Scalable & Efficient Parallelization of Graph Methods for Boolean Satisfiability and Power Grid Analysis on the Cray XMT

Daniel Chavarría-Miranda, Henry Huang, Heidi Sofia Pacific Northwest National Laboratory (PNNL)

Parallel Processing for Graphs

Requirements

- sophisticated data representations
- dynamic structural updates
- fine-grain communication and synchronization events
- algorithms that exploit topological characteristics

Challenges

- large data sizes
- heterogeneous data
- dynamic, irregular work loads
- dynamic/temporal nature of data

dynamic, high-dimensional data, low graph diameters, power law distribution

"Six degrees of separation"

NATIONAL LABORATORY

Outline

- Parallel Processing for Graphs
- Cray XMT
- Boolean Satisfiability
 - Survey Propagation
 - Graph Formulation
- Power Grid Contingency Analysis
 - Graph-based problem formulation
- Conclusions

Today's parallel computer

AVOID THE STRAWS OR STARVE

Commodity cluster programming

- Place data near computation
- Access data in order and reuse
- Partition program into independent, balanced computations
- Minimize synchronization and communication operations
- Avoid modifying shared data
- Avoid adaptive and dynamic computations

FORGET EVERY THING YOU LEARNED IN THEORY AND ALGORITHMS CLASSES

Significant constraints for parallel graph processing

Pacific Northwest NATIONAL LABORATORY

Hiding memory latencies

- Caches
 - Reduce latency by storing some data in fast, nearby memory
- Vectors
 - Amortize latency by fetching N words at a time
- Parallelism
 - Hide latency by switching tasks
 - Multithreading uses "Little's Law:"

concurrency = bandwidth * latency

What does the XMT Do?

Tolerate latency via extreme multi-threading

- Each processor has hardware support for 128 threads
- Context switch in a single tick
- No cache or local memory
- Context switch on memory request
- Multiple outstanding loads

Remote memory requests do not stall processor

Other streams work while the request gets fulfilled

Light-weight, word-level synchronization

Minimizes access conflicts

Hashed Global Shared Memory

- Logically contiguous memory is placed on physically distant memory banks (at a 64-byte granularity)
- Minimizes hotspots

Ideally suited for parallel graph processing

Outline

- Parallel Processing for Graphs
- Cray XMT
- Boolean Satisfiability
 - Survey Propagation
 - Graph Formulation
- Power Grid Contingency Analysis
 - Graph-based problem formulation
- Conclusions

Boolean Satisfiability

- Solve Boolean formula consisting of and, or, not with N variables and M clauses
 - The k-satisfiability or k-SAT problem is usually studied
 - In k-SAT, clauses have at most *k* literals
- Usually, formulas are represented in Conjunctive Normal Form (CNF) or Disjunctive Normal Form (DNF)
- ► CNF represents formulas as a conjunction of disjunctions of literals: $F = \left(\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} l_{i,j} \right) \right)$
- ▶ In general, the $k \ge 3$ SAT problem is NP-complete
- However, Boolean satisfiability has many applications and its "efficient" solution is of practical importance

Survey Propagation

Survey Propagation (SP) is a message-passing algorithm

- Boolean formulas are represented as bipartite graphs
- One type of nodes corresponds to variables, another to clauses
- Edges indicate that a variable appears in a specific clause, the edge includes information on whether the variable appears in the positive or negative form

Survey Propagation (cont.)

- Messages passed between the two types of nodes indicate probabilities of variables taking true or false Boolean variables
 - Probabilities are used to compute weights for individual variable & clause nodes
 - The variable with the highest weight difference (bias) is selected for *fixing* its value accordingly
 - Probability distributions are then updated and the information is propagated along the edges for nodes to recompute their weights
 - This process continues until a fixed point is reached
 - At this point, SP has a partial solution to the Boolean formula which is can then be easily completed using traditional SAT solver
- See A. Braunstein, M. Mezard, and R. Zecchina. Survey propagation: an algorithm for satisfiability. *Random Structures and Algorithms*, 27(2):201-226, September 2005.

Survey Propagation (cont.)

- Distributed Survey Propagation enhances the original SP formulation
 - Enables variable nodes to make decisions of when to fix their value with purely local information
 - The original SP formulation required fixing the variable with the globally largest bias
 - It also required processing the messages between nodes in the graph in a serial order
 - Distributed SP enables a fully parallel implementation

See J. Chavas, C. Furtlehner, M. Mezard, and R. Zecchina. Survey-propagation decimation through distributed local computations. *Journal of Statistical Mechanics: Theory and Experiment*, 2005(11):P11016, 2005.

Survey Propagation on the Cray XMT

- We have implemented Distributed SP on the Cray MTA-2 & XMT
 - Conducted scalability experiments for large random k-SAT instances

Survey Propagation on the Cray XMT (cont.)

Survey Propagation on the Cray XMT (cont.)

Proudly Operated by Battelle Since 1965

Outline

- Parallel Processing for Graphs
- Cray XMT
- Boolean Satisfiability
 - Survey Propagation
 - Graph Formulation
- Power Grid Contingency Analysis
 - Graph-based problem formulation
- Conclusions

Role of Contingency Analysis

From "N-1" to "N-x"

- To improve situational awareness
- From Balancing Authorities to a Wide Area
 - Example: 35 BAs in west
 - Further require "N-x" CA
 - To better understand cascading failures
- N-x Contingency Analysis
 - Result in a large number of cases. "N-5" → 10²⁰ cases for the west =~ 10²⁰ seconds + lots of data
 - Needs: better contingency selection and post-processing

Project led by Henry Huang @ PNNL

Consequences of Poor Situational Awareness

The need to improve situational awareness became clear.

Edge Betweeness Centrality for Weighted Graphs

Contingency selection with graph centrality

High betweenness identifies heavily traveled edges in graph

Power Grid Centrality

NATIONAL LABORATORT

Performance on XMT

Good scalability on XMT

Performance on shared-memory cachebased platform

Compared XMT performance with HP Superdome

Speedup on Superdome encounters a "knee" phenomenon

Conclusions

- Presented two case studies on the use of the Cray XMT for parallel computation on graphs
- Hardware & software features of the XMT are a better fit than other platforms for graph computation
 - Global shared memory
 - Very fine-grained threading
 - Efficient, fine-grained synchronization
 - Latency hiding through multithreading
- Ongoing work on the use of multithreaded systems for graph computations and other irregular applications
 - Part of the Center for Adaptive Supercomputing Software MultiThreaded architectures (CASS-MT)
- More information at <u>http://cass-mt.pnl.gov</u>
 - Please talk to me if you want an account on our XMT Pa

