
1

Parallel Combinatorial BLAS and
Applications in Graph Computations

Aydın Buluç
John R. Gilbert
University of California, Santa Barbara

SIAM ANNUAL MEETING 2009
July 8, 2009

2

• By analogy to
numerical
linear algebra,

• What would the
combinatorial
BLAS look like?

Primitives for Graph Computations

BLAS 3

BLAS 2
BLAS 1

BLAS 3 (n-by-n matrix-matrix multiply)
BLAS 2 (n-by-n matrix-vector multiply)
BLAS 1 (sum of scaled n-vectors)

Peak

The Case for Primitives

It takes a “certain” level of expertise to get any kind of
performance in this jungle of parallel computing
• I think you’ll agree with me by the end of the talk :)

3

480x

All pairs shortest
paths on the GPU

What’s bandwidth
anyway?

I can just implement it
(w/ enough coffee)

The right primitive !

The Case for Sparse Matrices

• Many irregular applications contain sufficient coarse-
grained parallelism that can ONLY be exploited using
abstractions at proper level.

4

Traditional graph
computations

Graphs in the language of
linear algebra

Data driven. Unpredictable
communication patterns

Fixed communication patterns.
Overlapping opportunities

Irregular and unstructured. Poor
locality of reference

Operations on matrix blocks.
Exploits memory hierarchy

Fine grained data accesses.
Dominated by latency

Coarse grained parallelism.
Bandwidth limited

Identification of Primitives

‣Sparse matrix-matrix multiplication (SpGEMM)
 Most general and challenging parallel primitive.
‣Sparse matrix-vector multiplication (SpMV)
‣Sparse matrix-transpose-vector multiplication (SpMVT)

 Equivalently, multiplication from the left
‣Addition and other point-wise operations (SpAdd)

 Included in SpGEMM, “proudly” parallel
‣ Indexing and assignment (SpRef, SpAsgn)

 A(I,J) where I and J are arrays of indices
 Reduces to SpGEMM

Matrices on semirings, e.g. (×, +), (and, or), (+, min)

5

1 0 0

0 1 0

0 0 1

0 0 0

0 1 0 0

0 0 0 1
=length(I)

m

length(J)

n

x x

Thursday, April 9, 2009

• Graph clustering (Markov, peer pressure)
• Shortest path calculations
• Betweenness centrality
• Subgraph / submatrix indexing
• Graph contraction
• Cycle detection
• Multigrid interpolation & restriction
• Colored intersection searching
• Applying constraints in finite element computations
• Context-free parsing ...

6

Why focus on SpGEMM?

1 0 0

0 1 0

0 0 1

0 0 0

0 1 0 0

0 0 0 1
=length(I)

m

length(J)

n

x x

Thursday, April 9, 2009

• Graph clustering (Markov, peer pressure)
• Shortest path calculations
• Betweenness centrality
• Subgraph / submatrix indexing
• Graph contraction
• Cycle detection
• Multigrid interpolation & restriction
• Colored intersection searching
• Applying constraints in finite element computations
• Context-free parsing ...

6

Why focus on SpGEMM?

Vitals of Combinatorial BLAS

1. Scalability, in the presence of increasing processors,
problem size, and sparsity.

7

Distributed Memory Combinatorial BLAS

Parallel Primitives for Computation with Large Graphs
Aydın Buluç (Advisor: John R.Gilbert)

Combinatorial Scientific Computing Laboratory (http://gauss.cs.ucsb.edu)

Department of Computer Science, University of California at Santa Barbara

REFERENCES:

1.Aydın Buluç and John R. Gilbert, “On the Representation and Multiplication of Hypersparse
Matrices”. The 22nd IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2008), Miami, FL, April 14-18, 2008

2.Aydın Buluç and John R. Gilbert, “Challenges and Advances in Parallel Sparse Matrix-Matrix
Multiplication”. The 37th International Conference on Parallel Processing (ICPP 2008),
Portland, Oregon, USA, 2008.

3.Aydın Buluç, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert, Charles E. Leiserson,
“Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication using Compressed
Sparse Blocks”. The 21st ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA 2009), Calgary, Canada, 2009

4.Aydın Buluç, John R. Gilbert, and Ceren Budak, “Gaussian Elimination Based Algorithms on
the GPU”. Under review for the Special Issue of Parallel Computing on Parallel Matrix
Algorithms and Applications (available as Technical Report UCSB/CS-2008-15).

! Sparse matrix-matrix multiplication (SpGEMM)

 Most general and challenging parallel primitive.

! Sparse matrix-vector multiplication (SpMV)

! Sparse matrix-transpose-vector multiplication (SpMVT)

 Equivalently, multiplication from the left

! Addition and other point-wise operations (SpAdd)

 Included in SpGEMM

! Indexing and assignment (SpRef, SpAsgn)

 A(I,J) where I and J are arrays of indices

 Reduces to SpGEMM

 Matrices on semirings, e.g. (!, +), (and, or), (+, min)

y′ ← x′A

Combinatorial BLAS:

Linear Algebraic Primitives for Graphs

0

1000

2000

3000

4000

5000

0

2

4

6

8

10

12

x 10
5

0

200

400

600

800

1000

1200

0

1000

2000

3000

4000

5000

0

2

4

6

8

10

12

x 10
5

0

10

20

30

40

50

60

70

O(n + nnz)→ O(n
√

p + nnz)

N P

1D 2D

N
P

nnz′ =
c
√

p
→ 0

Estimated Speedup (Ideal) of 1D and 2D SpGEMM algorithms

blocks

blocks

Average of c
nonzeros per
column

In 2D, submatrices are hypersparse (nnz << n)

Parallel Data Distribution : Where does the data reside?

! A data structure or algorithm that depends on the matrix dimension n

(such as CSR/ CSC) is asymptotically too wasteful for submatrices.

! CSC and CSR are vertex based data structures, isomorphic to adjacency list

representation, while the 2D distribution is based on edges.

! Our new data structure (DCSC) and sequential kernels solve this problem.

Result: work-efficient parallel algorithm.

! Scalable sequential kernel uses novel ideas such as outer-product matrix

multiplication with heap-assisted multi-way merging

! 2D algorithms have the potential to scale, if implemented correctly. Sparse matrix

additions, overlapping communication, and maintaining load balance are crucial.

! Actual break-even point between 1D and 2D algorithms is around 50 processors.

Performance of 1D algorithms flattens out around 40 processors.

If local submatrices are

stored in CSC/CSR format,

total storage grows from

DCSC<IT,NT>

Remote get
using MPI-2

Sparse2D<IT,NT> O(nnz)

Parallelism is decoupled from the sequential kernels. Any sequential data
structure that implements minimal set of functions can be used by the
parallel sparse matrix class.Operations between any type of matrices
(mixed-precision) and over any semiring are natively supported through
type-traits and function objects.

Distributed Memory SpGEMM

Load balance is achieved through symmetric random permutations, and

asynchronous computation without the notion of stages. Overlapping

communication with computation is crucial (achieved through one sided

operations and RDMA support), because both communication and computation

costs increase at the same rate as the problem size increases (unlike dense

GEMM). For portability, we use MPI-2’s passive target one-sided communication

support. The algorithm avoids hot spots, i.e. with very high probability, a block is

accessed at most by a single remote get operation at any given time

 Significant load imbalance remains within synchronous stages, even after random
permutation. An asynchronous algorithm does not suffer because the overall load on
each processor is even when there are no stages (Test on RMAT matrices of scale 19)

Design Principles for Combinatorial BLAS

0 2 4 6 8 10 12 14 16
1.76

1.78

1.8

1.82

1.84

1.86

1.88

1.9

1.92
Worst load imbalance by stage

Multiplication stage

Total A*B flops by processor

max = 3994885, min = 3359369, avg = 3.6383e+06, total = 931405996, max/avg = 1.1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
0

998721

1.99744e+06

2.99616e+06

3.99488e+06

Multicore Combinatorial BLAS

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8

M
F

lo
p

s
/s

e
c

Processors

CSB_SpMV
CSB_SpMV_T

CSR_SpMV(Serial)
CSR_SpMV_T(Serial)

Star-P(y=Ax)
Star-P(y’=x’A)

Compressed Sparse Blocks (CSB) for representing sparse matrices requires

only n+nnz space for indices like CSR/CSR, but it is more symmetric than both.

Because it does not favor rows over columns or vice versa, CSB admits a

parallel algorithm which is efficient for computing either Ax or ATx, as well as for

computing Ax when A is symmetric and only half the matrix needs to be stored.

Average performance of Ax and ATx operations on a benchmark suite of 13 different
(mostly irregular) sparse matrices. CSB_SpMV and CSB_SpMV use compressed
sparse blocks to perform Ax and ATx, respectively. CSR_SpMV and CSR_SpMVT
use OSKI and compressed sparse rows without any matrix-specific optimizations.
Star-P (y=Ax) and Star-P (yT=xTA) use Star-P, a parallel code based on CSR.
Experiments were run on a ccNUMA architecture powered by AMD Opteron 8214
(Santa Rosa) processors

Scalable algorithms for SpMV (Ax) and SpMVT (ATx) with work and

sqrtnlogn span, yield ample parallelism. No parallelism overheads, runs

comparably fast to CSR/CSC on one processor and scales up linearly until

memory-bandwidth limitations are encountered. It remains to be seen whether

CSB can be used effectively to parallelize sparse matrix-matrix multiplication on

multicore and shared-memory architectures.

θ(
√

n log n)
θ(nnz)

A symmetric sparse matrix data structure: CSB

1 0 0

0 1 0

0 0 1

0 0 0

0 1 0 0

0 0 0 1
=length(I)

m

length(J)

n

x x

Thursday, April 9, 2009

Sparse matrix indexing (SpRef) using mixed-mode sparse matrix-matrix multiplication
(SpGEMM). On an m-by-n matrix A, the SpRef operation A(I,J) extracts a submatrix
of size length(I) x length(J), where I is a vector of row indices and J is a vector of
column indices. The example shows the operation for A([1,3],[0,1,2]). It performs two
SpGEMM operations between a boolean matrix and a floating point matrix.

XAT ATX

"

1 2

3

4
7

6

5

Simultaneous breadth-first search from multiple vertices

Space efficiency achieved through the sparse array representation. Work efficiency

achieved using sparse matrix-matrix multiplication (SpGEMM). Load balance

depends on SpGEMM implementation. It can also be performed by sparse matrix-

vector multiplication with multiple right-hand-side vectors where A is streamed just

once for multiple dense vectors, albeit paying less attention to sparsity.

Landscape connectivity modeling using KDT,
a toolbox for graph analysis and pattern
discovery by G, Reinhardt, Shah, uses
SpGEMM in building the connectivity graph.
[Image courtesy of Brad McRae, NCEAS]

! Graph Clustering

 Markov Cluster Algorithm (MCL)

 Clustering by peer pressure

! Betweenness Centrality

Uses breadth-first search

from multiple source vertices

! Subgraph Extraction

Uses sparse matrix indexing

! Graph Contraction

! Shortest Path Computations

! Multigrid Interpolation & Restriction

! Context-free Parsing

! Cycle Detection

! Interior point methods (ATA)

! Colored intersection searching

! Applying Constraints in Finite Element Computations

SpGEMM Applications

The Markov cluster algorithm (MCL) performs a
random walk using SpGEMM. [Stijn van Dongen,

The Wellcome Trust Sanger Institute, http://micans.org]

0

5.000

10.000

15.000

20.000

1 4 16 64 256

Parallel PSpGEMM Scalability, Rmat-Scale20

T
im

e
 (

s
e
c
o

n
d

s
)

Processors

 Parallel scalability of PSpGEMM with increasing number of processors. The
product of two RMAT (Recursive MATrix generator) matrices is computed in parallel.
RMAT is a synthetic graph generator that reproduces the power-law degrees of real-
world graphs such as the internet graph, citations graph, etc.

SpGEMM Scalability on Lonestar (TACC)

0

1.250

2.500

3.750

5.000

0 1048576 2097152 3145728 4194304

PSpGEMM Scalability with Increasing Problem Size, 64 Processors

T
im

e
 (

s
e

c
o

n
d

s
)

Number of Vertices

 Scalability of Parallel SpGEMM implementation with increasing problem size.
Experiment was conducted with RMAT matrices of scale from 17 to 22. The
sparsity is kept constant at nnz = 8n (i.e., average vertex degree in the
corresponding graph is 8).

FINANCIAL SUPPORT:

Parts of this work was supported by MIT Lincoln Laboratory under contract number
7000012980, the Department of Energy under award number DE-FG02-04ER25632, the
National Science Foundation under award number 0709385 and through TeraGrid
resources provided by Texas Advanced Computing Center.

Wednesday, May 20, 2009

In practice, 2D algorithms have the potential to scale, if implemented
correctly. Overlapping communication, and maintaining load balance are
crucial.

8

Sequential Kernel

• Strictly O(nnz) data structure
• Outer-product formulation
• Work-efficient

X

flops

nnz

n

Standard algorithm is O(nnz+ flops+n)

O(n + nnz)⇒ O(n√p + nnz)

nnz′ = c√
p → 0

9

 Submatrices are hypersparse (i.e. nnz << n)

blocks

blocks

Total Storage:

Average of c nonzeros per column

• A data structure or algorithm that depends on
the matrix dimension n (e.g. CSR or CSC)
is asymptotically too wasteful for submatrices

Node Level Considerations

10

Addressing the Load Balance

• Random permutations are
useful. But...

• Bulk synchronous algorithms
may still suffer:

• Asynchronous algorithms
have no notion of stages.

• Overall, no significant
imbalance.

RMat: Model for graphs with high variance on degrees

10

Addressing the Load Balance

• Random permutations are
useful. But...

• Bulk synchronous algorithms
may still suffer:

• Asynchronous algorithms
have no notion of stages.

• Overall, no significant
imbalance.

RMat: Model for graphs with high variance on degrees

Scaling Results for SpGEMM

11

0

5.000

10.000

15.000

20.000

1 4 16 64 256

Parallel PSpGEMM Scalability, Rmat-Scale20

Ti
m

e
(s

ec
on

ds
)

Processors

 Asynchronous implementation

 One-sided MPI-2

 Runs on TACC’s Lonestar cluster

 Dual-core dual-socket

 Intel Xeon 2.66 Ghz

 RMat X RMat product

 Average degree (nnz/n) ≈ 8

0

1.250

2.500

3.750

5.000

0 1048576 2097152 3145728 4194304

PSpGEMM Scalability with Increasing Problem Size 64 Processors

Ti
m

e
(s

ec
on

ds
)

Number of Vertices

2. Generality, of the numeric type of matrix elements,
algebraic operation performed, and the library interface.
Without the language abstraction penalty: C++ Templates

• Achieve mixed precision arithmetic: Type traits

• Enforcing interface and strong type checking: CRTP

• General semiring operation: Function Objects

Vitals of Combinatorial BLAS

12

template <class IT, class NT, class DER>
class SpMat;

➡Abstraction penalty is not just a programming language issue.

➡ In particular, view matrices as indexed data structures and stay
away from single element access (Interface should discourage)

Vitals of Combinatorial BLAS

3. Extendability, of the library while maintaining
compatibility and seamless upgrades.
➡ Decouple parallel logic from the sequential part.
➡ Even Boost’ serializable concept might be restrictive (and slow)

13

TuplesCSC DCSC

SpSeq

Commonalities:
- Support the sequential API
- Composed of a number of arrays

SpSeq

SpPar<Comm, SpSeq>

Any parallel logic:
asynchronous, bulk synchronous, etc

Applications and Algorithms

14

Parallel Combinatorial BLAS

SpGEMM SpRef/SpAsgn SpMV SpAdd

Combinatorial Algorithms

Betweenness Centrality Graph Clustering Contraction

Applications

 Community Detection Network Vulnerability Analysis

Wednesday, April 8, 2009

Betweenness Centrality
CB(v): Among all the shortest paths,
what fraction of them pass through
the node of interest?

Brandes’ algorithm

A typical software stack for an application
enabled with the Combinatorial BLAS

15

Betweenness Centrality using Sparse
Matrices [Robinson, Kepner]

• Adjacency matrix: sparse array w/ nonzeros for graph edges
• Storage-efficient implementation from sparse data structures
• Betweenness Centrality Algorithm:

1.Pick a starting vertex, v
2.Compute shortest paths from v to all other nodes
3.Starting with most distant nodes, roll back and tally paths

x

1 2

3

4 7

6

5

AT

16

Betweenness Centrality using BFS

x

(ATx).*¬x
1 2

3

4 7

6

5

AT

x

T

t1 t2 t3 t4 x += x~

• Every iteration, another level of the BFS is
discovered.

• Sparsity is preserved, but sparse matrix
times sparse vector has very little potential
parallelism (has o(nnz) work)

17

6

XAT (ATX).*¬X

1 2

3

4 7 5

Parallelism: Multiple-source BFS

• Batch processing of multiple source vertices
• Sparse matrix-matrix multiplication => work efficient
• Potential parallelism is much higher
• Same applies to the tallying phase

• Semi-basic implementation: 2D matrices, synchronous matrix
multiplication, no overlapping of communication with computation,
some remote DMA, mixed type arithmetic, no template
specialization for boolean matrices

Betweenness Centrality on
Combinatorial BLAS

18

Fundamental trade-off:
Parallelism vs memory usage

Batch processing greatly
helps for large p

Input: RMAT scale 17
~1M edges only
• Likely to perform better on
large inputs
• Code only a few lines longer
than Matlab version 0

 20

 40

 60

 4 16 64

M
ill

io
n

s
 o

f
T

E
P

S

Processors

batch/proc=4
batch/proc=8

batch/proc=16
batch/proc=32

19

Thank You !

Questions?

