facebook

facebook

People you may know

Lars Backstrom 07/12/2010

Agenda

- Who to suggest?
- 2 Static, offline predictions
- 3 Dynamic, online reranking
- 4 Performance/Wrap-Up

Helping people find friends on FB

- Recommendation has proven itself in many contexts
 - Amazon, NetFlix, etc. all have sophisticated systems
- Like them, we can increase value to users by making good suggestions
 - People with more friends use the site more, get more out of it
- Unlike those systems (collaborative filtering) our's must take social context into account

People you may know

- Top 1-2 suggestions shown on homepage of Facebook
 - See all link leads to more suggestions
 - Many more friend adds from home than 'see all' page.
- 'Xing' a user removes that person from list permanently
 - Pulls in next suggestion
- Accounts for a significant chunk of all friending on Facebook

People you may know

- Top 1-2 suggestions shown on homepage of Facebook
 - See all link leads to more suggestions
 - Many more friend adds from home than 'see all' page.
- 'Xing' a user removes that person from list permanently
 - Pulls in next suggestion
- Accounts for a significant chunk of all friending on Facebook

People you may know

- Top 1-2 suggestions shown on homepage of Facebook
 - See all link leads to more suggestions
 - Many more friend adds from home than 'see all' page.
- 'Xing' a user removes that person from list permanently
 - Pulls in next suggestion
- Accounts for a significant chunk of all friending on Facebook

How to make suggestions

- Most friendships go to friends-offriends
 - Previous work shows over 5x more friendships to FoFs (2-hops) than 3+ hop users (Lescovec et. al '08)
 - 92% of new friendships on FB
- From a practical point of view, doing more than FoF is impossible
 - Average user has over 130 friends
 - 130*130 = 17K FoFs
 - $130^3 = 2.2M \text{ FoFoFs}$
 - Power users have up to 5K friends

How to make suggestions

- Most friendships go to friends-offriends
 - Previous work shows over 5x more friendships to FoFs (2-hops) than 3+ hop users (Lescovec et. al '08)
 - 92% of new friendships on FB
- From a practical point of view, doing more than FoF is impossible
 - Average user has over 130 friends
 - 130*130 = 17K FoFs
 - $130^3 = 2.2 M FoFoFs$
 - Power users have up to 5K friends

How to make suggestions

- Most friendships go to friends-offriends
 - Previous work shows over 5x more friendships to FoFs (2-hops) than 3+ hop users (Lescovec et. al '08)
 - 92% of new friendships on FB
- From a practical point of view, doing more than FoF is impossible
 - Average user has over 130 friends
 - 130*130 = 17K FoFs
 - $130^3 = 2.2M \text{ FoFoFs}$
 - Power users have up to 5K friends

Facebook

Suggesting Friends of Friends

- Problem Statement:
 - Given a source user, find the best FoFs to suggest
- Challenges:
 - A typical user has tens of thousands of FoFs (about 40K on average, 99th percentile 800K!)
 - What features will help us pick from these
 - How can we combine network and demographic features

Friends of Friends

Friends in Common

- Number of friends in common is a good start
 - Two people are 12x more likely to become friends with 10 mutual friends than 1
- Other social network features are also helpful
 - For example, if your good friend just made a new friend, that is a good suggestion

Friends in Common

- Number of friends in common is a good start
 - Two people are 12x more likely to become friends with 10 mutual friends than 1
- Other social network features are also helpful
 - For example, if your good friend just made a new friend, that is a good suggestion
- We can combine network properties:
 - $\delta_{u,v}$ gives the time since edge creation

$$v(fof) = \sum_{f_i} \frac{(\delta_{u,f_i} \cdot \delta_{f_i,fof})^{-0.3}}{\sqrt{friends_{f_i}}}$$

System examines all FoFs

- System examines all FoFs
 - Generates list of top 100 candidates

- System examines all FoFs
 - Generates list of top 100 candidates
- Scores are stored and used along with cheaply available data to predict real-time CTRs
 - Candidates are re-ranked and displayed on each impression

Impressions(Lars,Greg) = 3 Impressions(Lars,Shelly) = 2

- System examines all FoFs
 - Generates list of top 100 candidates
- Scores are stored and used along with cheaply available data to predict real-time CTRs
 - Candidates are re-ranked and displayed on each impression
- Results are fed back into system for retraining
 - Real-time model depends on input scores, must be retrained when offline changes

Agenda

- 1 Who to suggest?
- 2 Static, offline predictions
- 3 Dynamic, online reranking
- 4 Performance/Wrap-Up

Making Static Predictions

- Use traditional machine learning
 - For a user u, consider all FoFs w₁,...,w_k
 - For each pair (u,w_i) generate a bunch of features
 - Mutual friends, time discounted mutual friends, new mutual friends, etc.
 - Also incorporate features of just u and w_i
 - Age, gender, country, total friends, time on FB, etc.
 - We use bagged decision trees (the average of many decision trees)
 - Training data comes from past PYMK
 - Only train on 'first impressions'

Feature Vector Mutual Friends = 5 Gender,, = M $Age_{wi} = 23$ 0.05 0.04 0.01 0.033

Making Static Predictions

- Out of all features, time discounted mutual friends are most important
- Total friends of user, suggestion also very important
 - For instance, having 3/3 mutual friends better than 3/200
- Demographic information also used, but secondary
 - Age, gender, country

Friend of Friend Features

- Two types of features
 - Weighted Friend-of-Friend
 - Actual FoFs, Pending FoFs, Time Weighted FoFs,
 Coefficient Weighted FoFs

- Age, country, Facebook age, gender, friend count, etc.
- Because average person has 40K FoFs, these must be local, and hence are not sharded, but are duplicated on every machine.
- Most important features for prediction
 - 1. Time discounted mutual friends: $v(f \circ f) = \sum_{f} \frac{(\delta_{u, f_i} \cdot \delta_{f_i, f \circ f})^{-0.3}}{\sqrt{f riends_{f_i}}}$
 - 2. Number of friends
 - Country and Facebook age of source user

Friend of Friend Features

- Two types of features
 - Weighted Friend-of-Friend
 - Actual FoFs, Pending FoFs, Time Weighted FoFs,
 Coefficient Weighted FoFs

- Age, country, Facebook age, gender, friend count, etc.
- Because average person has 40K FoFs, these must be local, and hence are not sharded, but are duplicated on every machine.
- Most important features for prediction
 - 1. Time discounted mutual friends:

$$v(fof) = \sum_{f_i} \frac{(\delta_{u,f_i} \cdot \delta_{f_i,fof})^{-0.3}}{\sqrt{friends_{f_i}}}$$

- Number of friends
- Country and Facebook age of source user

Doing this is expensive!

- The average user has 40K FoFs
- There are over 400M users
- 40K * 400M = 16 Trillion!
- Multiple racks (40 machines) with 72GB memory each
 - Each machine holds a fraction of the social graph in memory (it's far too big for one machine)
 - Even so, we only compute new suggestions once every ~2 days
- To ensure the best suggestions for new users, we generate for them more often

- Social graph sharded among 40 machines
 - Includes annotations on edges: creation time, direction, coefficient
- Request goes directly to machine with user's friendlist
 - That machine splits the friend list and requests the FoFs from rest of tier
- Results are aggregated and ranked
 - Top 100 returned

UID%4 == 0

UID%4 == 1

UID%4 == 2

UID%4 == 3

Simple example with 4 machines

UID%4 == 0

UID%4 == 1

UID%4 == 2

UID%4 == 3

- Simple example with 4 machines
- User 4 requests PYMK
 - User 4 is friends with
 5,6,7,13,26,31,121,...

- Simple example with 4 machines
- User 4 requests PYMK
 - User 4 is friends with
 5,6,7,13,26,31,121,...
- Sends requests for FoFs to all other machines (also some local)

- Simple example with 4 machines
- User 4 requests PYMK
 - User 4 is friends with
 5,6,7,13,26,31,121,...
- Sends requests for FoFs to all other machines (also some local)
- Feature vectors for each FoF are aggregated
 - 14:2,18,8117:2,53,12123:2,0,0

Making things fast and memory efficient

- Can't afford to run full decision tree evaluation on all 40K FoFs for every person
 - Use heuristics to narrow the field
 - Select top 5K by time-weighted mutual friends feature
 - Use linear-time rank-N algorithm to find cutoff (no N log N sorting)
 - Run full decision tree algorithm only on them
- Don't want to use network to get age, gender, etc.
 for 5K users
 - Every machine has a local in memory copy
- Select top 100 out of fully ranked 5K
 - Only these are eligible to be shown
 - To ensure diversity, temporarily blacklist any suggestion seen by a user over 4 times

Machine K

Annotated edges (u,v) where u%40==K

Demographic type features for all users

Making things fast and memory efficient

System ranks 8,600,000 suggestions per second

Machine K

Annotated edges (u,v) where u%40==K

Demographic type features for all users

Agenda

- 1 Who to suggest?
- 2 Static, offline predictions
- 3 Dynamic, online reranking
- 4 Performance/Wrap-Up

- To optimize the suggestions, we rerank after every impression
 - Decision models can only be run once per 2 days
 - They output a score for each (u,w_i) pair
 - Can't do much too much computation for each impression, but can do a little
 - Simple features are available at each impression, for each suggestion
 - score(u,w_i), number of impressions for (u,w_i),
 friend count(u), friend count(w_i)

- To optimize the suggestions, we rerank after every impression
 - Decision models can only be run once per 2 days
 - They output a score for each (u,w_i) pair
 - Can't do much too much computation for each impression, but can do a little
 - Simple features are available at each impression, for each suggestion
 - score(u,w_i), number of impressions for (u,w_i), friend count(u), friend count(w_i)

Combine what is available with score to re-rank via Logistic Regression

- To optimize the suggestions, we rerank after every impression
 - Decision models can only be run once per 2 days
 - They output a score for each (u,w_i) pair
 - Can't do much too much computation for each impression, but can do a little
 - Simple features are available at each impression, for each suggestion
 - score(u,w_i), number of impressions for (u,w_i), friend count(u), friend count(w_i)

Combine what is available with score to re-rank via Logistic Regression

Suggestion	Impressions	CTR Prediction
Alice	0	0.048
Bob	0	0.031
Carol	0	0.027
David	0	0.025

- To optimize the suggestions, we rerank after every impression
 - Decision models can only be run once per 2 days
 - They output a score for each (u,w_i) pair
 - Can't do much too much computation for each impression, but can do a little
 - Simple features are available at each impression, for each suggestion
 - score(u,w_i), number of impressions for (u,w_i), friend count(u), friend count(w_i)

Combine what is available with score to re-rank via Logistic Regression

Suggestion	Impressions	CTR Prediction
Carol	0	0.027
David	0	0.025
Alice	1	0.025
Bob	1	0.016

Showing the best suggestion every time

- To optimize the suggestions, we rerank after every impression
 - Decision models can only be run once per 2 days
 - They output a score for each (u,w_i) pair
 - Can't do much too much computation for each impression, but can do a little
 - Simple features are available at each impression, for each suggestion
 - score(u,w_i), number of impressions for (u,w_i), friend count(u), friend count(w_i)

Combine what is available with score to re-rank via Logistic Regression

Suggestion	Impressions	CTR Prediction
Alice	1	0.025
Bob	1	0.016
Carol	1	0.014
David	1	0.012

Showing the best suggestion every time

- To optimize the suggestions, we rerank after every impression
 - Decision models can only be run once per 2 days
 - They output a score for each (u,w_i) pair
 - Can't do much too much computation for each impression, but can do a little
 - Simple features are available at each impression, for each suggestion
 - score(u,w_i), number of impressions for (u,w_i), friend count(u), friend count(w_i)

Combine what is available with score to re-rank via Logistic Regression

Suggestion	Impressions	CTR Prediction
Alice	2	0.016
Carol	1	0.014
David	1	0.012
Bob	2	0.010

Showing the best suggestion every time

- To optimize the suggestions, we rerank after every impression
 - Decision models can only be run once per 2 days
 - They output a score for each (u,w_i) pair
 - Can't do much too much computation for each impression, but can do a little
 - Simple features are available at each impression, for each suggestion
 - score(u,w_i), number of impressions for (u,w_i), friend count(u), friend count(w_i)

Combine what is available with score to re-rank via Logistic Regression

Suggestion	Impressions	CTR Prediction
David	1	0.012
Alice	3	0.011
Bob	2	0.010
Carol	2	0.009

Reranking with logistic regression

Most important features have to do with offline score and user's PYMK history

- What score did the decision trees give?
- How many friends has the user added through PYMK in the last week
- How many has she rejected?
- How many suggestions did we make?
- How many times have we shown her each suggestion?

- Simple to implement, lots of software to learn coefficients
 - Using user history data to personalize gives HUGE improvements!

- Good predictions on previous data don't always work out
 - May give high scores to suggestions not represented in previous dataset
- · If training from scratch, requires a few iterations to converge
 - Moving towards more online system

Model trained on this data, deployed

- Good predictions on previous data don't always work out
 - May give high scores to suggestions not represented in previous dataset
- · If training from scratch, requires a few iterations to converge
 - Moving towards more online system

Model trained on this data, deployed

- Good predictions on previous data don't always work out
 - May give high scores to suggestions not represented in previous dataset
- · If training from scratch, requires a few iterations to converge
 - Moving towards more online system

Model trained on this data, deployed

not in previous data; CTR plummets

- Good predictions on previous data don't always work out
 - May give high scores to suggestions not represented in previous dataset
- If training from scratch, requires a few iterations to converge
 - Moving towards more online system

Model trained on this data, deployed

New model overvalues some suggestions not in previous data; CTR plummets

- Good predictions on previous data don't always work out
 - May give high scores to suggestions not represented in previous dataset
- · If training from scratch, requires a few iterations to converge
 - Moving towards more online system

Agenda

- 1 Who to suggest?
- 2 Static, offline predictions
- 3 Dynamic, online reranking
- 4 Performance/Wrap-Up

Performance

- Two performance metrics
 - Friendships created
 - Click-through Rate
- Can always increase one at the cost of the other

- Initial launch of offline model and CTR prediction in early march
 - Recent poor performance due to memcache problems (losing all user-view history data)
 - Overall, increase in total adds up 60%
 - At the same time, CTR prediction has cut impressions have been cut by 1/3
 - Hence, CTR is up by 130%

Takeaways

- Edge annotations are useful features
 - Coefficient helps us a little, creation time more
- Huge performance wins from simple user customization
 - Learn what people use, what they ignore, show them what they like!
- Context matters
 - Use the main content of the page to inform what else to show

Questions