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Application Examples

•Detect anomalies in the social network (detection)

• Identify actors (individuals) involved (identification)

PEOPLE

RELATIONSHIP SUBGRAPH

  Wide variety of
application domains

Social network analysis
•Relationships between
people

Biology
• Interactions between
proteins

Signal/image processing
•Discrimination and
classification

Computer Networks
• Failure detection
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Subgraph Detection Problem

Goal: Develop detection framework for finding subgraphs of interest in large graphs
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Graph Detection Challenges

• Background/foreground models

• Non-Euclidean data

• High-dimensional space

•H0 : G = Gb

•H1 : G = Gb + Gf

•Detection problem:

•Given G, is H0 or H1 true?

G = Gb
• background graph

G = Gb + Gf
• background graph + foreground graph
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H0: Background Graph
-Power Law-

• Real world graphs exhibit power law properties

•Well-defined generators exist

• Structural complexity presents a challenge for detection

•A: Adjacency matrix of graph G
• 1024-vertex power law graph

•Degree distribution of graph G

Power law
degree
distribution

Many vertices
with 10-20 edges

Few vertices
with > 40 edges
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H1: Background Graph + Foreground Graph
-Dense Subgraph in Power Law Graph-

Signal (target signature): dense subgraph

• Realistic scenario with subgraph connected to background

•Well controlled but challenging example allows rigorous analysis

• Some subgraphs of interest exhibit high density

Subgraph, Gf Gf adjacency matrix

+

Gf on randomly selected vertices Gb Gb + Gf

SI
G

N
A

L 
EM

B
ED

D
IN

G

M. Skipper, Network biology: A protein
network of one's own proteins, Nature
Reviews Molecular Cell Biology 6, 824
(November 2005)
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Graph-Based Residuals Analysis

• Least-squares residuals
from a best-fit line
•Analysis of variance
(ANOVA) describes fit
• “Explained” vs
“unexplained” variance →
signal/noise discrimination

Linear Regression
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• “Residuals” from a best-fit
graph model
•Analysis of variance from
expected topology
•Unexplained variance in
graph residuals →
subgraph detection

Graph “Regression”
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Overview

MODULARITY
MATRIX

CONSTRUCTION

EIGEN
DECOMPOSITION

COMPONENT
SELECTION DETECTION IDENTIFICATION

Input:

•A, adjacency matrix
representation of G

•No cue

Output:

• vs, set of vertices identified
as belonging to subgraph Gf

Processing chain for subgraph detection analogous to a traditional signal processing chain
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Modularity Matrix* Construction

•Commonly used to evaluate quality of division of a graph into communities
•Application to subgraph detection

•Target signatures have connectivity patterns distinct from the background
•Can view target embedding as creation of a community

*M. E. J. Newman. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E, 74:036104, 2006.
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Eigen Decomposition

! 

B =UDUT

Projection onto principal components of the modularity matrix
yields good separation between background and foreground

Eigenvalues, sorted
by magnitude

Corresponding
eigenvectors

Principal
components

• Each point represents a vertex in G
• Vertices in G: 1024
• Vertices in Gf: 12
• Uncued background/foreground separation

COLORING BASED
ON KNOWN TRUTH
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Detection

MULTIPLE TRIALS, Gb ONLY

MULTIPLE TRIALS, Gb + Gf

H0

H1

H0 and H1 distributions are well separated

TEST STATISTIC:

SYMMETRY OF THE
PROJECTION ONTO

SELECTED
COMPONENTS H0 H1

Powerlaw Background, 12-Vertex Dense Subgraph

Test Statistic
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Distribution of Test Statistics

Embedding a 12-vertex fully connected subgraph significantly
changes the test statistic for both background models

Gamma distribution
k=2,  θ=4.62

Gamma distribution
k=2, θ=1.91

H1

H0

R-MAT Erdös–Rényi
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Detection Performance

Pd: True Positive Rate

Pfa: False Positive Rate

! 

TPR =
TP
P

positives identified

all positives

! 

FPR =
FP
N

negatives identified
as positives

all negatives

Detection:
Positive: G contains Gf

Variable Detector Characteristic:
Threshold

Reliable, uncued detection of
tightly connected groups

SUBGRAPH
DENSITY

Power Law Background, 12-Vertex Dense Subgraph
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Eigendecomposition of the Modularity Matrix
-Revisited-
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Eigenvalues, sorted
by magnitude
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Corresponding
eigenvectors

! 

u1 | u2 | ... | uN"1 | uN[ ]

• B is dense and thus
cannot be stored for
large graphs

• Solution: compute
eigenvectors without
storing B in memory

Approach: create a function that accepts a vector x and returns Bx
without computing B; compute the eigenvectors of this function
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Computing Eigenvectors of Large Graphs

• Bx can be computed without computing B
– Multiplication by B can be expressed as multiplication by a sparse

matrix (A), plus a vector dot product and scalar-vector product
– This method is both space- and time-efficient

• The eigenvectors of f(x)= Ax – K(KTx)/M are the eigenvectors of B

Bx = Ax – K(KTx)/M

= – 

dot product: O(|V|)
scalar-vector product: O(|V|)

dense matrix-vector
product: O(|V|2)

sparse matrix-vector
product: O(|E|)
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Detection Performance
-Large Graphs-

•Spectral subgraph detection algorithm can be optimized by exploiting matrix properties

•Analysis of 220 vertex graph can be performed in minutes (~10) on a single laptop

       Scenario
• Background: 220 vertices, Power Law 
• Foreground: 35 vertices, 90% dense
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Detectability
-With Increasing Background Size-

Algorithm exhibits desired performance: as size of the background
graph increases, minimum detectable subgraph size remains small
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Epinions Data Analysis
-Large Graph Example-

• Who-trusts-whom network from the Epinions consumer review site
– 75,879 vertices, 405,740 edges

• Modularity matrix: too large to store in memory
• Approach: compute eigenvectors of f(x)= Ax – K(KTx)/M

– 200 eigenvectors in 155 seconds using MATLAB

Eigenvector 36

Ei
ge

nv
ec

to
r 4

5

Eigenvector Index

36th and 45th

largest eigenvectors
densely-connected

clusters
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Summary

• Subgraph detection is an important problem

• Detection framework for graphs enables algorithms
and metrics development

• Results on simulated and real datasets demonstrate
the power of the approach
– Demonstrated good detection performance
– Extended approach to very large graphs

• Understanding background statistics (noise and
clutter model) is of key importance

• Current research
– Weak signature foregrounds
– Subgraph formation detection


