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Sources of massive data: petascale simulations, experimental devices, 

the Internet, scientific applications.

Graphs are pervasive in large-scale data analysis

Cosmology
Application: Outlier detection. 

Challenges: petascale datasets.

Graph problems: clustering, 

matching. 

Bioinformatics
Application: Identifying drug 

target proteins.

Challenges: Data heterogeneity, 

quality.

Graph problems: centrality, 

clustering.

Social Informatics
Application: Discover emergent 

communities, model spread of 

information.

Challenges: new analytics routines, 

uncertainty in data.

Graph problems: clustering, 

shortest paths, flows. 

Image sources: (1) http://physics.nmt.edu/images/astro/hst_starfield.jpg, (2,3) www.visualComplexity.com

New challenges for analysis: data sizes, heterogeneity, uncertainty, 

data quality, and dynamic/temporal nature of data.

http://physics.nmt.edu/images/astro/hst_starfield.jpg


Strategies to speed up graph-traversal based 

algorithms on current and emerging cache-

based multicore systems. 

• A closer look at parallel Breadth-First Search 

(BFS) on current systems.

• The techniques and their applicability:
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Problem Size (Log2 # of vertices)
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Serial Performance of “approximate betweenness centrality” on a 

2.67 GHz Intel Xeon 5560 (12 GB RAM, 8MB L3 cache)

Input: Synthetic R-MAT graphs (# of edges m = 8n)

The problems: #1. The locality challenge

“Large memory footprint, low spatial and temporal   

locality impede performance”

~ 5X drop in 

performance

No LLC misses

O(m) LLC misses



• Graph topology assumptions in classical algorithms do 

not match real-world datasets

• Parallelization strategies at loggerheads with techniques 

for enhancing memory locality

• Classical “work-efficient” graph algorithms may not fully 

exploit new architectural features

– Increasing complexity of memory hierarchy (x86), DMA support 

(Cell), wide SIMD, floating point-centric cores (GPUs).

• Tuning implementation to minimize parallel overhead is 

non-trivial

– Shared memory: minimizing overhead of locks, barriers.

– Distributed memory: bounding message buffer sizes, bundling 

messages, overlapping communication w/ computation. 

The problems: #2. The parallel scaling challenge 

“Classical parallel graph algorithms perform poorly on 

current parallel systems”



• Minimize execution time on current systems.

• Identify scalable parallelization strategies for multi-socket, multicore

shared memory systems.

This talk: Parallel BFS performance on 

cache-based multicore platforms

Problem Spec. Assumptions for this talk

No. of vertices/edges 106 ~ 109

Edge/vertex ratio 1 ~ 100

Static/dynamic? Static

Diameter O(1) ~ O(log n)

Weighted/Unweighted Unweighted

Vertex degree distribution Unbalanced (“power law”)

Directed/undirected? Both

Simple/multi/hypergraph? Multigraph

Granularity of computation 

at vertices/edges?

Minimal

Exploiting domain-specific

characteristics?

Partially

Test data

Synthetic R-MAT

networks

(Data: Mislove et al., 

IMC 2007.)



Graph traversal (BFS) problem definition
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Memory requirements (# of machine words):

• Sparse graph representation: m+n

• Stack of visited vertices: n

• Distance array: n



1. Expand current frontier (level-synchronous approach, suited for low diameter 

graphs)

Parallel BFS Strategies
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2. Stitch multiple concurrent traversals (Ullman-Yannakakis approach, 

suited for high-diameter graphs)

• O(D) parallel steps

• Adjacencies of all vertices 

in current frontier are 

visited in parallel
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• path-limited searches 

from “super vertices”

• APSP between “super 

vertices”



Locality (where are the random accesses originating from?)

A deeper dive into the “level synchronous” strategy
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1. Ordering of vertices in the “current 

frontier” array, i.e., accesses to 

adjacency indexing array, 

cumulative accesses O(n).

2. Ordering of adjacency list of each 

vertex, cumulative O(m).

3. Sifting through adjacencies to 

check whether visited or not, 

cumulative accesses O(m). 

26
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1. Access Pattern: idx array -- 53, 31, 74, 26

2,3. Access Pattern: d array -- 0, 84, 0, 84, 93, 44, 63, 0, 0, 11



Performance Observations
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• Well-studied problem, slight differences in problem formulations

– Linear algebra: sparse matrix column reordering to reduce bandwidth, 

reveal dense blocks.

– Databases/data mining: reordering bitmap indices for better 

compression; permuting vertices of WWW snapshots, online social 

networks for compression

• NP-hard problem, several known heuristics

– We require fast, linear-work approaches

– Existing ones: BFS or DFS-based, Cuthill-McKee, Reverse Cuthill-

McKee, exploit overlap in adjacency lists, dimensionality reduction

– Yet another heuristic, coming up …

Improving locality: Vertex relabeling
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• Recall: Potential O(m) non-contiguous memory 

references in edge traversal (to check if vertex is 

visited).

– e.g., access order: 53, 31, 31, 26, 74, 84, 0, …

• Objective: Reduce TLB misses, private 

cache misses, exploit shared cache. 

• Optimizations:

1. Sort the adjacency lists of each vertex – helps order 

memory accesses, reduce TLB misses.

2. Permute vertex labels – enhance spatial locality.

3. Cache-blocked edge visits – exploit temporal locality.

Improving locality: Optimizations
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• Instead of processing adjacencies of each vertex 

serially, exploit sorted adjacency list structure w/ 

blocked accesses

• Requires multiple passes through the frontier 

array, tuning for optimal block size.

• Note: frontier array size may be O(n)

Improving locality: Cache blocking
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Similar to older heuristics, but tuned for small-

world networks:

1. High percentage of vertices with (out) degrees 0, 1, 

and 2 in social and information networks => store 

adjacencies explicitly (in indexing data structure).

 Augment the adjacency indexing data structure (w/ two 

additional words) and frontier array (w/ one word)

2. Process “high-degree vertices” adjacencies in linear 

order, but other vertices with d-array cache blocking.

3. Form dense blocks around high-degree vertices

 Reverse Cuthill-McKee, removing degree 1 and degree 2 

vertices

Vertex relabeling heuristic



1. Software prefetching on the Intel Core i7 (supports 32 loads and 20 

stores in flight)

– Speculative loads of index array and adjacencies of frontier vertices will 

reduce compulsory cache misses.

– Hardware prefetcher doesn’t help, disable it.

2. Aligning adjacency lists to optimize memory accesses

– 16-byte aligned loads and stores are faster.

– Alignment helps reduce cache misses due to fragmentation

– 16-byte aligned non-temporal stores (during creation of new frontier) are 

fast.

3. SIMD SSE integer intrinsics to process “high-degree vertex” 

adjacencies.

4. Fast atomics (BFS is lock-free w/ low contention, and CAS-based 

intrinsics have very low overhead)

– Pipelined atomics in the near future

5. Hugepage support (significant TLB miss reduction)

6. NUMA-aware memory allocation exploiting first-touch policy 

Architecture-specific Optimizations



Experimental Setup

Network n m Max. out-

degree

% of vertices w/ out-

degree 0,1,2

Orkut 3.07M 223M 32K 5

LiveJournal 5.28M 77.4M 9K 40

Flickr 1.86M 22.6M 26K 73

Youtube 1.15M 4.94M 28K 76

R-MAT 8M-64M 8n n0.6

Intel Xeon 5560 (Core i7, “Nehalem”)

•

•

•

•

Intel Xeon 5560 (Core i7, “Nehalem”)

• 2 sockets x 4 cores x 2-way SMT

• 12 GB DRAM, 8 MB shared L3

• 51.2 GBytes/sec peak bandwidth

• 2.66 GHz proc.

Performance averaged over 

10 different source vertices, 3 runs each.



Optimization Generality Impact* Tuning 

required?

(Preproc.) Sort adjacency lists High -- No

(Preproc.) Permute vertex labels Medium -- Yes

Preproc. + binning frontier vertices +

cache blocking

M 2.5x Yes

Lock-free parallelization M 2.0x No

Low-degree vertex filtering Low 1.3x No

Software Prefetching M 1.10x Yes

Aligning adjacencies, streaming stores M 1.15x No

Fast atomic intrinsics H 2.2x No

Impact of optimization strategies

* Optimization speedup (performance on 4 cores) w.r.t baseline 

parallel approach, on a synthetic R-MAT graph (n=223,m=226)



Cache locality improvement

Theoretical count of the number of non-

contiguous memory accesses: m+3n

Performance count: # of non-contiguous memory accesses 

(assuming cache line size of 16 words) 

Data set

Orkut LiveJournal Flickr Youtube
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Parallel performance (Orkut graph)

Number of threads
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Parallel  speedup: 4.9

Speedup over 

baseline: 2.9

Execution time: 

0.28 seconds (8 threads)

Graph: 3.07 million vertices, 220 million edges

Single socket of Intel Xeon 5560 (Core i7)

Graph: 3.07 million vertices, 220 million edges

Single socket of Intel Xeon 5560 (Core i7)



Performance Improvement (Betweenness

Centrality on synthetic R-MAT networks)

Problem Size (Log
2
 # of vertices)
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Fast atomics in baseline.

New optimizations:

• Sorted adjacencies

• Hugepages

• Software Prefetching

• Aligned mem. accesses

Parallel performance 

on 8 threads of Xeon 

5560.



• New cache-blocking formulation to enhance cache locality and 

performance of parallel BFS.

• Small-world networks can be preprocessed to significantly reduce 

the number of non-contiguous memory accesses.

• Up to a 3x performance improvement over previous optimized 

parallel implementation.

Future Work

• Graph compression to reduce memory footprint.

• Extending the cache blocking formulation to more complex graph 

problems based on BFS.

• Parallelization strategies and optimizing communication on 

distributed memory systems.

– avoid p-way graph partitioning 

Conclusions



• Questions?

Kamesh Madduri

KMadduri@lbl.gov

madduri.org

SNAP (Small-world Network Analysis and 

Partitioning) on Sourceforge

http://snap-graph.sourceforge.net/

Thank you!

mailto:KMadduri@lbl.gov
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