Detecting Communities in Dynamic Networks

Sanjukta Bhowmick Shweta Bansal Kelly Fermoyle Padma Raghavan

The Pennsylvania State University (06/09/2009)1

Introduction

- Networks represent patterns of interaction
 Social Interactions, Citations, Internet, etc.
- Community detection and analysis provides important information about the network
- Communities represented by highly connected vertices

Community Detection

Hierarchical Clustering

Divisive

Top-down

Deleting edges from network

Girvan Newman (2002) Based on edge betweenness O(|E|^2*|V|)

Agglomerative

Bottom-up

Adding edges to network

Clauset, Newman, Moore(2004) Based on modularity O((|E|+|V|)*|V|)

Modularity-I

- Modularity: Improvement on random connectivity
- High modularity is good---better connectivity than random
- Goal: To form communities that maximize modularity

5

Modularity-II

Fraction of edges connecting community i to community j : C(i,j)

Fraction of edges attached to community i : a(i)=∑i C(i,j)

Probability of an edge existing between community i and community j : a(i)*a(j)

• Modularity: $Q = \sum_{i} (C(i,i)-a(i)^2)$

 Fraction of within community edges — expected edges for random connections

Agglomerative Clustering

- Optimization of Q is expensive
 - Exhaustive search of all possible communities is exponential to number of vertices
- Agglomerative Clustering (greedy)
 - Change in Q on joining community i and community j
 - $\Delta Q(i,j) = 2^*(C(i,j)-a(i)^*a(j))$
 - Join communities to maximize ΔQ

Agglomerative Clustering

- Algorithm-I
 - Initialize each vertex as a community
 - While (community > 1)
 - Find $\triangle Qmax O(|E|)$
 - Combine corresponding communities O(/V/)
 - C(i,:)=C(i,:)+C(j,:)
 - End
- Optimal community given by maximum Q
- Maximum Iterations O(|V|)
- Complexity: O((|E|+|V|)*|V|)

Dynamic Networks

- Most networks are not static
 - Social interactions change, web pages added, etc.
- Most community detection algorithms recalculate the entire network for each change
- Goal: Incremental update of communities based on network perturbations
- Memory/Time Trade-Off:
 - Some information from the previous network

Communities in Dynamic Networks Communities in Perturbed Networks Max Q 5 6 10

Things to Observe

- Perturbation does not affect all communities
 Possible to duplicate many combination operations
- Perturbation does not affect only communities that contained perturbed vertices
 - Must consider new combinations for communities beyond the perturbed vertices
- Instead of the final community structure consider the combination operations
 Both require O(|V|) memory space

Perturbed Communities

- Perturbed Communities: composition is affected by network perturbations
- Set of perturbed communities evolve through the agglomeration process
- Need to find highest ∆Q only for perturbed communities
 - All other communities maintain almost the same ΔQ

Identifying Perturbed Communities

- Initial perturbed communities
 - Perturbed vertices
 - All vertices whose AQ values are changed
- Recall, $\Delta Q(i,j) = 2^*(C(i,j)-a(i)^*a(j))$
 - All neighbors of perturbed vertices are potential perturbed communities
 - In practice; only perturbed vertices in initial list works
- In subsequent agglomeration steps
 Any communities that combined with perturbed communities are perturbed

Communities in Dynamic Networks Communities in Perturbed Networks

Agglomerative Clustering on Perturbed Networks

Algorithm -II

- Initialize each vertex as a community
- Create list of perturbed communities
- While (community > 1)
 - If previous step combines perturbed communities O(/P/)
 - Find $\triangle Qmax O(|E|)$
 - Add new community to perturbed list O(1)
 - End
 - Combine communities O(/V/)
- End
- Maximum Iterations O(|V|)
- Complexity O(|V|*(|P|+|V|)) +O(|E|*|P|)
 - P=perturbed communities

Improving Algorithm-II

- Smaller |P| leads to faster update
 - Focus on limiting number of perturbed communities
 - Revert to Algorithm-I when |P| is large
- Need not recompute all combination steps
 Store some updated C values for some combinations (Memory/Time Trade-Off)

Experimental Setup

- Synthetically generated graph
 - 100 vertices, 506 edges
 - Vertex degrees 1-11 (mean 5, mode 3)
- Network Perturbation
 - Shuffling (preserves degree distribution)
 - 11 shuffles

a

2 edge removals and 2 edge additions

Implementation Issues

- Selecting AQmax is dependent on the floating point precision
- In the initial stages there can be many contenders for ∆Qmax----this affects the community structure
- Almost correct data---> Almost correct answer

Dynamic Update

Summary

- Key to efficient dynamic update is to identify vertices that are affected
- Hierarchical(local) algorithms help to isolate perturbed regions

Memory/Time trade-off

- previous step information vs recomputing
- size of the perturbed subgraph