barbara

w 1 ZA N/ /N NINILILD /N0 MNP Lo 1 INNLD 900 0K NNU

Primitives for Graph Computations

By analogy to
numerical
linear algebra,

What would the
combinatorial
BLAS look like?

RS2: Level 1,2 and 3 ELAS

300

2501

Speed in Megaflops
o o s
Qo Qo o

[yl
o

- /ﬂ,éi:j: |BLAS 1

.. - Peak
1BLAS 3

BLAS 2

OO

100 200 300 400 500 600
Order of vectorsmarmnces

BLAS 3 (n-by-n matrix-matrix multiply)
BLAS 2 (n-by-n matrix-vector multiply)
BLAS 1 (sum of scaled n-vectors)

The Case for Primitives

Time (in milliseconds)

10’

10°}

.
oh

-
=N

- -t
o o
LY -
T e

-h
o—a

It takes a “certain” level of expertise to get any kind of
performance in this jungle of parallel computing

« | think you’ll agree with me by the end of the talk :)

What's bandwidth
anyway?

[= === Recursive on CPU
----- Iterative on CPU
— Recursive on GPU

E 1 L
| ==& |terative on CPU
] — Optimized Recursive on GPU

-
-
3
+
4
1
» 4
"’ ~ St 4
z | X
/” 1
-
- |
3

g
-
-
o’
.....
- -
i -
-
-
"‘
>

| can just implement it
(w/ enough coffee)

—— The right primitive !

.~ All pairs shortest
- paths on the GPU

1 1 1 1 1 1 1
95 10 105 1 115 12 125 13

o UCSB

The Case for Sparse Matrices

Many irregular applications contain sufficient coarse-

grained parallelism that can
abstractions at proper level.

ONLY be exploited using

Traditional graph
computations

Graphs in the language of
linear algebra

Data driven. Unpredictable
communication patterns

Fixed communication patterns.
Overlapping opportunities

Irregular and unstructured. Poor
locality of reference

Operations on matrix blocks.
Exploits memory hierarchy

Fine grained data accesses.
Dominated by latency

Coarse grained parallelism.
Bandwidth limited

UCSB

Identification of Primitives

» Sparse matrix-matrix multiplication (SpGEMM)
Most general and challenging parallel primitive.

» Sparse matrix-vector multiplication (SpMV)

» Sparse matrix-transpose-vector multiplication (SpMVT)
Equivalently, multiplication from the left

» Addition and other point-wise operations (SpAdd)
Included in SpGEMM, “proudly” parallel
» Indexing and assignment (SpRef, SpAsgn)

A(l,J) where | and J are arrays of indices
Reduces to SpGEMM

Matrices on semirings, e.g. (x, +), (and, or), (+, min)

UCSB

Why focus on SpGEMM?

0
0

length(l) {

« Graph clustering (Markov, peer pressure)

-

1
0

« Shortest path calculations

 Betweenness centrality

Subgraph / submatrix indexing

« Graph contraction

« Cycle detection

« Multigrid interpolation & restriction

 Colored intersection searching

* Applying constraints in finite element computations

« Context-free parsing ... U C S B

o

Why focus on SpGEMM?

length(l)

oo

-

1
0

NN
Ll J"

« Graph clustering (Markov, peer pressure)

« Shortest path calculations T TR T
- Betweenness centrality R s o)

o Y SRR S I
» Subgraph / submatrix indexing o B ‘,ht
* Graph contraction TR
« Cycle detection wo ’f
+ Multigrid interpolation & restriction Z | f
- Colored intersection searching Nt S Errht

L ..‘“..' st PR SR S LS - . P | fasid
0 S0 100 150 200 250 300 350 400 450 S0

* Applying constraints in finite element computations o

« Context-free parsing ... U C S B
6 ”

Vitals of Combinatorial BLAS

1. Scalability, in the presence of increasing processors,
problem size, and sparsity.

1D 2D

e

N

S

In practice, 2D algorithms have the potential to scale, if implemented
correctly. Overlapping communication, and maintaining load balance are

crucial. U C SB

Sequential Kernel

Standard algorithm is O(nnz+ flops+n) 1

. . n %
n'(dimension) = — .

\/; flops'(work) = flops -
nnz P\/;

nnz'(data size) = —

P
° ~ = % Process
® o
o O o
® ® X () = o .
o o o o
o .
o o . « Strictly O(nnz) data structure

* Quter-product formulation

/ \ Work-efficient

'/\' UCSB

>

Node Level Considerations

Submatrices are hypersparse (i.e. nnz << n)

-
/ C
. nnz = > ()
I I v
pP
blocks<
Average of ¢ nonzeros per column
//

\\ y Total Storage:

Y O(n + nnz) = O(n,/p + nnz)
\/; blocks

* A data structure or algorithm that depends on
the matrix dimension n (e.g. CSR or CSC)
Is asymptotically too wasteful for submatrices

UCSB

Addressing the Load Balance

RMat: Model for graphs with high variance on degrees

 Random permutations are * Asynchronous algorithms
useful. But... have no notion of stages.

* Bulk synchronous algorithms * Qverall, no significant
may still suffer: imbalance.

Total A"E flops by processor

Worst load imbalance by stage 1.02774e+007

18 2
. 4 {7 7080764008
175} 6
& 8 151387164006
17 . O 1 10
C o 124 4
i % 2 56936e+006
165} O o o - 14 :
e = © ° ¢ 16t ; ; o 0
i Q. . : :) 5 10 15

wx = 10277423, rmin = 8319099, avg = 9.1669e+006, total = 2.346726e+009, maxfavg = 1.1

UCSB

0 2 4 B 8 10 12 14 16
Multiplication stage

10

Addressing the Load Balance

RMat: Model for graphs with high variance on degrees

 Random permutations are * Asynchronous algorithms
useful. But... have no notion of stages.

* Bulk synchronous algorithms * Qverall, no significant
may still suffer: imbalance.

Total A"E flops by processor

Worst load imbalance by stage 1.02774e+007

18 :
o 3 47 70807 e+006
175} 6
o B 15.13871e+006
17 r O 1 10
O .]
" o " 12 2.56936e+006
165} O o o - 14 :
o (@] o] C o 16} " 4 i 0 i
6 O : 3 5 10 15 X

0 2 4 6 8 10 12 14 16 i = 10277423, min = 8319099, avg = 9.1669¢+006, total = 2 346726e+009] max/avg = 1.1

Multiplication stage

*

UCSB

10

Scaling Results for SpGEMM

Parallel PSpGEMM Scalability, Rmat-Scale20

20,000 = Asynchronous implementation
o N One-sided MPI-2
g \ * Runs on TACC’s Lonestar cluster
% 10-000 = Dual-core dual-socket
E 5000 \ Intel Xeon 2.66 Ghz
0 | \ | = RMat X RMat product
L 4 16 o4 256 Average degree (nnz/n) = 8

Processors

PSpGEMM Scalability with Increasing Problem Size 64 Processors
5.000

Time (seconds)
N
(&)
o
o

0 1048576 2097152 3145728 4194304
Number of Vertices

11

Vitals of Combinatorial BLAS

2. Generality, of the numeric type of matrix elements,
algebraic operation performed, and the library interface.

Without the language abstraction penalty: C++ Templates

template <class IT, class NT, class DER>
class SpMat;

 Achieve mixed precision arithmetic: Type traits
e Enforcing interface and strong type checking: CRTP

e (General semiring operation: Function Objects

= Abstraction penalty is not just a programming language issue.

= /n particular, view matrices as indexed data structures and stay
away from single element access (Interface should discourage)

UCSB

12

Vitals of Combinatorial BLAS

3. Extendability, of the library while maintaining
compatibility and seamless upgrades.

= Decouple parallel logic from the sequential part.
= Even Boost’ serializable concept might be restrictive (and slow)

Any parallel logic:
asynchronous, bulk synchronous, etc

Commonalities:
- Support the sequential API

- Composed of a number of arrays SpPar<Comm, SpSeq>

A
SpSeq r A

/I \ . }SpSeq

CSC DCSC Tuples

UCSB

13

Applications and Algorithms

Applications

Network Vulnerability Analysis
Combinatorial Algorithms

Betweenness Centralit
Y

Cg(Vv): Among all the shortest paths,

Parallel Combinatorial BLAS what fraction of them pass through
i ?
Ust(l.-)
A typical software stack for an application Cp(v) = z -
enabled with the Combinatorial BLAS sEVELEV st

sFt

Brandes’ algorithm

“ UCSB

Betweenness Centrality using Sparse
Matrices [Robinson, Kepner]

* Adjacency matrix: sparse array w/ nonzeros for graph edges
» Storage-efficient implementation from sparse data structures

* Betweenness Centrality Algorithm:
1.Pick a starting vertex, v
2.Compute shortest paths from v to all other nodes
3.Starting with most distant nodes, roll back and tally paths

UCSB

15

Betweenness Centrality using BFS

© e
« Every iteration, another level of the BFS is
® ® discovered.
T e o « Sparsity is preserved, but sparse matrix

times sparse vector has very little potential
parallelism (has o(hnz) work)

tttt, X+=X UCSB

16

Parallelism: Multiple-source BFS

®
® O o
® O ® O O o
® ® ® o 9 @
o ® ®
® ® O ®
o ®
AT X (ATX).*=X

» Batch processing of multiple source vertices

« Sparse matrix-matrix multiplication => work efficient
» Potential parallelism is much higher

« Same applies to the tallying phase

17

UCSB

Betweenness Centrality on

Combinatorial BLAS

« Semi-basic implementation: 2D matrices, synchronous matrix
multiplication, no overlapping of communication with computation,
some remote DMA, mixed type arithmetic, no template
specialization for boolean matrices

Fundamental trade-off:
Parallelism vs memory usage

60

sy ko . Batch processing greatly

ot broass o helps for large p

40 F

Millions of TEPS

Input: RMAT scale 17

~1M edges only

e Likely to perform better on
large inputs

e Code only a few lines longer
0 — ' than Matlab version

Processors U C S B

20

18

Questions?

UCSB

