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• By analogy to 
numerical 
linear algebra,

• What would the 
combinatorial 
BLAS look like?

Primitives for Graph Computations

BLAS 3

BLAS 2
BLAS 1

BLAS 3 (n-by-n matrix-matrix multiply) 
BLAS 2 (n-by-n matrix-vector multiply) 
BLAS 1 (sum of scaled n-vectors)

Peak



The Case for Primitives

It takes a “certain” level of expertise to get any kind of 
performance in this jungle of parallel computing  
• I think you’ll agree with me by the end of the talk :)
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480x

All pairs shortest 
paths on the GPU

What’s bandwidth 
anyway?

I can just implement it 
(w/ enough coffee)

The right primitive !



The Case for Sparse Matrices

• Many irregular applications contain sufficient coarse-
grained parallelism that can ONLY be exploited using 
abstractions at proper level.
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Traditional graph 
computations

Graphs in the language of 
linear algebra

Data driven. Unpredictable 
communication patterns

Fixed communication patterns. 
Overlapping opportunities

Irregular and unstructured. Poor 
locality of reference

Operations on matrix blocks. 
Exploits memory hierarchy

Fine grained data accesses. 
Dominated by latency

Coarse grained parallelism. 
Bandwidth limited



Identification of Primitives

‣Sparse matrix-matrix multiplication (SpGEMM) 
          Most general and challenging parallel primitive.
‣Sparse matrix-vector multiplication (SpMV) 
‣Sparse matrix-transpose-vector multiplication (SpMVT)

          Equivalently, multiplication from the left 
‣Addition and other point-wise operations (SpAdd)

         Included in SpGEMM, “proudly” parallel
‣ Indexing and assignment (SpRef, SpAsgn)

         A(I,J)  where I and J are arrays of indices
          Reduces to SpGEMM

Matrices on semirings, e.g. (×, +), (and, or), (+, min)
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• Graph clustering (Markov, peer pressure)
• Shortest path calculations 
• Betweenness centrality
• Subgraph / submatrix indexing
• Graph contraction
• Cycle detection
• Multigrid interpolation & restriction
• Colored intersection searching
• Applying constraints in finite element computations
• Context-free parsing ...
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Why focus on SpGEMM?
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Why focus on SpGEMM?



Vitals of Combinatorial BLAS

1. Scalability, in the presence of increasing processors, 
problem size, and sparsity.
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Distributed Memory Combinatorial BLAS
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! Sparse matrix-matrix multiplication (SpGEMM) 

         Most general and challenging parallel primitive.

! Sparse matrix-vector multiplication (SpMV) 

! Sparse matrix-transpose-vector multiplication (SpMVT)

         Equivalently, multiplication from the left 

! Addition and other point-wise operations (SpAdd)

         Included in SpGEMM

! Indexing and assignment (SpRef, SpAsgn)

         A(I,J)  where I and J are arrays of indices

         Reduces to SpGEMM

   Matrices on semirings, e.g. (!, +), (and, or), (+, min)

y′ ← x′A

Combinatorial BLAS:

Linear Algebraic Primitives for Graphs
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Estimated Speedup (Ideal) of  1D and 2D SpGEMM algorithms
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column

In 2D, submatrices are hypersparse  (nnz << n)

Parallel Data Distribution :   Where does the data reside?    

! A data structure or algorithm that depends on the matrix dimension n 

(such as CSR/ CSC) is asymptotically too wasteful for submatrices.

! CSC and CSR are vertex based data structures, isomorphic to adjacency list 

representation, while the 2D distribution is based on edges. 

! Our new data structure (DCSC) and sequential kernels solve this problem. 

Result: work-efficient parallel algorithm.

! Scalable sequential kernel uses novel ideas such as outer-product matrix 

multiplication with heap-assisted multi-way merging

! 2D algorithms have the potential to scale, if  implemented correctly.  Sparse matrix 

additions, overlapping communication, and maintaining load balance are crucial. 

! Actual break-even point between 1D and 2D algorithms is around 50 processors. 

Performance of  1D algorithms flattens out around 40 processors.

If  local submatrices are

stored in CSC/CSR format,

total storage grows from

DCSC<IT,NT>

Remote get 
using MPI-2 

Sparse2D<IT,NT>  O(nnz)

Parallelism is decoupled from the sequential kernels. Any sequential data 
structure that implements minimal set of functions can be used by the 
parallel sparse matrix class.Operations between any type of matrices 
(mixed-precision) and over any semiring are natively supported through 
type-traits and function objects. 

Distributed Memory SpGEMM 

Load balance is achieved through symmetric random permutations, and 

asynchronous computation without the notion of stages. Overlapping 

communication with computation is crucial (achieved through one sided 

operations and RDMA support), because both communication and computation 

costs increase at the same rate as the problem size increases (unlike dense 

GEMM). For portability, we use MPI-2’s passive target one-sided communication 

support. The algorithm avoids hot spots, i.e. with very high probability, a block is 

accessed at most by a single remote get operation at any given time 

 Significant load imbalance remains within synchronous stages, even after random 
permutation.  An asynchronous algorithm does not suffer because the overall load on 
each processor is even when there are no stages (Test on RMAT matrices of scale 19)

Design Principles for Combinatorial BLAS
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Compressed Sparse Blocks (CSB) for representing sparse matrices requires 

only n+nnz space for indices like CSR/CSR, but it is more symmetric than both. 

Because it does not favor rows over columns or vice versa, CSB admits a 

parallel algorithm which is efficient for computing either Ax or ATx, as well as for 

computing Ax when A is symmetric and only half the matrix needs to be stored.

Average performance of Ax and ATx operations on a benchmark suite of 13 different 
(mostly irregular) sparse matrices. CSB_SpMV and CSB_SpMV use compressed 
sparse blocks to perform Ax and ATx, respectively. CSR_SpMV and CSR_SpMVT 
use OSKI and compressed sparse rows without any matrix-specific optimizations. 
Star-P (y=Ax) and Star-P (yT=xTA) use Star-P, a parallel code based on CSR. 
Experiments were run on a ccNUMA architecture powered by AMD Opteron 8214 
(Santa Rosa) processors

Scalable algorithms for SpMV (Ax) and SpMVT (ATx) with                work and        

sqrtnlogn          span, yield ample parallelism. No parallelism overheads, runs 

comparably fast to CSR/CSC on one processor and scales up linearly until 

memory-bandwidth limitations are encountered. It remains to be seen whether 

CSB can be used effectively to parallelize sparse matrix-matrix multiplication on 

multicore and shared-memory architectures.

θ(
√

n log n)
θ(nnz )

A symmetric sparse matrix data structure: CSB
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Sparse matrix indexing (SpRef) using mixed-mode sparse matrix-matrix multiplication 
(SpGEMM). On an m-by-n matrix A, the SpRef operation A(I,J) extracts a submatrix 
of size length(I) x length(J), where I is a vector of row indices and J is a vector of 
column indices. The example shows the operation for A([1,3],[0,1,2]). It performs two 
SpGEMM operations between a boolean matrix and a floating point matrix. 

XAT ATX
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Simultaneous breadth-first search from multiple vertices

Space efficiency achieved through the sparse array representation.  Work efficiency 

achieved using sparse matrix-matrix multiplication (SpGEMM).  Load balance 

depends on SpGEMM implementation. It can also be performed by sparse matrix-

vector multiplication with multiple right-hand-side vectors where A is streamed just 

once for multiple dense vectors, albeit paying less attention to sparsity. 

 

Landscape connectivity modeling using KDT, 
a toolbox for graph analysis and pattern 
discovery by G, Reinhardt, Shah, uses 
SpGEMM in building the connectivity graph. 
[Image courtesy of Brad McRae, NCEAS]

! Graph Clustering

          Markov Cluster Algorithm (MCL) 

         Clustering by peer pressure

! Betweenness Centrality

Uses breadth-first search 

from multiple source vertices

! Subgraph Extraction

Uses sparse matrix indexing

! Graph Contraction

! Shortest Path Computations

! Multigrid Interpolation & Restriction

! Context-free Parsing

! Cycle Detection

! Interior point methods (ATA)

! Colored intersection searching

! Applying Constraints in Finite Element Computations

SpGEMM Applications

The Markov cluster algorithm (MCL) performs a 
random walk using SpGEMM. [Stijn van Dongen, 

The Wellcome Trust Sanger Institute, http://micans.org]
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 Parallel scalability of PSpGEMM with increasing number of processors. The 
product of two RMAT (Recursive MATrix generator) matrices is computed in parallel. 
RMAT is a synthetic graph generator that reproduces the power-law degrees of real-
world graphs such as the internet graph, citations graph, etc.  

SpGEMM Scalability on Lonestar (TACC) 
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 Scalability of Parallel SpGEMM implementation with increasing problem size. 
Experiment was conducted with RMAT matrices of scale from 17 to 22. The 
sparsity is kept constant at nnz = 8n (i.e., average vertex degree in the 
corresponding graph is 8).

FINANCIAL SUPPORT:

Parts of this work was supported by MIT Lincoln Laboratory under contract number 
7000012980, the Department of Energy under award number DE-FG02-04ER25632, the 
National Science Foundation under award number 0709385 and through TeraGrid 
resources provided by Texas Advanced Computing Center.

Wednesday, May 20, 2009

In practice, 2D algorithms have the potential to scale, if  implemented 
correctly.  Overlapping communication, and maintaining load balance are 
crucial. 
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Sequential Kernel 

• Strictly O(nnz) data structure 
• Outer-product formulation 
• Work-efficient

X

flops

nnz

n

Standard algorithm is O(nnz+ flops+n)



O(n + nnz)⇒ O(n√p + nnz)

nnz′ = c√
p → 0
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 Submatrices are hypersparse  (i.e. nnz << n)

blocks

             
blocks

Total Storage: 

Average of c nonzeros per column

• A data structure or algorithm that depends on 
the matrix dimension n (e.g. CSR or CSC) 
is asymptotically too wasteful for submatrices

Node Level Considerations
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Addressing the Load Balance

• Random permutations are 
useful. But...

• Bulk synchronous algorithms 
may still suffer:

• Asynchronous algorithms 
have no notion of stages.

• Overall, no significant 
imbalance.

RMat: Model for graphs with high variance on degrees
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Scaling Results for SpGEMM
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2. Generality, of the numeric type of matrix elements, 
algebraic operation performed, and the library interface.
Without the language abstraction penalty: C++ Templates

• Achieve mixed precision arithmetic: Type traits

• Enforcing interface and strong type checking: CRTP

• General semiring operation: Function Objects

Vitals of Combinatorial BLAS
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template <class IT, class NT, class DER>
class SpMat;

➡Abstraction penalty is not just a programming language issue.

➡ In particular, view matrices as indexed data structures and stay 
away from single element access (Interface should discourage)



Vitals of Combinatorial BLAS

3. Extendability, of the library while maintaining 
compatibility and seamless upgrades.
➡ Decouple parallel logic from the sequential part. 
➡ Even Boost’ serializable concept might be restrictive (and slow)

13

TuplesCSC DCSC

SpSeq

Commonalities:
- Support the sequential API
- Composed of a number of arrays

SpSeq

SpPar<Comm, SpSeq>

Any parallel logic: 
asynchronous, bulk synchronous, etc



Applications and Algorithms
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Parallel Combinatorial BLAS

SpGEMM SpRef/SpAsgn SpMV SpAdd

Combinatorial Algorithms

Betweenness Centrality Graph Clustering Contraction

Applications

 Community Detection Network Vulnerability Analysis

Wednesday, April 8, 2009

Betweenness Centrality
CB(v): Among all the shortest paths, 
what fraction of them pass through 
the node of interest?

Brandes’ algorithm

A typical software stack for an application 
enabled with the Combinatorial BLAS
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Betweenness Centrality using Sparse 
Matrices [Robinson, Kepner]

• Adjacency matrix:  sparse array w/ nonzeros for graph edges
• Storage-efficient implementation from sparse data structures
• Betweenness Centrality Algorithm:

1.Pick a starting vertex, v  
2.Compute shortest paths from v to all other nodes
3.Starting with most distant nodes, roll back and tally paths
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Betweenness Centrality using BFS

x

(ATx).*¬x
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x

T

t1 t2 t3 t4 x += x~

• Every iteration, another level of the BFS is 
discovered. 

• Sparsity is preserved, but sparse matrix 
times sparse vector has very little potential 
parallelism (has o(nnz) work)
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6

XAT (ATX).*¬X
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4 7 5

Parallelism: Multiple-source BFS

• Batch processing of multiple source vertices 
• Sparse matrix-matrix multiplication => work efficient
• Potential parallelism is much higher
• Same applies to the tallying phase



• Semi-basic implementation: 2D matrices, synchronous matrix 
multiplication, no overlapping of communication with computation, 
some remote DMA, mixed type arithmetic, no template 
specialization for boolean matrices

Betweenness Centrality on 
Combinatorial BLAS
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Fundamental trade-off:
Parallelism vs memory usage

Batch processing greatly 
helps for large p

Input: RMAT scale 17
~1M edges only
• Likely to perform better on 
large inputs
• Code only a few lines longer 
than Matlab version 0
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Thank You !

Questions?


