

Exploiting Sparsity in the Statistical Analysis of Gene Expression Data

Anirban Chatterjee Padma Raghavan Francesca Chiaromonte

The Pennsylvania State University

Supported by NSF through grants NSF-STHEC 0444345 and NSF CSR-SMA 0720749. (*Chatterjee, Bhowmick, Raghavan, Textmining at SDM 2008, longer version under review*)

Outline

- Introduction
- Force-directed Graph Embedding
- Feature Subspace Transformation (FST)
- FST-K-Means Clustering
- Clustering Gene Expression Data
- Summary

Introduction

- Scientific dataset sizes growing rapidly with high throughput instruments, especially, in *Life Sciences*.
- FST-K-Means: Fast yet improved clustering by utilizing sparsity and structure. (Chatterjee, Bhowmick, Raghavan, Textmining at SDM 2008, longer version under review)
 - SPARSITY
 - An mxn matrix is sparse if the number of nonzeros is O(m) or O(n).
 - Many feature values are either zero or numerically insignificant.
 - Observed data are sparse and high-dimensional.
 - STRUCTURE
 - Similarity between observations indicates a relationship.
 - Relationship induces a structure in the data.
- Feature subspace transformation: Combines sparsity and structure through embedding in high-dimensional feature space.

Force-directed Graph Embedding

where, d_{uv} = Euclidean distance between document *u* and *v*

$$fa_{uv} = \frac{d_{uv}^2}{k}$$
 $fr_{uv} = -\frac{k^2}{d_{uv}}$ $k = C_{\sqrt{\frac{area}{number of vertices}}}$

T.M.J. Fruchterman and E.M. Reingold. *Graph drawing by force-directed placement*. Software Practice and Experience, 21(11):1129--1164, November 1991.

Jul 12, 2010

Force-directed Graph Embedding

(Our modifications)

where, d_{uv} = Euclidean distance between document *u* and *v*

$$fa_{uv} = \frac{d_{uv}^2}{k}$$
 $k = C_{\sqrt{\frac{area}{number of vertices}}}$

During embedding only non-zero term entries are modified,

i.e. entity vectors modified only in active dimensions or terms. SIAM Annual Meeting 2010

Computational Cost of Modified Embedding

- Gain in time complexity.
- Fruchterman-Reingold computational costs using attractive + repulsive forces is O(V² + E)
- Our approach
 - No repulsive force calculation
 - Reduced costs: O(E)

FST: Feature Subspace Transformation

- Entity-Feature matrix
 - An *NxR* sparse matrix *A* of N entities and R features.
 - Each entry a_{ij} is the number of times feature t_j appears in entity d_j .
- Entity Graph
 - An undirected graph *G* = (*V*,*E*) with N entities and E edges between these entities.
 - Edge weight *e_{ij}* is the number of common features between the two entities.

FST: Main Steps

Cluster Quality Metrics

- External Quality Metric
 - Accuracy

$$P = \frac{\mathcal{E}}{N}$$

- where,
 - $\mathcal{E} \rightarrow$ Number of correctly classified documents
 - $N \rightarrow$ Total number of documents

Quality Metrics: Internal

- Internal Quality Metrics
 - Measure of intra-cluster cohesiveness

$$J(M_1, M_2 \cdots M_k) = \sum_{M_{ij} \in M_1} \|M_{ij} - w_1\|^2 + \dots + \sum_{M_{ij} \in M_k} \|M_{ij} - w_k\|^2$$

• where,

- $M_c \rightarrow$ Set of documents belonging to cluster c
- $W_k \rightarrow \text{Centroid of cluster } \mathbf{M_c}$
- $M_{ij} \rightarrow jth$ document of cluster M_i
- $k \rightarrow$ Total number of clusters

Jul 12, 2010

S. M. Savaresi, D. L. Boley, S. Bittanti, and G. Gazzaniga. Cluster selection in divisive clustering algorithms. In *Inproceeding SIAM Data Mining Conference*, Arlington, VA,2002

Text and Gene Datasets

Features are words Multinomial distribution Feature extraction a difficult process Number of features less than number of observations

Data acquisition is simple

Sparse Data Features are biological attributes (eg. GC content) Difficult to decide distribution Feature extraction based on domain knowledge Number of features larger than

observations

Complicated data acquisition

Text Datasets

Gene Expression Datasets

Jul 12, 2010

Datasets

Name	Samples	Features	Source(Type)	
adult_a2a	2,265	123	UCI(Census)	
australian	690	14	UCI(Credit Card)	
breast-cancer	683	10	UCI(Census)	
dna	2,000	180	Statlog(Medical)	
splice	1,000	60	Delve(Medical)	
180txt	180	19,698	SMART(Text)	
300txt	300	53,914	SMART(Text)	
20news	1,061	16,127	Yahoo	
			Newsgroup(Text)	

Table 1: Test suite of datasets

FST-K-Means on DNA SPLICE

Figure 2: (a) Original data projected to first three principal components (b) Embedded data projected to first three principal components

Jul 12, 2010

FST-K-Means on DNA SPLICE

We observe an improvement of 25.27% in clustering accuracy relative to K-Means

Jul 12, 2010

Classification Accuracy

Datasets	Classification Accuracy (P)			
Datasets	K-Means	MLKM	FST-K-Means	
adult_a2a	70.60	52.49	74.17	
australian	85.51	74.20	85.36	
breast-cancer	93.70	69.69	83.16	
dna	72.68	70.75	70.75	
splice	55.80	53.20	69.90	
180txt	73.33	91.67	91.67	
300txt	78.67	64.33	95.00	
20news	46.74	54.85	73.70	

Table 2: Accuracy of classification of K-Means, MLKM and FST-K-Means

Cluster Cohesiveness

Datasets	Cluster Cohesiveness (J)			
Datasets	K-Means	MLKM	FST-K-Means	
Adult_a2a	24,013	16,665	16,721	
australian	4,266	3,034	2,638	
breast-cancer	2,475	2,203	1,366	
dna	84,063	65,035	65,545	
splice	31,883	31,618	31,205	
180txt	25,681	23,776	24,131	
300txt	47,235	44,667	45,052	
20news	3,851,900	3,483,591	3,341,400	

Table 3: Cluster cohesiveness of K-Means, MLKM and FST-K-Means

X Chromosome Inactivation (XCI) Data

Dataset	Genes (E/I)	Features	Non-zeros
50kb	399 (346/53)	248	28480
100kb	365 (318/47)	248	42655
250kb	315 (278/37)	248	57444

Results: XCI

Jul 12, 2010

SIAM Annual Meeting 2010

Why does FST work?

Optimal clustering and bounds on cohesiveness:

Y = centered data matrix (Mean of data A subtracted from each entity a_i) $N\bar{y}^2$ = trace of Y^TY $\lambda_i = i$ -th principal eigenvalue of Y^TY $N\bar{y}^2 - \sum_{i=1}^{k-1} (\lambda_i) \le J \le N\bar{y}^2$

C.Ding and X.He, K-means clustering via principal component analysis, pages 225–232, ACM Press, 2004.

Jul 12, 2010

Cohesiveness after FST-K-Means

	Cluster Cohesiveness: FST-K-Means				
	Datasets	Lower			Upper
		Bound	Min	Max	Bound
	Adult_a2a	15,250	15,866	17,208	17,380
	australian	2,442	2,638	3,008	3,493
FST-K-Means	breast-cancer	747	1,366	1,366	5,169
	dna	63,890	65,525	65,865	67,190
	splice	30,389	31,205	31,205	31,942
	180txt	23,188	23,765	24,178	25,290
	300txt	43,708	44,800	45,194	46,512
Cluster Cohesiveness: K-Means					
	Datasets	Lower			Upper
		Bound	Min	Max	Bound
	Adult_a2a	15,250	24,013	24,409	17,380
K Maana	australian	2,442	4,266	4,458	3,493
K-ivieans	breast-cancer	747	2,475	2,475	5,169
	dna	63,890	84,062	84,123	67,190
	splice	30,389	31,882	31,884	31,942
	180txt	23,188	25,651	25,730	25,290
	300txt	43,708	47,220	47,288	46,512

FST-K-Means satisfies the optimality bounds while K-Means fails to do so.

Questions?

Thank You

Email: achatter@cse.psu.edu