
1

Tools and Primitives for
High Performance Graph Computation

John R. Gilbert
University of California, Santa Barbara

Aydin Buluç (LBNL)
Adam Lugowski (UCSB)

SIAM Minisymposium on
Analyzing Massive Real-World Graphs
July 12, 2010

Support: NSF, DARPA, DOE, Intel

2

An analogy?

As the “middleware”
of scientific computing,

linear algebra has supplied
or enabled:

• Mathematical tools

• “Impedance match” to
computer operations

• High-level primitives

• High-quality software libraries

• Ways to extract performance
from computer architecture

• Interactive environments

Computers

Continuous
physical modeling

Linear algebra

3

An analogy?

Computers

Continuous
physical modeling

Linear algebra

Discrete
structure analysis

Graph theory

Computers

4

An analogy? Well, we’re not there yet ….

Discrete
structure analysis

Graph theory

Computers

√ Mathematical tools

? “Impedance match” to
computer operations

? High-level primitives

? High-quality software libs

? Ways to extract performance
from computer architecture

? Interactive environments

5

• By analogy to
numerical
scientific
computing. . .

• What should the
combinatorial
BLAS look like?

The Primitives Challenge

C = A*B

y = A*x

μ = xT y

Basic Linear Algebra Subroutines (BLAS):
Speed (MFlops) vs. Matrix Size (n)

6

Primitives should …

• Supply a common notation to express computations

• Have broad scope but fit into a concise framework

• Allow programming at the appropriate level of
abstraction and granularity

• Scale seamlessly from desktop to supercomputer

• Hide architecture-specific details from users

7

The Case for Sparse Matrices

Many irregular applications contain
coarse-grained parallelism that can be exploited

by abstractions at the proper level.

Traditional graph
computations

Graphs in the language of
linear algebra

Data driven,
unpredictable communication.

Fixed communication patterns

Irregular and unstructured,
poor locality of reference

Operations on matrix blocks
exploit memory hierarchy

Fine grained data accesses,
dominated by latency

Coarse grained parallelism,
bandwidth limited

The case for sparse matrices

8

Identification of Primitives

Sparse matrix-matrix
multiplication (SpGEMM)

Element-wise operations

x

Matrices on various semirings: (x, +) , (and, or) , (+, min) , …

Sparse matrix-dense
vector multiplication

Sparse matrix indexing

x

.*

Sparse array-based primitives

9

Multiple-source breadth-first search

X

1 2

3

4 7

6

5

AT

10

XAT ATX



1 2

3

4 7

6

5

Multiple-source breadth-first search

11

• Sparse array representation => space efficient

• Sparse matrix-matrix multiplication => work efficient

• Three possible levels of parallelism: searches, vertices, edges

XAT ATX



1 2

3

4 7

6

5

Multiple-source breadth-first search

12

A Few Examples

13

Betweenness Centrality (BC)
What fraction of shortest paths
pass through this node?

Brandes’ algorithm

A parallel graph library based on
distributed-memory sparse arrays

and algebraic graph primitives

Typical software stack

Combinatorial BLAS
[Buluc, G]

14

BC performance in distributed memory

• TEPS = Traversed Edges Per Second

• One page of code using C-BLAS

0

50

100

150

200

250

25 36 49 64 81 10
0

12
1

14
4

16
9

19
6

22
5

25
6

28
9

32
4

36
1

40
0

44
1

48
4

TE
PS

 s
co

re
M

ill
io

ns

Number of Cores

BC performance

Scale 17

Scale 18

Scale 19

Scale 20

RMAT power-
law graph,

2Scale vertices,
avg degree 8

15

KDT: A toolbox for graph analysis and pattern discovery
[G, Reinhardt, Shah]

Layer 1: Graph Theoretic Tools

• Graph operations

• Global structure of graphs

• Graph partitioning and clustering

• Graph generators

• Visualization and graphics

• Scan and combining operations

• Utilities

16

MATLAB®

Star-P architecture

Ordinary Matlab variables

Star-P

client manager

server manager

package manager

processor #0

processor #n-1

processor #1

processor #2

processor #3

. .
 .

ScaLAPACK
FFTW
FPGA interface

matrix manager Distributed matrices

sort
dense/sparse

UPC user code

MPI user code

17

Landscape connectivity modeling

• Habitat quality, gene flow,
corridor identification,
conservation planning

• Pumas in southern California:
12 million nodes, < 1 hour

• Targeting larger problems:
Yellowstone-to-Yukon corridor

Figures courtesy of Brad McRae

18

Circuitscape [McRae, Shah]

• Predicting gene flow with resistive networks

• Matlab, Python, and Star-P (parallel) implementations

• Combinatorics:
– Initial discrete grid: ideally 100m resolution (for pumas)

– Partition landscape into connected components

– Graph contraction: habitats become nodes in resistive network

• Numerics:
– Resistance computations for pairs of habitats in the landscape

– Iterative linear solvers invoked via Star-P: Hypre (PCG+AMG)

19

A Few Nuts & Bolts

20

Why focus on SpGEMM?

• Graph clustering (Markov, peer pressure)
• Subgraph / submatrix indexing
• Shortest path calculations
• Betweenness centrality
• Graph contraction
• Cycle detection
• Multigrid interpolation & restriction
• Colored intersection searching
• Applying constraints in

finite element computations
• Context-free parsing ...

1
1

1
1

1 x x

SpGEMM: sparse matrix x sparse matrix

21

Two Versions of Sparse GEMM

A1 A2 A3 A4 A7A6A5 A8 B1 B2 B3 B4 B7B6B5 B8 C1 C2 C3 C4 C7C6C5 C8

j

x =i

k
k

Cij

Cij += Aik Bkj

Ci = Ci + A Bi

x =
1D block-column
distribution

2D block
distribution

22

Three levels of parallelism from 2-D data decomposition:
• columns of X : over multiple simultaneous searches

• rows of X & columns of AT: over multiple frontier nodes

• rows of AT: over edges incident on high-degree frontier nodes

XAT ATX



1 2

3

4 7

6

5

Parallelism in multiple-source BFS

23

Modeled limits on speedup, sparse 1-D & 2-D

• 1-D algorithms do not scale beyond 40x

• Break-even point is around 50 processors

N P

1-D algorithm

N P

2-D algorithm

24

Submatrices are hypersparse (nnz << n)

p blocks

blocks

0→
p

c

Total memory using
compressed sparse

columns =)(nnzpn +Ο

Average nonzeros per
column within block =

Average nonzeros per column = c

Any algorithm whose complexity depends on
matrix dimension n is asymptotically too wasteful.

p

25

Distributed-memory sparse matrix-matrix
multiplication

j

* =i

k
k

Cij

Cij += Aik * Bkj

 2D block layout
 Outer product formulation
 Sequential “hypersparse” kernel

• Scales well to hundreds of processors

• Betweenness centrality benchmark:
over 200 MTEPS

• Experiments: TACC Lonestar cluster

Time vs Number of cores -- 1M-vertex RMAT

26

CSB: Compressed sparse block storage
[Buluc, Fineman, Frigo, G, Leiserson]

27

CSB for parallel Ax and ATx
[Buluc, Fineman, Frigo, G, Leiserson]

• Efficient multiplication of a sparse matrix and its transpose by a vector

• Compressed sparse block storage

• Critical path never more than ~ sqrt(n)*log(n)

• Multicore / multisocket architectures

28

From Semirings to
Computational Patterns

29

Matrices over semirings

• Matrix multiplication C = AB (or matrix/vector):

Ci,j = Ai,1×B1,j + Ai,2×B2,j + · · · + Ai,n×Bn,j

• Replace scalar operations × and + by

⊗ : associative, distributes over ⊕, identity 1

⊕ : associative, commutative, identity 0 annihilates under ⊗

• Then Ci,j = Ai,1⊗B1,j ⊕ Ai,2⊗B2,j ⊕ · · · ⊕ Ai,n⊗Bn,j

• Examples: (×,+) ; (and,or) ; (+,min) ; . . .

• No change to data reference pattern or control flow

30

From semirings to computational patterns

Sparse matrix times vector as a semiring operation:

– Given vertex data xi and edge data ai,j

– For each vertex j of interest, compute

yj = ai1,j⊗xi1 ⊕ ai2,j⊗xi2 ⊕ · · · ⊕ aik,j⊗ xik

– User specifies: definition of operations ⊗ and ⊕

31

Sparse matrix times vector as a computational pattern:

– Given vertex data and edge data

– For each vertex of interest, combine data from
neighboring vertices and edges

– User specifies: desired computation on data from
neighbors

From semirings to computational patterns

32

• Explore length-two paths that use specified
vertices

• Possibly do some filtering, accumulation,
or other computation with vertex and edge
attributes

• E.g. “friends of friends” (per Lars Backstrom)

• May or may not want to form the product
graph explicitly

• Formulation as semiring matrix multiplication
is often possible but sometimes clumsy

• Same data flow and communication patterns
as in SpGEMM

SpGEMM as a computational pattern

33

Graph BLAS: A pattern-based library

• User-specified operations and attributes give the
performance benefits of algebraic primitives with a
more intuitive and flexible interface.

• Common framework integrates algebraic (edge-based),
visitor (traversal-based), and map-reduce patterns.

• 2D compressed sparse block structure supports user-
defined edge/vertex/attribute types and operations.

• “Hypersparse” kernels tuned to reduce data movement.

• Initial target: manycore and multisocket shared memory.

34

Challenge: Complete the analogy . . .

Discrete
structure analysis

Graph theory

Computers

√ Mathematical tools

? “Impedance match” to
computer operations

? High-level primitives

? High-quality software libs

? Ways to extract performance
from computer architecture

? Interactive environments

35

Some challenges

• Fault tolerance

• Uncertainty and probabilistic attributes

• Fine-grained dynamic updates

• Interactive environments for exploration & productivity

• Hardware architecture

	Slide Number 1
	An analogy?
	An analogy?
	An analogy? Well, we’re not there yet ….
	The Primitives Challenge
	Primitives should …
	The Case for Sparse Matrices
	Identification of Primitives
	Multiple-source breadth-first search
	Multiple-source breadth-first search
	Multiple-source breadth-first search
	Slide Number 12
	Slide Number 13
	BC performance in distributed memory
	KDT: A toolbox for graph analysis and pattern discovery� [G, Reinhardt, Shah]
	Star-P architecture
	Landscape connectivity modeling
	Circuitscape [McRae, Shah]
	Slide Number 19
	Why focus on SpGEMM?
	Slide Number 21
	Parallelism in multiple-source BFS
	Modeled limits on speedup, sparse 1-D & 2-D
	 Submatrices are hypersparse (nnz << n)
	Distributed-memory sparse matrix-matrix multiplication
	CSB: Compressed sparse block storage�[Buluc, Fineman, Frigo, G, Leiserson]
	CSB for parallel Ax and ATx �[Buluc, Fineman, Frigo, G, Leiserson] �
	Slide Number 28
	Matrices over semirings
	From semirings to computational patterns
	Slide Number 31
	Slide Number 32
	Graph BLAS: A pattern-based library
	Challenge: Complete the analogy . . .
	Some challenges

