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Background.

Kolda and Bader developed a MATLAB implementation of several tensor
decompositions called the Tensor Toolkit.

Need for high performance implementation.

C++ serial and C++/MPI parallel implementation: expect 10-20x
improvement in performance from C++ serial. Parallel implementation
could give speedup proportional to number of processors, so possibly could
get factors of 100-1000 over current technologies.

Also, implementation in C++/MPI should enable much larger tensors to
be analyzed.
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Tensors.

There are different names for the same thing:

array.

multidimensional array.

N-way array.

Tensor.

A tensor T is a multidimensional array of numbers

T (i1, i2, · · · ) (1)

with dimensions N1, N2, · · · . The number of dimensions is called the order
of the tensor. Order is two for matrices.

Physicists use the term tensor in a different (and frankly prior) context that
has nothing to do with the present work.
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Applications.

Tensor or multilinear algebra analysis is used in a wide variety of areas:

Psychometrics.

Chemometrics.

Biometrics.

Signal and image analysis.

Text analysis.

Tensor analysis is often useful when the data has a natural description as a
high dimensional array.

One unique property of tensors is that the indices do not have to have any
associated topology – they can be words or names.
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Models.

Tensor decompositions are models of a tensor in a least-squares sense: So
if T is a tensor and T̃ is a model tensor then we want to minimize

σ =
∣∣∣T − T̃

∣∣∣2 (2)

or explicitly

σ =
∑

i1,i2,···

∣∣∣T (i1, i2, · · · )− T̃ (i1, i2, · · · )
∣∣∣2 (3)
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SVD as a tensor model.

Consider order 2 tensors (aka matrices). Since T is a matrix, look at the
SVD:

T = UΣV † (4)

where U is orthogonal m × n, Σ is m × m diagonal, and V is m × m
orthogonal.

We can consider the truncated rank R SVD to be a model of T :

T̃ = Ũ Σ̃Ṽ † (5)

The best rank-R approximation to T is given by the R largest singular
values and vectors of T .

We just reinvented PCA!

T̃ (i, j) =
∑

r

λrU(i, r)V (j, r) (6)
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Generalizations to higher order.

PARAFAC, CANDECOMP, CP:

T̃ (i1, i2, i3, · · · ) =
∑

r

λrU(i1, r)V (i2, r)W (i3, r) · · · (7)

Tucker, HOSVD:

T̃ (i1, i2, i3, · · · ) =
∑
r,s,t

G(r, s, t, · · · )U(i1, r)V (i2, s)W (i3, t) · · · (8)
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Generalizations to collections of tensors.

Might want to fit a collection of tensors Tk where the first dimension of the
tensor is allowed to vary.

PARAFAC2:

T̃k(i1, i2, i3, · · · ) =
∑

r

Uk(i1, r)V (i2, r)W (i3, r) · · · (9)

where Uk = PkU and Pk is an orthogonal N1 ×R matrix.

We want to minimize

σ =
∑

k

σk =
∑

k

∣∣∣Tk − T̃k

∣∣∣2 (10)
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Weird things.

DEDICOM:
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What does large data mean?

In the context of this talk we are interested in generating models of tensors
which have modest order (≤ 5, say) with very large dimensions and very
sparse.

Example problems:

Enron: order 3, dimensions 197× 69157× 357, with 1.77× 106 nonzero
entries.

G1: order 3, dimensions 1000× 1000× 1000 with 106 nonzero entries.

G2: order 3, dimensions 2000×2000×2000 with 8×106 nonzero entries.

T2: order 2 collection of 10 tensors with dimensions 4000 × 2000 with
8× 105 nonzero entries.

T3: order 3 collection of 10 tensors with dimensions 400 × 200 × 300
with 3× 105 nonzero entries.
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Algorithms.

ALS (Alternating Least Squares) algorithms for all of these models have
been proposed and analyzed in the literature. These usually construct a
single matrix factor at a time.

Example (PARAFAC):
∂σ

∂U
= YUU −XU (11)

where YU is R×R, XU is N1 ×R.

Construction of XU requires most work.

XU(i1, r) =
∑

i2,i3,···
T (i1, i2, i3, · · · )V (i2, r)W (i3, r) (12)

Dense version: matricize i2, i3 and build matrix of V W products. Then
use BLAS.

Sparse version: Stream through nonzero elements of T , building XU as
we go.

11



Mark Sears SIAM AN09 July 8, 2009

A first order parallelization strategy.

Partition nonzero elements of T among P processors, more or less arbitrarily.
(setup phase).

Global sum partial versions of XU .

Computation of YU and solve for U is duplicated everywhere.

Comment:

Use existing sparse matrix data structures and code.

Develop something new and specific.

Existing sparse matrix code is heavily oriented towards matrix-vector
multiplication. Not really very well suited to the tensor application.

Not very difficult to develop suitable data structures in C++: STL approach,
simple table of indices, vector of values.
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PARAFAC results.

Enron data set:

Dimensions: 197×69157×357

Nonzeros: 1.77× 106

Model rank: 25
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PARAFAC results.

G1 data set:

Dimensions: 1000 × 1000 ×
1000

Nonzeros: 1.× 106

Model rank: 20
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PARAFAC results.

G2 data set:

Dimensions: 2000 × 2000 ×
2000

Nonzeros: 8.× 106

Model rank: 20
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Tucker results.

Enron data set:

Dimensions: 197×69157×357

Nonzeros: 1.77× 106

Model rank: 3× 3× 3
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Tucker results.

G1 data set:

Dimensions: 1000 × 1000 ×
1000

Nonzeros: 1.× 106

Model rank: 3× 3× 3
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Tucker results.

G2 data set:

Dimensions: 2000 × 2000 ×
2000

Nonzeros: 8.× 106

Model rank: 3× 3× 3
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PARAFAC2 results.

T2 data set:

10 samples

Dimensions: 4000× 2000

Nonzeros: 8.× 105

Model rank: 5
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PARAFAC2 results.

T3 data set:

10 samples

Dimensions: 400× 200× 300

Nonzeros: 3.× 105

Model rank: 5
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Other issues.

C++ style.

Sparse tensor data formats.

Careful testing.

– Comparison with MATLAB results.
– Initialization.
– Sign and ordering ambiguities.

IO.

Dependencies: LU, small and large SVD, eigensolvers, BLAS, etc.
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Things to do.

Better initialization.

Gradient methods.

DEDICOM.

Nonnegative factorizations.

Other decompositions: INDSCAL, CANDELINC, PARATUCK2,
PARALIND, Block.
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Conclusions.

Implemented C++/MPI library for sparse tensor modelling.

ALS type algorithms for several models are available:

– PARAFAC.
– Tucker.
– PARAFAC2.

Simple parallelization strategy works well.

Much larger tensors can be analyzed.

23


