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Introduction

e Scientific dataset sizes growing rapidly with high throughput
instruments, especially, In Life Sciences.

e FST-K-Means: Fast yet improved clustering by utilizing sparsity
and structure. (Chatterjee, Bhowmick, Raghavan, Textmining at
SDM 2008, longer version under rewew)

e SPARSITY
An mxn matrix is sparse if the number of nonzeros is O(m) or O(n).
Many feature values are either zero or numerically insignificant.
Observed data are sparse and high-dimensional.

e STRUCTURE
Similarity between observations indicates a relationship.
Relationship induces a structure in the data.

e Feature subspace transformation: Combines sparsity and
structure through embedding in high-dimensional feature space.
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Force-directed Graph Embedding

Fruchterman & Reingold Graph Drawing
(Prior work)

Attractive force Repulsive force

Adfr _VO Z _vfruv

Calculated for all vertex pairs (O(V?)) Calculated for vertices connected by an
edge (O(E))

where, d,, = Euclidean distance between document u and v

2 2
fa = d, fro=— k= k=C \/ area

k d number of vertices

uy

T.M.J. Fruchterman and E.M. Reingold. Graph drawing by force-directed placement.
Software Practice and Experience, 21(11):1129--1164, November 1991.
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Force-directed Graph Embedding

(Our modifications)

@”l Edge weight |
u—v
— S
Ad, =) Ja,,
duv @ Current iteration

, count
Calculated for vertices connected by an
edge (O(E))

where, d,, = Euclidean distance between document u and v

£ d’ L=C area
a, = =
Yk number of vertices

During embedding only non-zero term entries are modified,

l.e. entity vectors modified only in active dimensions or terms.
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=Computational Cost of Modified
Embedding

e (Gain in time complexity.

e Fruchterman-Reingold computational costs
using attractive + repulsive forces is
O(V? + E)

e Our approach
e No repulsive force calculation

e Reduced costs: O(E)
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FST: Feature Subspace
Transformation

e Entity-Feature matrix

e An NxR sparse matrix A of N entities and R
features.

e Each entry g, is the number of times feature ¢
appears in entlty d.

e Entity Graph

e An undirected graph G = (V,E) with N entities and
E edges between these entities.

» Edge weight e; is the number of common
features between the two entities.
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FST: Main Steps

Entity-to-Entity Weighted Graph
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Cluster Quality Metrics

1.2
1

,z’ . D >, ,” A \\
0.8 4 = F- )
n I/ ] L] \\ d '1 % x
’ A '
,/ n \\ AB 1 A :
: [ | | IMA A i
0.6 R A — ;
\ | 4 uc 1 k. A 4
. L m ; \ A aq
Y ; \\\ A //’
AY / N -’
0.4

< | d < =
\ ’ Se g
N ’ CORRESIES -
< | ’
¢ ,
-
“ .
~ ,’
. _
S -
0.2

Cluster Centroid “c” Entity “u”
|

0 | |
0 1 2 3 4 5]

Cluster A Cluster B

Jul 12, 2010 SIAM Annual Meeting 2010 9



PENNSTATE

Quality Metrics: Internal

e External Quality Metric
e Accuracy

e where,
& > Number of correctly classified documents
N - Total number of documents
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Quality Metrics: Internal

e Internal Quality Metrics
e Measure of intra-cluster cohesiveness

JM, ,M,---M,)= ZMU_WIH2+..-+ Z‘Mij—wkuz

M eM, MeM,

e where,
M. -> Set of documents belonging to cluster ¢
W, = Gentroid of cluster M,
M; = jth document of cluster M.
k - Total number of clusters

S. M. Savaresi, D. L. Boley, S. Bittanti, and G. Gazzaniga. Cluster selection in divisive clustering algorithms. In Inproceeding SIAM Data
Mining Conference, Arlington, VA,2002

Jul 12, 2010 SIAM Annual Meeting 2010 11



PENNSTATE

Text and Gene Datasets

Features are words
Multinomial distribution

Feature extraction a difficult
process

Number of features less than
number of observations

Data acquisition is simple

Gene Expression
Datasets
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Datasets

Jul 12,2010

Name Samples | Features | Source(Type)
adult_a2a 2,265 123 UCI(Census)
australian 690 14 UCI(Credit Card)
breast-cancer | 683 10 UCI(Census)

300txt 300 53914 SMART(Textf}
20news 1,061 16,127 Yahoo
Newsgroup(Text)

Table 1: Test suite of datasets
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FST-K-Means on DNA SPLICE

Component 3
o
Component 3
o

Component 2

Component 1 Component 2 Component 1

Figure 2: (a) Original data projected to first three principal components (b) Embedded data projected to
first three principal components
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FST-K-Means on DNA SPLICE

We observe an improvement of 25.27% in clustering accuracy relative to K-Means
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Classification Accuracy

Datasets Classification Accuracy (P)
K-Means | MLKM | FST-K-Means

adult_a2a 70.60 52.49 74.17

australian

b

[80txt 73.33 91.67 91.67
300txt 78.67 64.33 95.00
20news 46.74 54.85 73.70

Table 2: Accuracy of classification of K-Means, MLKM and FST-K-Means
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Cluster Cohesiveness

Jul 12,2010

Cluster Cohesiveness (J)

Datasets T Nfeans | MLKM | FST-K-Means
Adult_a2a 24,013 16,665 16,721
australian 4,266 3,034 2,638
breast-cancer 2,475 2,203 1,366

[80txt 25,681 23,776 24,131
300txt 47,235 44,667 45,052
20news 3,851,900 | 3,483,591 | 3,341,400

Table 3: Cluster cohesiveness of K-Means, MLKM and FST-K-Means
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"X Chromosome Inactivation
(XCI) Data

399 248 28480
(346/53)

315

(278/37)
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Average
“Improvements’:

accuracy : 24.40%.

. precision : 13.83%.
Results: XCI recall : 25.04%.
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Why does FST work?

Optimal clustering and bounds on cohesiveness:

Y = centered data matrix
(Mean of data A subtracted from each entity a,)

N -372 = trace of YTY

i = i-th principal eigenvalue of YTY

Ng* =22 ) < J < Ny°

C.Ding and X.He, K-means clustering via principal component analysis, pages 225-232, ACM
Press, 2004.
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Cohesiveness after FST-K-Means

Cluster Cohesiveness: FST-K-Means

FST-K-Means

K-Means

FST-K-Means satisfies the optimality bounds while K-Means fails to do so.

Jul 12,2010

Datasets Lower Upper

Bound Min Max Bound

Adult_aZa 15,250 15.866 17,208 17,380
australian 2.442 2,638 3,008 3.493
breast-cancer 747 1.366 1.366 5.169

- ()

44_.800

46,512

300txt 43,708 45,194
Cluster Cohesiveness: K-Means
Datasets Lower Upper
Bound Min Max Bound
Adult_aZa 15,250 24,013 24.409 17,380
australian 2.442 4.266 4,458 3.493

cast-cancer

747

2475

2475

300txt

43,708

47,220

47,288

46.512
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Questions?
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Thank You

Email: achatter@cse.psu.edu

Jul 12, 2010 SIAM Annual Meeting 2010 23



