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Hybrid Parallel Programming

Large-scale graph analysis utilizing
e Clusters of x86 multicore

Processors
— MPI + OpenMP/UPC

e CPU+GPU
— MPI + OpenCL

e FPGAs, accelerators

— Host code + accelerator code



Why hybrid programming?
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This talk: Two case studies

e MPI + OpenMP on shared-memory multicore
processor clusters

— Graph analytics on online social network crawls,
synthetic “power-law” random graphs

— Traversal and simplification of a DNA fragment
assembly string graph arising in a de novo short-
read genome assembly algorithm
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Parallelization Strategy e
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Minimizing Communication

e |rregular and memory-intensive graph problems:
Intra- and Inter-node communication (+ 1/O costs,
memory latency) costs typically dominate local
computational complexity

e Key to parallel performance: Enhance data locality,
avoid superfluous inter-node communication

— Avoid a P-way partitioning of the graph

— Create PM,/M replicas 4-way partitioning
>
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Real-world data

Assembled a collection of graphs for algorithm performance analysis, from
some of the largest publicly-available network data sets.

Amazon-2003 473.30 K 3.50 M co-purchaser
eu-2005 862.00 K 19.23 M www

Flickr 1.86 M 22.60 M social
wiki-Talk 2.40 M 5.02 M collab

orkut 3.07M 223.00 M social
cit-Patents 3.77T M 16.50 M cite
Livejournal 5.28 M 77.40 M social
uk-2002 1850M  198.10 M www
USA-road 23.90 M 29.00 M Transp.

webbase-2001 118.14 M 1.02B www



“2D” Graph Partitioning Strategy

e Tuned for graphs with unbalanced degree
distributions and incremental updates
— Sort vertices by degree

— Form roughly M;/M, local communities around “high-
degree” vertices & partition adjacencies

— Reorder vertices by degree, assign contiguous chunks to
each of the M;/M, nodes

— Assign ownership of any remaining low-degree vertices to
processes

e Comparison: 1D p-way partitioning, 1D p-way
partitioning with vertices shuffled



Parallel Breadth-First Search Implementation

e Expensive preprocessing partitioning + reordering step,
currently untimed
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Parallel BFS Implementation

e Concurrency in each phase limited by size of
frontier array

e Local computation: inspecting adjacencies,
creating a list of unvisited vertices

e Parallel communication step: All-to-all
exchange of frontier vertices

— Potentially P? exchanges

— Partitioning, replication, and reordering
significantly reduce number of messages



Single-node Multicore Optimizations

1. Software prefetching on Intel Nehalem (supports 32 loads and 20 stores in
flight)

— Speculative loads of index array and adjacencies of frontier vertices will
reduce compulsory cache misses.

2. Aligning adjacency lists to optimize memory accesses
— 16-byte aligned loads and stores are faster.
— Alignment helps reduce cache misses due to fragmentation
— 16-byte alighed non-temporal stores (during creation of new frontier) are fast.

3. SIMD SSE integer intrinsics to process “high-degree” vertex adjacencies.

4. Fast atomics (BFS is lock-free w/ low contention, and CAS-based intrinsics
have very low overhead)

5. Hugepage support (significant TLB miss reduction)
6. NUMA-aware memory allocation exploiting first-touch policy



Parallel Performance

e 32 nodes of NERSC’s Carver system
— dual-socket, quad-core Intel Nehalem 2.67 GHz processor node
— 24 GB DDR3 1333 MHz memory per node, or roughly 768 TB aggregate memory

Synthetic RMAT network: 2 billion

Orkut crawl: 3.07M vertices, 227M edges vertices, 32 billion edges
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Parallel Strategy
Single-node performance: 300-500 M traversed edges/second.



Genome Assembly Preliminaries
- nucleotide

ACACGTGTGCACTACTGCACTCTACTCCACTGACTA |— Genome
(collection of

_______________ N —— long strings)
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DNA sequences/!
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De novo Genome Assembly

e Genome Assembly: “a big
jigsaw puzzle”

e De novo: Latin expression
meaning “from the
beginning”

— No prior reference
organism

— Computationally falls within
the NP-hard class of
problems

f Fragment
~V __"~J\ the DNA

Clone into vectors Isolate vector DNA

@_u—‘ = —T %‘
Sequence the library

CTCTAGCTCTAA ~ AAGTCTCTAA
AGGTCTCTAA  AAGCTATCTAA

Genome Assembly @



Eulerian path-based strategies

e Break up the (short) reads into overlapping

strings of length k. k=5

ACGTTATATATTCTA [ ACGTT CGTTA GTTAT
TTATA ... TTCTA

CCATGATATATTCTA [=» CCATG CATGA ATGAT
TGATA ... TICTA

e Construct a de Bruijn graph (a directed graph
representing overlap between strings)



de Bruijn graphs

e Each (k-1)-mer represents a node in the graph

e Edge exists between node a to b iff there exists a k-mer such
that its prefix is a and suffix is b.

AAGACTCCGACTGGGACTTT >
ACTCCGACTGGGACTTTGAC

AAG

e Traverse the graph (if possible, identifying an Eulerian path) to
form contigs.

e However, correct assembly is just one of the many possible
Eulerian paths.



Steps in the de Bruijn graph-based

assembly scheme
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Graph construction

e Store edges only, represent vertices (kmers)
implicitly.

e Distributed graph representation
e Sort by start vertex
e Edge storage format:

—_—

Store edge (ACTAGGCA), orientation,
edge direction, edge id (y), originating read id (x), edge count

2 bits per nucleotide



Vertex compaction

e High percentage of unique kmers
= Try compacting kmers from same read first
— If kmer length is k, potentially k-times space

reduction! . 0—@ C

ACTAG CTAGG _ TAGGA  AGGAC

:%?cgc‘.

e Parallelization: computation can be done
locally by sorting by read ID, traversing unit-
cardinality kmers.




Summary of various steps and Analysis

A metagenomic data set (140 million reads, 20G bp), k = 45.

Approach used

Parallelism &
Computational

Step Memory
footprint

1. Preprocessing  minimal
2. Kmer spectrum ~ 200 GB
3. Graph ~ 320 GB
construction
4. Graph ~ 60 GB
compaction
5. Error detection ~35GB
6. Scaffolding ? GB

Streaming file read and
write, kmer merging

3 local sorts, 1 AlltoAll
communication steps.

Two sorts

3+ local sorts, 2 AlltoAll
communication steps +
local graph traversal

Connected components +
AlltoAll

Euler tours over
components

kernels

“Pleasantly
parallel”, 1/0O-
intensive

Parallel sort,
AlltoAllv

Fully local
computation

AlltoAllv + local
computation

Intensive
communication

Mostly local
computation



Parallel Implementation Details

e Data set under consideration requires 320 GB
for in-memory processing

— NERSC Franklin system [Cray XT4, 2.3 GHz quad-
core Opterons, 8 GB memory per node]

— Experimented with 64 nodes (256-way parallelism)
and 128 nodes (512-way)

e MPI across nodes + OpenMP within a node
e |Local sort: multicore-parallel radix sort

e Global sort: bin data in parallel + AlltoAll
comm. + local sort + AlltoAll comm.



Parallel Performance

128 nodes: 213 seconds 64 nodes: 340 seconds
e L ® Preprocessing
140 f---memeemeem oo

® Kmer Freq.
120 f-o-smeemeemsese oo

= Graph construct
100 —--smnsmmmmmmeme s
30 ® Graph compact

60

40

Execution time (seconds)

20

Assembly step Assembly step

e Comparison: Velvet (open-source serial code) takes ~ 12 hours
on a 500 GB machine.



Talk Summary

e Two examples of “hybrid” parallel programming for analyzing
large-scale graphs

— Up to 3x faster with hybrid approaches on 32 nodes

e Two different types of graphs, the strategies to achieve high
performance differs

— Social and information networks: low diameter, difficult to generate
balanced partitions with low edge cuts

— DNA fragment string graph: O(N) diameter, multiple connected
components
e Single-node multicore optimizations + communication

optimization (reducing data volume and number of messages
in All-to-all exchange).
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Thank you!
Questions?

KMadduri@lbl.gov



