

Parallel Combinatorial BLAS and Applications in Graph Computations

Aydın Buluç John R. Gilbert University of California, Santa Barbara

SIAM ANNUAL MEETING 2009 July 8, 2009

Primitives for Graph Computations

• By analogy to numerical linear algebra,

What would the combinatorial BLAS look like?

The Case for Primitives

It takes a "certain" level of expertise to get any kind of performance in this jungle of parallel computing

• I think you'll agree with me by the end of the talk :)

The Case for Sparse Matrices

 Many irregular applications contain sufficient coarsegrained parallelism that can ONLY be exploited using abstractions at proper level.

Traditional graph computations	Graphs in the language of linear algebra
Data driven. Unpredictable communication patterns	Fixed communication patterns. Overlapping opportunities
Irregular and unstructured. Poor locality of reference	Operations on matrix blocks. Exploits memory hierarchy
Fine grained data accesses. Dominated by latency	Coarse grained parallelism. Bandwidth limited

Identification of Primitives

- Sparse matrix-matrix multiplication (SpGEMM) Most general and challenging parallel primitive.
- Sparse matrix-vector multiplication (SpMV)
- Sparse matrix-transpose-vector multiplication (SpMVT)
 Equivalently, multiplication from the left
- Addition and other point-wise operations (SpAdd) Included in SpGEMM, "proudly" parallel
- Indexing and assignment (SpRef, SpAsgn)

A(I,J) where I and J are arrays of indices Reduces to SpGEMM

Matrices on semirings, e.g. (x, +), (and, or), (+, min)

Why focus on SpGEMM?

- Graph clustering (Markov, peer pressure)
- Shortest path calculations
- Betweenness centrality
- Subgraph / submatrix indexing
- Graph contraction
- Cycle detection
- Thursday, April 9, 2009
 - Multigrid interpolation & restriction
 - Colored intersection searching
 - Applying constraints in finite element computations
 - Context-free parsing ...

Why focus on SpGEMM?

- Graph clustering (Markov, peer pressure)
- Shortest path calculations
- Betweenness centrality
- Subgraph / submatrix indexing
- Graph contraction
- Cycle detection
- Thursday, April 9, 2009
 - Multigrid interpolation & restriction
 - Colored intersection searching
 - Applying constraints in finite element computations
 - Context-free parsing ...

Vitals of Combinatorial BLAS

1. **Scalability**, in the presence of increasing *processors*, *problem size*, and *sparsity*.

In practice, 2D algorithms have <u>the potential</u> to scale, if implemented correctly. Overlapping communication, and maintaining load balance are crucial.

Sequential Kernel

flops

n

Submatrices are *hypersparse* (*i.e. nnz* << *n*)

 A data structure or algorithm that depends on the matrix dimension n (e.g. CSR or CSC) is asymptotically too wasteful for submatrices **RMat:** Model for graphs with high variance on degrees

- Random permutations are useful. But...
- Bulk synchronous algorithms
 may still suffer:
- <u>Asynchronous</u> algorithms have <u>no notion of stages</u>.
- Overall, no significant imbalance.

RMat: Model for graphs with high variance on degrees

- Random permutations are useful. But...
- Bulk synchronous algorithms
 may still suffer:
- <u>Asynchronous</u> algorithms have <u>no notion of stages</u>.
- Overall, no significant imbalance.

Scaling Results for SpGEMM

PSpGEMM Scalability with Increasing Problem Size 64 Processors

- Asynchronous implementation
 One-sided MPI-2
- Runs on TACC's Lonestar cluster
- Dual-core dual-socket
 Intel Xeon 2.66 Ghz
- RMat X RMat product

Average degree $(nnz/n) \approx 8$

Vitals of Combinatorial BLAS

2. **Generality**, of the numeric type of matrix elements, algebraic operation performed, and the library interface.

Without the language abstraction penalty: C++ Templates

template <class IT, class NT, class DER> class SpMat;

- Achieve mixed precision arithmetic: Type traits
- Enforcing interface and strong type checking: CRTP
- General semiring operation: Function Objects
 - Abstraction penalty is not just a programming language issue.
 - In particular, view matrices as indexed data structures and stay away from single element access (Interface should discourage)

Vitals of Combinatorial BLAS

- 3. Extendability, of the library while maintaining compatibility and seamless upgrades.
 - Decouple parallel logic from the sequential part.
 - Even Boost' serializable concept might be restrictive (and slow)

Commonalities:

- Support the sequential API
- Composed of a number of arrays

Any parallel logic:

asynchronous, bulk synchronous, etc

SpPar<Comm, SpSeq>

Applications and Algorithms

Applications					
Community	Detection	Network Vulnerability Analysis			
Combinatorial Algorithms					
Betweenness Centrality Graph Cluster			Clustering	Contraction	
Parallel Combinatorial BLAS					
SpGEMM	SpRef/SpAsgn		SpMV	SpAdd	

A typical software stack for an application enabled with the Combinatorial BLAS

Betweenness Centrality

 $C_B(v)$: Among all the shortest paths, what fraction of them pass through the node of interest?

$$C_B(v) = \sum_{\substack{s \neq v \neq t \in V \\ s \neq t}} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

Brandes' algorithm

Betweenness Centrality using Sparse Matrices [Robinson, Kepner]

- Adjacency matrix: sparse array w/ nonzeros for graph edges
- Storage-efficient implementation from sparse data structures
- Betweenness Centrality Algorithm:

1. Pick a starting vertex, v

2.Compute shortest paths from v to all other nodes

3.Starting with most distant nodes, roll back and tally paths

Betweenness Centrality using BFS

Parallelism: Multiple-source BFS

- Batch processing of multiple source vertices
- Sparse matrix-matrix multiplication => work efficient
- Potential parallelism is much higher
- Same applies to the tallying phase

Betweenness Centrality on Combinatorial BLAS

 <u>Semi-basic implementation</u>: 2D matrices, synchronous matrix multiplication, no overlapping of communication with computation, some remote DMA, mixed type arithmetic, no template specialization for boolean matrices
 Fundamental trade-off:

Questions?

