
Scaling up graph algorithms on

emerging multicore systems

Kamesh Madduri

KMadduri@lbl.gov

mailto:KMadduri@lbl.gov

Sources of massive data: petascale simulations, experimental devices,

the Internet, scientific applications.

Graphs are pervasive in large-scale data analysis

Cosmology
Application: Outlier detection.

Challenges: petascale datasets.

Graph problems: clustering,

matching.

Bioinformatics
Application: Identifying drug

target proteins.

Challenges: Data heterogeneity,

quality.

Graph problems: centrality,

clustering.

Social Informatics
Application: Discover emergent

communities, model spread of

information.

Challenges: new analytics routines,

uncertainty in data.

Graph problems: clustering,

shortest paths, flows.

Image sources: (1) http://physics.nmt.edu/images/astro/hst_starfield.jpg, (2,3) www.visualComplexity.com

New challenges for analysis: data sizes, heterogeneity, uncertainty,

data quality, and dynamic/temporal nature of data.

http://physics.nmt.edu/images/astro/hst_starfield.jpg

Strategies to speed up graph-traversal based

algorithms on current and emerging cache-

based multicore systems.

• A closer look at parallel Breadth-First Search

(BFS) on current systems.

• The techniques and their applicability:

Talk Outline

c. streaming

stores

b. aligned memory

accesses

a. software

prefetching1. cache-blocking

formulation

3. compression

2. relabel

vertex

identifiers

d. integer SSEA
lg

o
ri

th
m

ic

A
rc

h
.
s
p

e
c
if

ic

parallelization

strategy

graph

representation

data

structures
e. fast atomics

Problem Size (Log2 # of vertices)

10 12 14 16 18 20 22 24 26

P
e

rf
o

rm
a

n
c
e

 r
a

te
(M

ill
io

n
 T

ra
v
e

rs
e

d
 E

d
g

e
s
/s

)

0

10

20

30

40

50

60

Serial Performance of “approximate betweenness centrality” on a

2.67 GHz Intel Xeon 5560 (12 GB RAM, 8MB L3 cache)

Input: Synthetic R-MAT graphs (# of edges m = 8n)

The problems: #1. The locality challenge

“Large memory footprint, low spatial and temporal

locality impede performance”

~ 5X drop in

performance

No LLC misses

O(m) LLC misses

• Graph topology assumptions in classical algorithms do

not match real-world datasets

• Parallelization strategies at loggerheads with techniques

for enhancing memory locality

• Classical “work-efficient” graph algorithms may not fully

exploit new architectural features

– Increasing complexity of memory hierarchy (x86), DMA support

(Cell), wide SIMD, floating point-centric cores (GPUs).

• Tuning implementation to minimize parallel overhead is

non-trivial

– Shared memory: minimizing overhead of locks, barriers.

– Distributed memory: bounding message buffer sizes, bundling

messages, overlapping communication w/ computation.

The problems: #2. The parallel scaling challenge

“Classical parallel graph algorithms perform poorly on

current parallel systems”

• Minimize execution time on current systems.

• Identify scalable parallelization strategies for multi-socket, multicore

shared memory systems.

This talk: Parallel BFS performance on

cache-based multicore platforms

Problem Spec. Assumptions for this talk

No. of vertices/edges 106 ~ 109

Edge/vertex ratio 1 ~ 100

Static/dynamic? Static

Diameter O(1) ~ O(log n)

Weighted/Unweighted Unweighted

Vertex degree distribution Unbalanced (“power law”)

Directed/undirected? Both

Simple/multi/hypergraph? Multigraph

Granularity of computation

at vertices/edges?

Minimal

Exploiting domain-specific

characteristics?

Partially

Test data

Synthetic R-MAT

networks

(Data: Mislove et al.,

IMC 2007.)

Graph traversal (BFS) problem definition

0 7

5

3

8

2

4 6

1

9
source

vertex

Input:Output:
1

1

1

2

2 3 3

4

4

distance from

source vertex

Memory requirements (# of machine words):

• Sparse graph representation: m+n

• Stack of visited vertices: n

• Distance array: n

1. Expand current frontier (level-synchronous approach, suited for low diameter

graphs)

Parallel BFS Strategies

0 7

5

3

8

2

4 6

1

9

source

vertex

2. Stitch multiple concurrent traversals (Ullman-Yannakakis approach,

suited for high-diameter graphs)

• O(D) parallel steps

• Adjacencies of all vertices

in current frontier are

visited in parallel

0 7

5

3

8

2

4 6

1

9source

vertex

• path-limited searches

from “super vertices”

• APSP between “super

vertices”

Locality (where are the random accesses originating from?)

A deeper dive into the “level synchronous” strategy

0
31

53 84

74

11

93

1. Ordering of vertices in the “current

frontier” array, i.e., accesses to

adjacency indexing array,

cumulative accesses O(n).

2. Ordering of adjacency list of each

vertex, cumulative O(m).

3. Sifting through adjacencies to

check whether visited or not,

cumulative accesses O(m).

26

44

63

1. Access Pattern: idx array -- 53, 31, 74, 26

2,3. Access Pattern: d array -- 0, 84, 0, 84, 93, 44, 63, 0, 0, 11

Performance Observations

Phase #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
e
rc

e
n
ta

g
e
 o

f
to

ta
l

0

10

20

30

40

50

60 # of vertices in frontier array

Execution time

Youtube

Phase #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
e
rc

e
n
ta

g
e
 o

f
to

ta
l

0

10

20

30

40

50

60 # of vertices in frontier array

Execution time

Graph expansion Edge filtering

Flickr

• Well-studied problem, slight differences in problem formulations

– Linear algebra: sparse matrix column reordering to reduce bandwidth,

reveal dense blocks.

– Databases/data mining: reordering bitmap indices for better

compression; permuting vertices of WWW snapshots, online social

networks for compression

• NP-hard problem, several known heuristics

– We require fast, linear-work approaches

– Existing ones: BFS or DFS-based, Cuthill-McKee, Reverse Cuthill-

McKee, exploit overlap in adjacency lists, dimensionality reduction

– Yet another heuristic, coming up …

Improving locality: Vertex relabeling

x

x x x x

x x x x

x x x x

x

x x x

x x x x

x x x x

x x x x

x x

x

x
x x x x

x
x x

x x

xx
x x

x

x

• Recall: Potential O(m) non-contiguous memory

references in edge traversal (to check if vertex is

visited).

– e.g., access order: 53, 31, 31, 26, 74, 84, 0, …

• Objective: Reduce TLB misses, private

cache misses, exploit shared cache.

• Optimizations:

1. Sort the adjacency lists of each vertex – helps order

memory accesses, reduce TLB misses.

2. Permute vertex labels – enhance spatial locality.

3. Cache-blocked edge visits – exploit temporal locality.

Improving locality: Optimizations

0
31

53 84

74

11

93

26

44

63

• Instead of processing adjacencies of each vertex

serially, exploit sorted adjacency list structure w/

blocked accesses

• Requires multiple passes through the frontier

array, tuning for optimal block size.

• Note: frontier array size may be O(n)

Improving locality: Cache blocking

x x x x

x x

x

x x
x x

x x

xx
x x

x

x

fr
o
n
ti
e
r

Adjacencies (d)

linear processing New: cache-blocked approach

x x x x

x x

x

x x
x x

x x

xx
x x

x

x

fr
o
n
ti
e
r

Adjacencies (d)

Metadata denoting

blocking pattern

1 2 3

Tune to L2

cache size

Process

high-degree

vertices

separately

Similar to older heuristics, but tuned for small-

world networks:

1. High percentage of vertices with (out) degrees 0, 1,

and 2 in social and information networks => store

adjacencies explicitly (in indexing data structure).

 Augment the adjacency indexing data structure (w/ two

additional words) and frontier array (w/ one word)

2. Process “high-degree vertices” adjacencies in linear

order, but other vertices with d-array cache blocking.

3. Form dense blocks around high-degree vertices

 Reverse Cuthill-McKee, removing degree 1 and degree 2

vertices

Vertex relabeling heuristic

1. Software prefetching on the Intel Core i7 (supports 32 loads and 20

stores in flight)

– Speculative loads of index array and adjacencies of frontier vertices will

reduce compulsory cache misses.

– Hardware prefetcher doesn’t help, disable it.

2. Aligning adjacency lists to optimize memory accesses

– 16-byte aligned loads and stores are faster.

– Alignment helps reduce cache misses due to fragmentation

– 16-byte aligned non-temporal stores (during creation of new frontier) are

fast.

3. SIMD SSE integer intrinsics to process “high-degree vertex”

adjacencies.

4. Fast atomics (BFS is lock-free w/ low contention, and CAS-based

intrinsics have very low overhead)

– Pipelined atomics in the near future

5. Hugepage support (significant TLB miss reduction)

6. NUMA-aware memory allocation exploiting first-touch policy

Architecture-specific Optimizations

Experimental Setup

Network n m Max. out-

degree

% of vertices w/ out-

degree 0,1,2

Orkut 3.07M 223M 32K 5

LiveJournal 5.28M 77.4M 9K 40

Flickr 1.86M 22.6M 26K 73

Youtube 1.15M 4.94M 28K 76

R-MAT 8M-64M 8n n0.6

Intel Xeon 5560 (Core i7, “Nehalem”)

•

•

•

•

Intel Xeon 5560 (Core i7, “Nehalem”)

• 2 sockets x 4 cores x 2-way SMT

• 12 GB DRAM, 8 MB shared L3

• 51.2 GBytes/sec peak bandwidth

• 2.66 GHz proc.

Performance averaged over

10 different source vertices, 3 runs each.

Optimization Generality Impact* Tuning

required?

(Preproc.) Sort adjacency lists High -- No

(Preproc.) Permute vertex labels Medium -- Yes

Preproc. + binning frontier vertices +

cache blocking

M 2.5x Yes

Lock-free parallelization M 2.0x No

Low-degree vertex filtering Low 1.3x No

Software Prefetching M 1.10x Yes

Aligning adjacencies, streaming stores M 1.15x No

Fast atomic intrinsics H 2.2x No

Impact of optimization strategies

* Optimization speedup (performance on 4 cores) w.r.t baseline

parallel approach, on a synthetic R-MAT graph (n=223,m=226)

Cache locality improvement

Theoretical count of the number of non-

contiguous memory accesses: m+3n

Performance count: # of non-contiguous memory accesses

(assuming cache line size of 16 words)

Data set

Orkut LiveJournal Flickr Youtube

F
ra

c
c
ti
o
n
 o

f
th

e
o
re

ti
c
a
l
p
e
a
k

0.0

0.2

0.4

0.6

0.8

1.0 Baseline

Adj. sorted

Permute+cache blocked

Parallel performance (Orkut graph)

Number of threads

1 2 4 8

P
e

rf
o

rm
a
n

c
e

 r
a
te

(M
ill

io
n

 T
ra

v
e

rs
e
d

 E
d

g
e

s
/s

)

0

200

400

600

800

1000 Cache-blocked BFS

Baseline

Parallel speedup: 4.9

Speedup over

baseline: 2.9

Execution time:

0.28 seconds (8 threads)

Graph: 3.07 million vertices, 220 million edges

Single socket of Intel Xeon 5560 (Core i7)

Graph: 3.07 million vertices, 220 million edges

Single socket of Intel Xeon 5560 (Core i7)

Performance Improvement (Betweenness

Centrality on synthetic R-MAT networks)

Problem Size (Log
2
 # of vertices)

23.0 24.0 25.0

P
e

rf
o

rm
a
n
c
e
 R

a
te

(M

ill
io

n
 t

ra
v
e
rs

e
d
 e

d
g
e
s
/s

e
c
)

0

20

40

60

80 Baseline

Optimized

Fast atomics in baseline.

New optimizations:

• Sorted adjacencies

• Hugepages

• Software Prefetching

• Aligned mem. accesses

Parallel performance

on 8 threads of Xeon

5560.

• New cache-blocking formulation to enhance cache locality and

performance of parallel BFS.

• Small-world networks can be preprocessed to significantly reduce

the number of non-contiguous memory accesses.

• Up to a 3x performance improvement over previous optimized

parallel implementation.

Future Work

• Graph compression to reduce memory footprint.

• Extending the cache blocking formulation to more complex graph

problems based on BFS.

• Parallelization strategies and optimizing communication on

distributed memory systems.

– avoid p-way graph partitioning

Conclusions

• Questions?

Kamesh Madduri

KMadduri@lbl.gov

madduri.org

SNAP (Small-world Network Analysis and

Partitioning) on Sourceforge

http://snap-graph.sourceforge.net/

Thank you!

mailto:KMadduri@lbl.gov
http://snap-graph.sourceforge.net/
http://snap-graph.sourceforge.net/
http://snap-graph.sourceforge.net/

