People you may know

Lars Backstrom
07/12/2010
<table>
<thead>
<tr>
<th></th>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Who to suggest?</td>
</tr>
<tr>
<td>2</td>
<td>Static, offline predictions</td>
</tr>
<tr>
<td>3</td>
<td>Dynamic, online reranking</td>
</tr>
<tr>
<td>4</td>
<td>Performance/Wrap-Up</td>
</tr>
</tbody>
</table>
Helping people find friends on FB

- Recommendation has proven itself in many contexts
 - Amazon, NetFlix, etc. all have sophisticated systems
- Like them, we can increase value to users by making good suggestions
 - People with more friends use the site more, get more out of it
- Unlike those systems (collaborative filtering) our’s must take social context into account
People you may know

- Top 1-2 suggestions shown on homepage of Facebook
 - See all link leads to more suggestions
 - Many more friend adds from home than ‘see all’ page.
- ‘Xing’ a user removes that person from list permanently
 - Pulls in next suggestion
- Accounts for a significant chunk of all friending on Facebook
People you may know

- Top 1-2 suggestions shown on homepage of Facebook
 - See all link leads to more suggestions
 - Many more friend adds from home than ‘see all’ page.
- ‘Xing’ a user removes that person from list permanently
 - Pulls in next suggestion
- Accounts for a significant chunk of all friending on Facebook
People you may know

- Top 1-2 suggestions shown on homepage of Facebook
 - See all link leads to more suggestions
 - Many more friend adds from home than ‘see all’ page.
- ‘Xing’ a user removes that person from list permanently
 - Pulls in next suggestion
- Accounts for a significant chunk of allfriending on Facebook
How to make suggestions

- Most friendships go to friends-of-friends
 - Previous work shows over 5x more friendships to FoFs (2-hops) than 3+ hop users (Lescovec et. al ‘08)
 - 92% of new friendships on FB
- From a practical point of view, doing more than FoF is impossible
 - Average user has over 130 friends
 - 130*130 = 17K FoFs
 - $130^3 = 2.2M$ FoFoFs
 - Power users have up to 5K friends
How to make suggestions

- Most friendships go to friends-of-friends
 - Previous work shows over 5x more friendships to FoFs (2-hops) than 3+ hop users (Lescovec et. al ‘08)
 - 92% of new friendships on FB
- From a practical point of view, doing more than FoF is impossible
 - Average user has over 130 friends
 - $130 \times 130 = 17K$ FoFs
 - $130^3 = 2.2M$ FoFoFs
 - Power users have up to 5K friends

(c) FlickR
(d) Delicious
(e) Answers
(f) LinkedIn
How to make suggestions

- Most friendships go to friends-of-friends
 - Previous work shows over 5x more friendships to FoFs (2-hops) than 3+ hop users (Leskovec et. al ‘08)
 - 92% of new friendships on FB
- From a practical point of view, doing more than FoF is impossible
 - Average user has over 130 friends
 - $130 \times 130 = 17K$ FoFs
 - $130^3 = 2.2M$ FoFoFs
 - Power users have up to 5K friends
Suggesting Friends of Friends

- Problem Statement:
 - Given a source user, find the best FoFs to suggest

- Challenges:
 - A typical user has tens of thousands of FoFs (about 40K on average, 99th percentile 800K!)
 - What features will help us pick from these
 - How can we combine network and demographic features
Friends in Common

- Number of friends in common is a good start
 - Two people are 12x more likely to become friends with 10 mutual friends than 1

- Other social network features are also helpful
 - For example, if your good friend just made a new friend, that is a good suggestion
Friends in Common

- Number of friends in common is a good start
 - Two people are 12x more likely to become friends with 10 mutual friends than 1

- Other social network features are also helpful
 - For example, if your good friend just made a new friend, that is a good suggestion

- We can combine network properties:
 - $\delta_{u,v}$ gives the time since edge creation

\[
v(fof) = \sum_{f_i} \left(\frac{\delta_{u,f_i} \cdot \delta_{f_i,fof}}{\sqrt{\text{friends}_{f_i}}} \right)^{-0.3}
\]
System Overview
System Overview

- System examines all FoFs

[Diagram]

FoF Discovery and Feature Generation

Lars

Lars, Greg:
Mutual Friends = 10,
Age(Lars) = 27, ...
System Overview

- System examines all FoFs
 - Generates list of top 100 candidates

- Lars
 - Lars, Greg: Mutual Friends = 10, Age(Lars) = 27, ...

- Bagged Decision Trees
 - Score(Lars, Greg) = 0.045
 - Score(Lars, Shelly) = 0.021
 - ...

System Overview

- System examines all FoFs
 - Generates list of top 100 candidates
- Scores are stored and used along with cheaply available data to predict real-time CTRs
 - Candidates are re-ranked and displayed on each impression

FoF Discovery and Feature Generation

Lars

Lars, Greg:
Mutual Friends = 10,
Age(Lars) = 27, ...

Bagged Decision Trees

Score(Lars, Greg) = 0.045
Score(Lars, Shelly) = 0.021
...

Real-Time CTR Prediction

CTR(L, G) = 0.012 ...

Impressions(Lars, Greg) = 3
Impressions(Lars, Shelly) = 2
System Overview

- System examines all FoFs
 - Generates list of top 100 candidates

- Scores are stored and used along with cheaply available data to predict real-time CTRs
 - Candidates are re-ranked and displayed on each impression

- Results are fed back into system for retraining
 - Real-time model depends on input scores, must be retrained when offline changes

Diagram:
- FoF Discovery and Feature Generation
 - Lars
 - Lars, Greg: Mutual Friends = 10, Age(Lars) = 27, ...
 - Bagged Decision Trees
 - Score(Lars, Greg) = 0.045
 - Score(Lars, Shelly) = 0.021
 - ...
 - Real-Time CTR Prediction
 - CTR(L, G) = 0.012...
- Impressions
 - Impressions(Lars, Greg) = 3
 - Impressions(Lars, Shelly) = 2
 - Outcome
Agenda

1. Who to suggest?
2. Static, offline predictions
3. Dynamic, online reranking
4. Performance/Wrap-Up
Making Static Predictions

- Use traditional machine learning
 - For a user u, consider all FoFs w_1, \ldots, w_k
 - For each pair (u, w_i) generate a bunch of features
 - Mutual friends, time discounted mutual friends, new mutual friends, etc.
 - Also incorporate features of just u and w_i
 - Age, gender, country, total friends, time on FB, etc.
 - We use bagged decision trees (the average of many decision trees)
 - Training data comes from past PYMK
 - Only train on ‘first impressions’
Making Static Predictions

- Out of all features, time discounted mutual friends are most important
- Total friends of user, suggestion also very important
 - For instance, having 3/3 mutual friends better than 3/200
- Demographic information also used, but secondary
 - Age, gender, country
Friend of Friend Features

- Two types of features
 - Weighted Friend-of-Friend
 - Actual FoFs, Pending FoFs, Time Weighted FoFs, Coefficient Weighted FoFs
 - Demographic features
 - Age, country, Facebook age, gender, friend count, etc.
 - Because average person has 40K FoFs, these must be local, and hence are not sharded, but are duplicated on every machine.

- Most important features for prediction
 1. Time discounted mutual friends:
 \[v(f_{of}) = \sum_{f_i} \frac{(\delta_{u,f_i} \cdot \delta_{f,fof})^{-0.3}}{\sqrt{\text{friends}_{f_i}}} \]
 2. Number of friends
 3. Country and Facebook age of source user
Friend of Friend Features

- Two types of features
 - Weighted Friend-of-Friend
 - Actual FoFs, Pending FoFs, Time Weighted FoFs, Coefficient Weighted FoFs
 - Demographic features
 - Age, country, Facebook age, gender, friend count, etc.
 - Because average person has 40K FoFs, these must be local, and hence are not sharded, but are duplicated on every machine.

- Most important features for prediction
 1. Time discounted mutual friends: $v(f_{of}) = \sum_{f_i} \frac{(\delta_{u,f_i} \cdot \delta_{f_i,f_{of}})^{0.3}}{\sqrt{\text{friends}_{f_i}}}$
 2. Number of friends
 3. Country and Facebook age of source user
Doing this is expensive!

- The average user has 40K FoFs
- There are over 400M users
- $40K \times 400M = 16$ Trillion!
- Multiple racks (40 machines) with 72GB memory each
 - Each machine holds a fraction of the social graph in memory (it’s far too big for one machine)
 - Even so, we only compute new suggestions once every ~2 days
- To ensure the best suggestions for new users, we generate for them more often
Suggestions Generation

- Social graph sharded among 40 machines
 - Includes annotations on edges: creation time, direction, coefficient
- Request goes directly to machine with user’s friendlist
 - That machine splits the friend list and requests the FoFs from rest of tier
- Results are aggregated and ranked
 - Top 100 returned
Suggestions generation

- Simple example with 4 machines

- $UID_4 = 0$
- $UID_4 = 1$
- $UID_4 = 2$
- $UID_4 = 3$
Suggestions generation

- Simple example with 4 machines
- User 4 requests PYMK
 - User 4 is friends with 5,6,7,13,26,31,121,...
Suggestions generation

- Simple example with 4 machines
- User 4 requests PYMK
 - User 4 is friends with 5,6,7,13,26,31,121,...
- Sends requests for FoFs to all other machines (also some local)
Suggestions generation

- Simple example with 4 machines
- User 4 requests PYMK
 - User 4 is friends with 5,6,7,13,26,31,121,...
- Sends requests for FoFs to all other machines (also some local)
- Feature vectors for each FoF are aggregated
 - 14:2,18,81
 - 17:2,53,12
 - 123:2,0,0
 - ...
Making things fast and memory efficient

- Can’t afford to run full decision tree evaluation on all 40K FoFs for every person
 - Use heuristics to narrow the field
 - Select top 5K by time-weighted mutual friends feature
 - Use linear-time rank-N algorithm to find cutoff (no N log N sorting)
 - Run full decision tree algorithm only on them
- Don’t want to use network to get age, gender, etc. for 5K users
 - Every machine has a local in memory copy
- Select top 100 out of fully ranked 5K
 - Only these are eligible to be shown
 - To ensure diversity, temporarily blacklist any suggestion seen by a user over 4 times

Machine K

Annotated edges (u,v) where u%40==K

Demographic type features for all users
Making things fast and memory efficient

System ranks 8,600,000 suggestions per second

Machine K

Annotated edges (u,v) where u%40==K

Demographic type features for all users
Agenda

1. Who to suggest?
2. Static, offline predictions
3. Dynamic, online reranking
4. Performance/Wrap-Up
Showing the best suggestion every time

- To optimize the suggestions, we re-rank after every impression
 - Decision models can only be run once per 2 days
 - They output a score for each \((u,w_i) \) pair
 - Can’t do much too much computation for each impression, but can do a little
 - Simple features are available at each impression, for each suggestion
 - score\((u,w_i)\), number of impressions for \((u,w_i) \),
 - friend count\((u)\), friend count\((w_i)\)
Showing the best suggestion every time

- To optimize the suggestions, we re-rank after every impression
 - Decision models can only be run once per 2 days
 - They output a score for each \((u,w_i)\) pair
 - Can’t do much too much computation for each impression, but can do a little
 - Simple features are available at each impression, for each suggestion
 - \(\text{score}(u,w_i)\), number of impressions for \((u,w_i)\)
 - \(\text{friend count}(u)\), \(\text{friend count}(w_i)\)

Combine what is available with score to re-rank via Logistic Regression
Showing the best suggestion every time

- To optimize the suggestions, we re-rank after every impression
 - Decision models can only be run once per 2 days
 - They output a score for each \((u, w_i)\) pair
 - Can’t do much too much computation for each impression, but can do a little
 - Simple features are available at each impression, for each suggestion
 - score\((u, w_i)\), number of impressions for \((u, w_i)\), friend count\((u)\), friend count\((w_i)\)

Combine what is available with score to re-rank via Logistic Regression

<table>
<thead>
<tr>
<th>Suggestion</th>
<th>Impressions</th>
<th>CTR Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>0</td>
<td>0.048</td>
</tr>
<tr>
<td>Bob</td>
<td>0</td>
<td>0.031</td>
</tr>
<tr>
<td>Carol</td>
<td>0</td>
<td>0.027</td>
</tr>
<tr>
<td>David</td>
<td>0</td>
<td>0.025</td>
</tr>
</tbody>
</table>
Showing the best suggestion every time

- To optimize the suggestions, we re-rank after every impression
 - Decision models can only be run once per 2 days
 - They output a score for each \((u,w_i)\) pair
 - Can’t do much too much computation for each impression, but can do a little
 - Simple features are available at each impression, for each suggestion
 - \(\text{score}(u,w_i)\), number of impressions for \((u,w_i)\), friend count\((u)\), friend count\((w_i)\)

<table>
<thead>
<tr>
<th>Suggestion</th>
<th>Impressions</th>
<th>CTR Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carol</td>
<td>0</td>
<td>0.027</td>
</tr>
<tr>
<td>David</td>
<td>0</td>
<td>0.025</td>
</tr>
<tr>
<td>Alice</td>
<td>1</td>
<td>0.025</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Combine what is available with score to re-rank via Logistic Regression
Showing the best suggestion every time

- To optimize the suggestions, we re-rank after every impression
 - Decision models can only be run once per 2 days
 - They output a score for each \((u,w_i)\) pair
 - Can’t do much too much computation for each impression, but can do a little
 - Simple features are available at each impression, for each suggestion
 - \(\text{score}(u,w_i)\), number of impressions for \((u,w_i)\), friend count\(u\), friend count\(w_i\)

<table>
<thead>
<tr>
<th>Suggestion</th>
<th>Impressions</th>
<th>CTR Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>0.025</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td>0.016</td>
</tr>
<tr>
<td>Carol</td>
<td>1</td>
<td>0.014</td>
</tr>
<tr>
<td>David</td>
<td>1</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Combine what is available with score to re-rank via Logistic Regression
Showing the best suggestion every time

- To optimize the suggestions, we re-rank after every impression
 - Decision models can only be run once per 2 days
 - They output a score for each \((u, w_i)\) pair
 - Can’t do much too much computation for each impression, but can do a little
 - Simple features are available at each impression, for each suggestion
 - \(\text{score}(u, w_i)\), number of impressions for \((u, w_i)\), friend count(u), friend count(w_i)

Combine what is available with score to re-rank via Logistic Regression

<table>
<thead>
<tr>
<th>Suggestion</th>
<th>Impressions</th>
<th>CTR Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>2</td>
<td>0.016</td>
</tr>
<tr>
<td>Carol</td>
<td>1</td>
<td>0.014</td>
</tr>
<tr>
<td>David</td>
<td>1</td>
<td>0.012</td>
</tr>
<tr>
<td>Bob</td>
<td>2</td>
<td>0.010</td>
</tr>
</tbody>
</table>
Showing the best suggestion every time

- To optimize the suggestions, we re-rank after every impression
 - Decision models can only be run once per 2 days
 - They output a score for each \((u, w_i)\) pair
 - Can’t do much too much computation for each impression, but can do a little
 - Simple features are available at each impression, for each suggestion
 - score\((u, w_i)\), number of impressions for \((u, w_i)\), friend count\((u)\), friend count\((w_i)\)

Combine what is available with score to re-rank via Logistic Regression

<table>
<thead>
<tr>
<th>Suggestion</th>
<th>Impressions</th>
<th>CTR Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>David</td>
<td>1</td>
<td>0.012</td>
</tr>
<tr>
<td>Alice</td>
<td>3</td>
<td>0.011</td>
</tr>
<tr>
<td>Bob</td>
<td>2</td>
<td>0.010</td>
</tr>
<tr>
<td>Carol</td>
<td>2</td>
<td>0.009</td>
</tr>
</tbody>
</table>
Reranking with logistic regression

- Most important features have to do with offline score and user’s PYMK history
 - What score did the decision trees give?
 - How many friends has the user added through PYMK in the last week
 - How many has she rejected?
 - How many suggestions did we make?
 - How many times have we shown her each suggestion?

- Simple to implement, lots of software to learn coefficients
 - Using user history data to personalize gives HUGE improvements!
Machine Learning Challenges

- Good predictions on previous data don’t always work out
 - May give high scores to suggestions not represented in previous dataset
- If training from scratch, requires a few iterations to converge
 - Moving towards more online system
Machine Learning Challenges

- Good predictions on previous data don’t always work out
 - May give high scores to suggestions not represented in previous dataset
- If training from scratch, requires a few iterations to converge
 - Moving towards more online system
Machine Learning Challenges

Model trained on this data, deployed

- Good predictions on previous data don’t always work out
 - May give high scores to suggestions not represented in previous dataset
- If training from scratch, requires a few iterations to converge
 - Moving towards more online system

CTR over Time

Old AUC = 0.8507
New AUC = 0.8121
Machine Learning Challenges

- Model trained on this data, deployed
- New model overvalues some suggestions not in previous data; CTR plummets

- Good predictions on previous data don’t always work out
 - May give high scores to suggestions not represented in previous dataset
- If training from scratch, requires a few iterations to converge
 - Moving towards more online system

![CTR over Time](image)

![ROC Curve](image)

Old AUC = 0.8507
New AUC = 0.8121
Machine Learning Challenges

Model trained on this data, deployed

CTR over Time

New model overvalues some suggestions not in previous data; CTR plummets

- Good predictions on previous data don’t always work out
 - May give high scores to suggestions not represented in previous dataset
- If training from scratch, requires a few iterations to converge
 - Moving towards more online system

Old AUC = 0.8507
New AUC = 0.8121
Retrained = 0.8455
Agenda

1. Who to suggest?
2. Static, offline predictions
3. Dynamic, online reranking
4. Performance/Wrap-Up
Performance

- Two performance metrics
 - Friendships created
 - Click-through Rate
- Can always increase one at the cost of the other

- Initial launch of offline model and CTR prediction in early March
 - Recent poor performance due to memcache problems (losing all user-view history data)
 - Overall, increase in total adds up 60%
 - At the same time, CTR prediction has cut impressions have been cut by 1/3
 - Hence, CTR is up by 130%
Takeaways

- Edge annotations are useful features
 - Coefficient helps us a little, creation time more

- Huge performance wins from simple user customization
 - Learn what people use, what they ignore, show them what they like!

- Context matters
 - Use the main content of the page to inform what else to show
Questions