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Introduction

�� Scientific Scientific dataset sizes growing rapidlydataset sizes growing rapidly with high throughput with high throughput 
instruments, especially, in instruments, especially, in Life SciencesLife Sciences..

�� FSTFST--KK--Means:Means: Fast yet improved clustering by utilizing Fast yet improved clustering by utilizing sparsitysparsity
and structure. and structure. (Chatterjee, (Chatterjee, BhowmickBhowmick, , RaghavanRaghavan, , TextminingTextmining at at 
SDM 2008, longer version under review)SDM 2008, longer version under review)
�� SPARSITYSPARSITY

� An mxn matrix is sparsesparse if the number of nonzeros is O(m) or O(n).

�� Many featureMany feature values are either zero or numerically insignificanteither zero or numerically insignificant.

� Observed data are sparse and highsparse and high--dimensionaldimensional.

�� STRUCTURESTRUCTURE
�� SimilaritySimilarity between observations indicates a relationship.

� Relationship induces a structurestructure in the data.

�� Feature subspace transformationFeature subspace transformation: Combines : Combines sparsitysparsity and and 
structure through embedding in highstructure through embedding in high--dimensional feature space.dimensional feature space.
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Force-directed Graph Embedding
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T.M.J. Fruchterman and E.M. Reingold. Graph drawing by force-directed placement. 

Software Practice and Experience, 21(11):1129--1164, November 1991.
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Fruchterman & Reingold Graph Drawing 

(Prior work)

Attractive force Repulsive force

Calculated for all vertex pairs (O(V2)) Calculated for vertices connected by an 

edge (O(E))
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Force-directed Graph Embedding
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(Our modifications)

Edge weight

Current iteration 

count
Calculated for vertices connected by an 

edge (O(E))

During embedding only non-zero term entries are modified,

i.e. entity vectors modified only in active dimensions or terms.
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Computational Cost of Modified 
Embedding

� Gain in time complexity.

� Fruchterman-Reingold computational costs 
using attractive + repulsive forces is        
O(V2 + E)

� Our approach
� No repulsive force calculation

� Reduced costs: O(E)
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FST: Feature Subspace 
Transformation

� Entity-Feature matrix
� An NxR sparse matrix A of N entities and R 

features.

� Each entry aij is the number of times feature tj
appears in entity di.

� Entity Graph
� An undirected graph G = (V,E) with N entities and 

E edges between these entities.

� Edge weight eij is the number of common 
features between the two entities.
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FST: Main Steps
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Cluster Quality Metrics
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Quality Metrics: Internal

� External Quality Metric
� Accuracy

� where,    
� Number of correctly classified documents
� Total number of documents

N
P

ε
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Quality Metrics: Internal

� Internal Quality Metrics
� Measure of intra-cluster cohesiveness

� where,
� Set of documents belonging to cluster c

� Centroid of cluster Mc

� jth document of cluster Mi

� Total number of clusters
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S. M. Savaresi, D. L. Boley, S. Bittanti, and G. Gazzaniga. Cluster selection in divisive clustering algorithms. In Inproceeding SIAM Data 

Mining Conference, Arlington, VA,2002
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Text and Gene Datasets

Sparse Sparse 

DataData

Text 

Datasets
Gene Expression 

Datasets

Features are words

Multinomial distribution

Feature extraction a difficult 

process

Number of features less than 

number of observations

Data acquisition is simple

Features are biological 

attributes (eg. GC content)

Difficult to decide distribution

Feature extraction based on 

domain knowledge

Number of features larger than 

observations

Complicated data acquisition
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Datasets

Table 1: Test suite of datasets
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FST-K-Means on DNA SPLICE

Figure 2: (a) Original data projected to first three principal components (b) Embedded data projected to 
first three principal components 

(a) (b)
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FST-K-Means on DNA SPLICE

We observe an improvement of 25.27% in clustering accuracy relative to K-Means
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Classification Accuracy

Table 2: Accuracy of classification of K-Means, MLKM and FST-K-Means
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Cluster Cohesiveness

Table 3: Cluster cohesiveness of K-Means, MLKM and FST-K-Means
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X Chromosome Inactivation 
(XCI) Data

57444248315 

(278/37)

250kb

42655248365 

(318/47)

100kb

28480248399 
(346/53) 

50kb

Non-zerosFeaturesGenes (E/I)Dataset
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Results: XCI

Average 

“Improvements”:
accuracy : 24.40%.

precision : 13.83%.

recall : 25.04%.

cohesiveness : 3.94%.Precision Recall

Accuracy Cohesiveness

FST-K-Means

K-Means
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Why does FST work?

Y = centered data matrix 

(Mean of data A subtracted from each entity ai)

= trace of YTY

= i-th principal eigenvalue of YTY

C.Ding and X.He, K-means clustering via principal component analysis, pages 225–232, ACM 

Press, 2004.

Optimal clustering and bounds on cohesiveness:
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Cohesiveness after FST-K-Means

FST-K-Means satisfies the optimality bounds while K-Means fails to do so.

FST-K-Means

K-Means
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Questions?
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Thank You
Email: achatter@cse.psu.edu


