The Structure of Social Contact Graphs and their impact on Epidemics

Anil Vullikanti

Network Dynamics and Simulation Science Laboratory Virginia Bioinformatics Institute, and Dept. of Computer Science, Virginia Tech

Joint work with: Chris Barrett, Madhav Marathe, Stephen Eubank, Dick Beckman, Jiangzhou Chen, Xizhou Feng, Maleq Khan, Keith Bisset, Zhao Zhao, Tridib Dutta

Understanding disease dynamics: key questions

□ New outbreak

- Characteristics of total outbreak size and peak
- Will it become an epidemic?
- □ Who is likely to get infected?
- Design effective interventions to detect and control epidemics

Effect of graph structure

Graph structure matters!

- Disease dynamics depend on properties of graph structure
- Common *local* measures (e.g., degree, clustering distributions) or *global* but *static* measures (e.g., centrality) not very effective
 - Graphs with same properties w.r.t. these measures but varying disease dynamics
 - Individual epidemic characteristics not captured by these measures

Main challenges

- Lack of good social contact network models at large scale
- Computational issues: efficient simulations

This talk

□ *Vulnerability* measure for characterizing disease dynamics

- Form of stochastic centrality
- Better insights about disease spread
- Computationally difficult
 - efficient sequential and parallel methods to compute it on large social contact graphs
- □ No correlations with *static* graph measures
- □ Applications:
 - Effective strategy for vaccination: use high vulnerability nodes
 - Understanding likelihood of an epidemic

Outline

- Synthetic social contact graphs
- □ SIR model for epidemics
- □ Vulnerability: definition and basic properties
- □ Fast algorithms for disease simulation and computing vulnerability
- Correlations with other graph measures
- Applications

Focus: social contact graphs

Difficult to construct real contact graphs

- Privacy/security issues
- Dynamic networks
- Data sets for small populations,
- e.g., [Meyers et al., 2006]

Our focus: synthetic social contact graphs

- Constructed by integrating a number of public and commercial data sets
- Statistically similar to realistic contact networks
- significantly different from other complex networks

Synthetic Contact Graphs

Network Dynamics and Simulation Science Laboratory

Some structural properties of these graphs

Labeled graph properties

 Rich node and edge labeled structure
Significant variation in individual properties with node/edge labels

Beyond degree distributions

Preserves degree distribution

Virginia IIII Tech

Outline

- □ Synthetic social contact graphs
- □ SIR model for epidemics
- □ Vulnerability: definition and basic properties
- □ Fast algorithms for disease simulation and computing vulnerability
- Correlations with other graph measures
- Applications

Epidemics on networks

Nodes: people Properties: demographics, immunity

Edges: contacts between people Properties: duration, nature of contact

<u>Communicating FSM model</u> Transmission probabilities depend on states of neighbors

p(u,v): transmission prob. on edge (u,v)

Virginia

Tech

Example: SIR process on a network

Virginia III Tech

Outline

- □ Synthetic social contact graphs
- □ SIR model for epidemics
- Vulnerability: definition and basic properties
- □ Fast algorithms for disease simulation and computing vulnerability
- Correlations with other graph measures
- Applications

The Vulnerability measure

V(i) = Vulnerability of a node *i* = probability of getting infected, if the disease starts at a random node

Temporal version: probability of infection in specific duration

V(i, t) = Vulnerability of a node i at time t = probability of gettinginfected during the first *t* time steps

Depends on

□ Initial conditions

Transmission probability

Vulnerability based rank order: Dependence on transmission probability

Ordering can change in specific graphs

- small p: V(a)<V(b)</p>
- Iarge p: V(a)>V(b)

Vulnerability based rank order: Dependence on transmission probability

Vulnerability based rank order: Dependence on initial conditions

- Low transmission probability
- few initial infections: V(a)<V(b)</p>
- many initial infections: V(a)>V(b)

Vulnerability based rank order: Dependence on initial conditions

Outline

- □ Synthetic social contact graphs
- □ SIR model for epidemics
- Vulnerability: definition and basic properties
- □ Fast algorithms for disease simulation and computing vulnerability
- Correlations with other graph measures
- □ Applications

Computing vulnerability

□ Monte-carlo samples: each sample by an epidemic simulation tool □ $V_k(i)$: probability node i gets infected in k iterations □ $R(\infty)$: top *n* nodes in vulnerability order, V(i)□ D(t): top *n* nodes in termorely vulnerability order V(i, t)

Virginia

Tech

EpiFast: sequential version

Example

Theorem EpiFast produces each possible random disease trajectory R with the same probability.

EpiFast: parallel version

- C++/MPI implementation, tested on commodity clusters and SGI Altix systems.
- Los Angeles population: 16 million people.
 - 180 days of epidemic duration.
 - With and without interventions.
 - 25 replicates for each configuration.
 - Each replicate takes < 15 minutes.

[C. Barrett, K. Bisset, J. Chen, X. Feng, A. Vullikanti, M. Marathe, ICS, 2009]

EpiFast: scaling

Outline

- □ Synthetic social contact graphs
- □ SIR model for epidemics
- Vulnerability: definition and basic properties
- □ Fast algorithms for disease simulation and computing vulnerability
- Correlations with other graph measures
- Applications

Correlation with static graph measures

Correlations with labels

Similar correlations at different transmission probabilities
Need better models for individual activities and contact duration

Outline

- □ Synthetic social contact graphs
- □ SIR model for epidemics
- □ Vulnerability: definition and basic properties
- □ Fast algorithms for disease simulation and computing vulnerability
- Correlations with other graph measures
- Applications

Application: Vaccination based on vulnerability rank order

- □ Contact graph on Chicago, ~ 8 million people
- □ Highly vulnerable nodes are also most critical for this network

Application: which outbreaks take off?

Conclusions

□ Vulnerability measure

- Useful for understanding disease propagation
- Not first order properties
- Not well correlated with other "standard" graph measures
- Computationally intensive: efficient sequential and parallel algorithms
- Need for good graph modeling

