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Communities in Dynamic Networks

Introduction
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m Networks represent patterns of interaction
m Social Interactions, Citations, Internet, etc.

m Community detection and analysis provides
Important information about the network

m Communities represented by highly connected
vertices
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Community Detectlon
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Hierarchical Clustering

Divisive

Agglomerative

Top-down
Deleting edges from network

Girvan Newman (2002)
Based on edge betweenness
O(IE["2*|V])

Bottom-up
Adding edges to network

Clauset, Newman, Moore(2004)
Based on modularity
O((E[+IVD*IVI)
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I\/Iodularlty |
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m Modularity: Improvement on random
connectivity

m High modularity is good---better connectivity
than random

m Goal: To form communities that maximize
modularity
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Modularity-I|

m Fraction of edges connecting community | to
community | :C(i,j)

m Fraction of edges attached to community | :

a(i)=2 C(i.j)

m Probability of an edge existing between
community i and community | : a(i)*a(j)

m Modularity: Q = >i(C(i,i)-a(i)*2)
= Fraction of within community edges — expected edges for .
random connections
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Agglomeratlve Clusterlng
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m Optimization of Q Is expensive

m Exhaustive search of all possible communities Is
exponential to number of vertices

m Agglomerative Clustering (greedy)
= Change In Q on joining community | and community |
* 4Q(1,)) = 2%(C(1,j)-a(i)"a(j))

= Join communities to maximize AQ
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Agglomerative Clusterlng
m Algorithm-|
m Initialize each vertex as a community

= While (community > 1)
- Find AQmax O(|E|)

- Combine corresponding communities O(|V|)
» C(1,:)=C(1,:)+C(,)

s End
m Optimal community given by maximum Q
m Maximum Iterations O(|V|)
m Complexity: O((|E|+|V])*|V])
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Agglomerative Clusterlng
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Dynamic Networks
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m Most networks are not static
m Social interactions change, web pages added, etc.

m Most community detection algorithms
recalculate the entire network for each change

m Goal: Incremental update of communities based
on network perturbations

m Memory/Time Trade-Off:
m Some information from the previous network 9
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Communities In Perturbed
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Things to Observe

m Perturbation does not affect all communities
m Possible to duplicate many combination operations

m Perturbation does not affect only communities
that contained perturbed vertices

m Must consider new combinations for communities
beyond the perturbed vertices

m Instead of the final community structure
consider the combination operations

m Both require O(]V|) memory space
11
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Perturbed Communltles
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m Perturbed Communities: Composmon Is affected
by network perturbations

m Set of perturbed communities evolve through
the agglomeration process

m Need to find highest AQ only for perturbed
communities

m All other communities maintain almost the same AQ

12
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ldentifying Perturbed
Communltles
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m Initial perturbed communities
m Perturbed vertices
m All vertices whose AQ values are changed

m Recall, AQ(i,j) = 2*(C(i.j)-a(i)*a()))
m All neighbors of perturbed vertices are potential
perturbed communities

m |In practice; only perturbed vertices in initial list works

m In subsequent agglomeration steps

m Any communities that combined with perturbed
communities are perturbed -2
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Communities In Perturbed
Networks

|||||||||||||||||||||||||||||||||

14



Communities in Dynamic Networks

Agglomerative Clustering on
Perturbed Networks

m Algorithm -lI
m Initialize each vertex as a community
m Create list of perturbed communities

= While (community > 1)
« |If previous step combines perturbed communities O(|P|)

* Find AQmax Q(|E|)
« Add new community to perturbed list O(1)

* End
e Combine communities O(]V|)

s End
m Maximum Iterations O(|V|)
m Complexity O(|V|*(|IP|+|V])) +O(|E|*|P])

» P=perturbed communities

15
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Improving Algorithm-||
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m Smaller |P| leads to faster update
m Focus on limiting number of perturbed communities
m Revert to Algorithm-1 when |P] Is large

m Need not recompute all combination steps

m Store some updated C values for some
combinations (Memory/Time Trade-Off)

16
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Experimental Setup
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m Synthetically generated graph
m 100 vertices, 506 edges
m Vertex degrees 1-11 (mean 5, mode 3)

m Network Perturbation

m Shuffling (preserves degree distribution)
m 11 shuffles

e 2 edge removals and 2 edie additions

17
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Implementation Issues

llllllllllllllllllll I e i e

m Selecting AQmax is dependent on the floating
point precision

m In the Initial stages there can be many
contenders for AQmax----this affects the
community structure

m Almost correct data---> Almost correct answer

18
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Dynamic Update
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Summary

m Key to efficient dynamic update is to identify
vertices that are affected

m Hierarchical(local) algorithms help to isolate
perturbed regions

m Memory/Time trade-off
m previous step information vs recomputing
m size of the perturbed subgraph
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