Hybrid Parallel Programming
for Massive Graph Analysis

Kamesh Madduri
KMadduri@Ibl.gov
Computational Research Division [:}l A

Lawrence Berkeley National Laboratory

Sy

SIAM Annual Meeting 2010
July 12, 2010

Hybrid Parallel Programming

Large-scale graph analysis utilizing
e Clusters of x86 multicore

Processors
— MPI + OpenMP/UPC

e CPU+GPU
— MPI + OpenCL

e FPGAs, accelerators

— Host code + accelerator code

Why hybrid programming?

10,000,000

e Traditional sources of e

performance
improvement are flat- __,
lining

e \We need new

100

algorithms that

10

exploit large on-chip
memory, shared 1
CaCheS, and high : | ¢|Perf;c|oc|kn|.ﬂ |

e Transistors (000) | —
* Clock Speed (MHz)
& Power (W)

e¥ =
SN

DRAM bandwidth

Image source: Herb Sutter, “The Free Lunch is Over”, Dr. Dobb’s Journal, 2009.

This talk: Two case studies

e MPI + OpenMP on shared-memory multicore
processor clusters

— Graph analytics on online social network crawls,
synthetic “power-law” random graphs

— Traversal and simplification of a DNA fragment
assembly string graph arising in a de novo short-
read genome assembly algorithm

Characterizing Large-scale)
graph-theoretic computations =~ -~ °

B—m—

Subject

Random/Global T Enumerate all contacts of K within X hops
memory accesses

Find all events in the past six months
similar to event “Y”

Locality
Characteristics

[> Enumerate all friends of K

Streaming data/

Local computation List today'’s top trending events

-]] (] (] | >

ON) 104 106 108 1012 Peta+
O(N log N)

O(N2) Data size (N: number of vertices/edges)

Computational
Complexity

Parallelization Strategy e

Random/Global T

memory accesses
| — 4 Partition the network,
. Replicate the graph aggressively attempt to
Locality ' on each node minimize communication
Characteristics 7
Partition the network
Streaming data/
Local computation
Computational -~ ™ ' ' ' ' - >
: N 6 8 12
104 10 10 10 Peta+
Complexity O(N log N)

O(N2) Data size (N: number of vertices/edges)

Minimizing Communication

e |rregular and memory-intensive graph problems:
Intra- and Inter-node communication (+ 1/O costs,
memory latency) costs typically dominate local
computational complexity

e Key to parallel performance: Enhance data locality,
avoid superfluous inter-node communication

— Avoid a P-way partitioning of the graph

— Create PM,/M replicas 4-way partitioning
>
Graph + |Core| |Corel| | Core| Core| 1 1 1 [
data structures G 1 1l _
o Cache (Cache| |Cache ba}clhd O O OO 3 replicas
PRy .- v T1v v 1v
e -};;} Memory Controller Hub | | | | | | l:l ¢

< _ DRAM capacity Mp

P=12, Mg/Mp =

Real-world data

Assembled a collection of graphs for algorithm performance analysis, from
some of the largest publicly-available network data sets.

Amazon-2003 473.30 K 3.50 M co-purchaser
eu-2005 862.00 K 19.23 M www

Flickr 1.86 M 22.60 M social
wiki-Talk 2.40 M 5.02 M collab

orkut 3.07M 223.00 M social
cit-Patents 3.77T M 16.50 M cite
Livejournal 5.28 M 77.40 M social
uk-2002 1850M 198.10 M www
USA-road 23.90 M 29.00 M Transp.

webbase-2001 118.14 M 1.02B www

“2D” Graph Partitioning Strategy

e Tuned for graphs with unbalanced degree
distributions and incremental updates
— Sort vertices by degree

— Form roughly M;/M, local communities around “high-
degree” vertices & partition adjacencies

— Reorder vertices by degree, assign contiguous chunks to
each of the M;/M, nodes

— Assign ownership of any remaining low-degree vertices to
processes

e Comparison: 1D p-way partitioning, 1D p-way
partitioning with vertices shuffled

Parallel Breadth-First Search Implementation

e Expensive preprocessing partitioning + reordering step,
currently untimed

xoxx
4: *nhigh-degree” =
Two vertex partitions

Parallel BFS Implementation

e Concurrency in each phase limited by size of
frontier array

e Local computation: inspecting adjacencies,
creating a list of unvisited vertices

e Parallel communication step: All-to-all
exchange of frontier vertices

— Potentially P? exchanges

— Partitioning, replication, and reordering
significantly reduce number of messages

Single-node Multicore Optimizations

1. Software prefetching on Intel Nehalem (supports 32 loads and 20 stores in
flight)

— Speculative loads of index array and adjacencies of frontier vertices will
reduce compulsory cache misses.

2. Aligning adjacency lists to optimize memory accesses
— 16-byte aligned loads and stores are faster.
— Alignment helps reduce cache misses due to fragmentation
— 16-byte alighed non-temporal stores (during creation of new frontier) are fast.

3. SIMD SSE integer intrinsics to process “high-degree” vertex adjacencies.

4. Fast atomics (BFS is lock-free w/ low contention, and CAS-based intrinsics
have very low overhead)

5. Hugepage support (significant TLB miss reduction)
6. NUMA-aware memory allocation exploiting first-touch policy

Parallel Performance

e 32 nodes of NERSC’s Carver system
— dual-socket, quad-core Intel Nehalem 2.67 GHz processor node
— 24 GB DDR3 1333 MHz memory per node, or roughly 768 TB aggregate memory

Synthetic RMAT network: 2 billion

Orkut crawl: 3.07M vertices, 227M edges vertices, 32 billion edges

=
N
|

W Hybrid 12 -

[N
o
|

M 1D partitioning 10 -

yel
4 § 8 - m 1D partitioning + g -
%0 Q Randomization
) 6 6
pu i)
o 4
[T
z g
o © 4 - 4 -
d
2 - 2
0 - 0 -

Parallel Strategy
Single-node performance: 300-500 M traversed edges/second.

Genome Assembly Preliminaries
- nucleotide

ACACGTGTGCACTACTGCACTCTACTCCACTGACTA |— Genome
(collection of

_______________ N —— long strings)

“Scaffold”
the contigs

DNA sequences/!

contigs reads :

ACATCGTCTG |

Align
the reads TCGCGCTGAA

¢

?zl Seqguencer

Genome assembler

Sample

De novo Genome Assembly

e Genome Assembly: “a big
jigsaw puzzle”

e De novo: Latin expression
meaning “from the
beginning”

— No prior reference
organism

— Computationally falls within
the NP-hard class of
problems

f Fragment
~V __"~J\ the DNA

Clone into vectors Isolate vector DNA

@_u—‘ = —T %‘
Sequence the library

CTCTAGCTCTAA ~ AAGTCTCTAA
AGGTCTCTAA AAGCTATCTAA

Genome Assembly @

Eulerian path-based strategies

e Break up the (short) reads into overlapping

strings of length k. k=5

ACGTTATATATTCTA [ACGTT CGTTA GTTAT
TTATA ... TTCTA

CCATGATATATTCTA [=» CCATG CATGA ATGAT
TGATA ... TICTA

e Construct a de Bruijn graph (a directed graph
representing overlap between strings)

de Bruijn graphs

e Each (k-1)-mer represents a node in the graph

e Edge exists between node a to b iff there exists a k-mer such
that its prefix is a and suffix is b.

AAGACTCCGACTGGGACTTT >
ACTCCGACTGGGACTTTGAC

AAG

e Traverse the graph (if possible, identifying an Eulerian path) to
form contigs.

e However, correct assembly is just one of the many possible
Eulerian paths.

Steps in the de Bruijn graph-based

assembly scheme
@ Preprocessing Scaffolding

)

Error resolution + further
N S graph compaction

Sequences after

error resolution

FASTQ input data @

Vertex/edge compaction

@ Kmer spectrum __ Computd and " (lossless transformations)
memory, |nten5|ve

Determine
appropriate
value of k to use

construction

i @ Preliminary de Bruijn graph

Graph construction

e Store edges only, represent vertices (kmers)
implicitly.

e Distributed graph representation
e Sort by start vertex
e Edge storage format:

—_—

Store edge (ACTAGGCA), orientation,
edge direction, edge id (y), originating read id (x), edge count

2 bits per nucleotide

Vertex compaction

e High percentage of unique kmers
= Try compacting kmers from same read first
— If kmer length is k, potentially k-times space

reduction! . 0—@ C

ACTAG CTAGG _ TAGGA AGGAC

:%?cgc‘.

e Parallelization: computation can be done
locally by sorting by read ID, traversing unit-
cardinality kmers.

Summary of various steps and Analysis

A metagenomic data set (140 million reads, 20G bp), k = 45.

Approach used

Parallelism &
Computational

Step Memory
footprint

1. Preprocessing minimal
2. Kmer spectrum ~ 200 GB
3. Graph ~ 320 GB
construction
4. Graph ~ 60 GB
compaction
5. Error detection ~35GB
6. Scaffolding ? GB

Streaming file read and
write, kmer merging

3 local sorts, 1 AlltoAll
communication steps.

Two sorts

3+ local sorts, 2 AlltoAll
communication steps +
local graph traversal

Connected components +
AlltoAll

Euler tours over
components

kernels

“Pleasantly
parallel”, 1/0O-
intensive

Parallel sort,
AlltoAllv

Fully local
computation

AlltoAllv + local
computation

Intensive
communication

Mostly local
computation

Parallel Implementation Details

e Data set under consideration requires 320 GB
for in-memory processing

— NERSC Franklin system [Cray XT4, 2.3 GHz quad-
core Opterons, 8 GB memory per node]

— Experimented with 64 nodes (256-way parallelism)
and 128 nodes (512-way)

e MPI across nodes + OpenMP within a node
e |Local sort: multicore-parallel radix sort

e Global sort: bin data in parallel + AlltoAll
comm. + local sort + AlltoAll comm.

Parallel Performance

128 nodes: 213 seconds 64 nodes: 340 seconds
e L ® Preprocessing
140 f---memeemeem oo

® Kmer Freq.
120 f-o-smeemeemsese oo

= Graph construct
100 —--smnsmmmmmmeme s
30 ® Graph compact

60

40

Execution time (seconds)

20

Assembly step Assembly step

e Comparison: Velvet (open-source serial code) takes ~ 12 hours
on a 500 GB machine.

Talk Summary

e Two examples of “hybrid” parallel programming for analyzing
large-scale graphs

— Up to 3x faster with hybrid approaches on 32 nodes

e Two different types of graphs, the strategies to achieve high
performance differs

— Social and information networks: low diameter, difficult to generate
balanced partitions with low edge cuts

— DNA fragment string graph: O(N) diameter, multiple connected
components
e Single-node multicore optimizations + communication

optimization (reducing data volume and number of messages
in All-to-all exchange).

Acknowledgments

-~ |

A Georgia C@FIEQP
_r:}l ||||‘ Tech ||
BERKELEY PAR LAB

Thank you!
Questions?

KMadduri@lbl.gov

