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Outline 

• An anomaly detection framework for massive graphs 

 

• Modeling attributed graphs using generalized linear models 

 

• Empirical results 
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Introduction 

• Graphs and networks constitute a valuable theoretical framework for 

modeling and analyzing relational data 

• “Very large” or “massive” graphs: 

– Arise from “very large” data sets 

– Nodes can number in the millions to billions (e.g. document and media 

databases, social networks, the Internet) or even larger (e.g. biological and 

molecular interaction networks) 

• We would like to use these data to perform classical types of analysis, i.e. 

signal processing 

– Hypothesis testing, parameter estimation, classification, time series analysis, 

anomaly and change detection 

• However, there are significant challenges: 

– Graphs are inherently combinatorial, non-Euclidean 

– Extensions of traditional theory to graphs is lacking or cumbersome 

– Scale of massive graphs imposes substantial constraints on computation 



Arcolano and Miller – SIAM AN12 – 4 of 24 

Anomaly Detection 

• Classical anomaly detection 

– Observed data vectors 

– We assume that most data are drawn from an unknown joint distribution 

                    , although some points may not be 

 

• Want to determine which (if any) points deviate from the model  

– Detection: do any anomalous points exist? 

– Classification: if so, which ones are they? 

 

• A common approach: residuals analysis 

– Posit a model  

– Estimate model 

– Compute expected observations under the model 

– Detect anomalies based on residual errors, e.g. 
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An Anomaly Detection Framework 

for Massive Graphs 

• We wish to extend this classical framework to massive graphs 

– Given an observed graph G with n nodes 

– Want to know if an anomalous subgraph exists within G (and if so, where is it?) 

 

• Residuals-based anomaly detection 

– Observed adjacency matrix  

– Estimate of expected adjacency matrix  

– Analyze error matrix                      to detect and identify anomalous subgraphs 

 

• Challenges 

– Need to be able to estimate model parameters efficiently 

– Detection: need to be able to compute test statistic (e.g.       ) efficiently 

– Classification: need to be able to identify subgraph with large residual error 

efficiently (e.g. using sparse spectral methods) 
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The Chung-Lu Random Graph Model 

• Definition 

– Consider a simple random graph G with n nodes 

– For i < j, let the adjacency matrix A = {aij} of G be Bernoulli RVs with probability 

 

 

 

– Thus, we have 

• Given an observed graph, a common estimator for wi is 

 

 

 
where ki is the i-th observed degree and m is the number of edges 

• Consequently, an estimate of             under the Chung-Lu model is 
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The Chung-Lu Model, Modularity, and Residuals 

• Applying the Chung-Lu model within the anomaly detection framework 

yields the residuals matrix 

 

 

 
which is equivalent to the modularity matrix of G 

 

• Thus, when A is sparse 

– Residuals matrix is the sum of a sparse and a rank-1 matrix 

– We can compute norms, eigenvalues, and eigenvectors of E efficiently using 

sparse methods 

E =A¡ ¹A =A¡ kk
T

2m
;

Special structure in the residuals matrix enables 

anomaly detection large graphs 
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Anomaly Detection Example 

RESIDUALS 

CONSTRUCTION 

MATRIX 

DECOMPOSITION 

FEATURE 

SELECTION 
DETECTION CLASSIFICATION 

INPUT 

A, adjacency matrix 

representation of G 

OUTPUT 

Set of vertices identified as 

belonging to anomalous subgraph 
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Anomaly Detection Example 

Background (normal behavior) only 

Background and foreground (includes 

anomalous behavior) 

H0 

H1 

TEST STATISTIC: 

 

 

 

SYMMETRY OF THE 

PROJECTION ONTO 

SELECTED 

COMPONENTS  H0 H1 

Power-law Background, 12-Vertex Dense Subgraph 

Test Statistic 

RESIDUALS 

CONSTRUCTION 

MATRIX 

DECOMPOSITION 

FEATURE 

SELECTION 
DETECTION CLASSIFICATION 

Distributions under H0 and H1 are 

well separated 
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• Typically, we define a graph as 

having only nodes and edges 

• An attributed graph also has 

“attributes”, i.e. additional 

information about nodes and edges 

– In practice, we often construct a graph 

from raw data 

– Data not used to construct the graph 

can still be included as attributes 

• We would like to perform anomaly 

detection using attributed graphs 

– Still need a model that admits special 

structure to enable computation 

Attributed Graphs 

CITATION NETWORK 

PAPER #1 

PAPER #2 

PAPER #3 

PAPER #4 

NODE ATTRIBUTES 

Author = M. Smith 

Subject  = physics 

Year = 1955 

NODE  ATTRIBUTES 

Author = J. Bloggs 

Subject  = mathematics 

Year = 1945 

EDGE ATTRIBUTES 

Citation type = 

physics  mathematics 

Year difference = 5 
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Generalized Linear Models 

• One approach to modeling attributed graphs is using generalized linear 

models (GLMs) 

– Used widely in classical statistics (e.g. logistic regression) 

– Increasingly used for modeling networks with attributes 

• Definition 

– Let X1, …, Xp denote matrices of covariates (attributes) for each potential edge 

– Conditioned on the covariates, assume the edges in G are generated by 

independent Bernoulli trials 

– We assume the expected value of the adjacency matrix is given by 

 

 

 

 

 

where                            is a link function such as the logistic function 

g(t) =
1

1 + exp(¡t)
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Generalized Linear Models for Networks: 

Advantages/Disadvantages 

• Advantages 

– Allows us to incorporate covariates in the data to model attributed graphs 

– Extends a well-understood area of classical statistics 

– Model estimation is (somewhat) tractable 

 Maximum-likelihood estimate of GLM weights can be obtained via convex optimization 

 Gradient and Hessian of ML cost function can be expressed in closed form 

 Closed-form expressions for parameter estimates available in certain special cases 

 

• Disadvantages 

– Estimation is more computationally demanding than simpler models 

– Exact estimation may not be possible for sufficiently large networks 

– Still need special structure to avoid producing a dense, high-rank estimate of 

expected adjacency matrix 
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Relationships Between GLM and 

Other Common Graph Models 

Erdős-Rényi Chung–Lu * 

Stochastic 

Blockmodel* 

Stochastic 

Kronecker Graph* 

Edge probability 

constant across all pairs 

 
)exp(1

1


ijaE

    T

jiijaE )(exp 

    T

jicijaE ),(exp

Edge probability 

proportional to product 

of expected degrees 

Edge probabilities 

depend on groups 

of source and 

destination vertices 

   ),(exp jifaE T

ij 

Probability matrix 

defined by the n-fold 

Kronecker product of a 

base matrix 

(f maps i and j to the number of 

times each section of the base 

matrix was used when generating 

probabilities recursively) *These models do not restrict expected values to be in (0, 1), though the exponential approaches the 

logistic for small values 
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Generalized Linear Models for Networks: Example 

• Citation network 

– Database of n publications with associated bibliographic data (e.g. author, 

subject, journal) 

– Directed, unweighted graph with adjacency matrix A = {aij}, where aij = 1 

indicates document i cites document j 

• Covariates 

– Let c be the number of different subjects 

– Each edge has p = c2 categorical covariates indicating corresponding subject pair 

 

 

• Generalized linear model 

– Conditioned on covariates, each directed edge (i, j) is generated by an 

independent Bernoulli trial with probability pij 

– Probability of connection is given by 

 

x
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Generalized Linear Models for Networks: Example 

• Note that for categorical covariates, estimates obtained in closed form as 

the log-odds 

 

 

 
where ´k is the number of observed edges in each category and ³k is the 

total number of possible edges in each category 

• Similarly, the estimate of the expected adjacency matrix can be expressed 

in a low-rank form 

^̄
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µ
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Approximation based on small probabilities 

enables analysis of principal eigenspace 

No obvious exploitable structure 

• With the Chung–Lu model, the 

residuals matrix has a sparse-plus-

rank-1 structure 

– This structure enables tractable 

computation of eigenvalues and 

eigenvectors 

• In general, a GLM will not have 

such structure 

• If probabilities are small, the 

logistic can be approximated as an 

exponential 

• If the edge categories are coarse, 

this yields a low-rank structure for 

the probability matrix 

• This allows the principal 

eigenspace to be computed for 

massive sizes 

Exploitable Approximations 
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Empirical Example: Setup 

• 10,000-trial Monte Carlo anomaly 

detection simulation 

 

• For each trial, the observation is a 

1,000-vertex graph 

 

• Each graph is generated by a Chung–

Lu/Stochastic Blockmodel hybrid 
– Partitioned into two halves 

– Each half has higher probability of 

internal than external connectivity 

– Each vertex also has a “popularity” 

parameter 

 

• Two scenarios for embedded anomaly 

(8-vertex Erdős–Rényi graph) 
– All 8 vertices on one side of the partition 

– 4 vertices on each side 

 

• Detection based on spectral norm of 

residuals matrix 

)exp(1

1

jiij

ijp
 



ij: dependent on whether i and j are both in the 

first half of the vertex set, both in the second half, 

or one in each 

i, j: “popularity” parameter for individual vertices 
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Use different residuals matrices to capture the effects of 

approximation and estimation 

Residuals Matrices 
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Estimated Approximate 

Probabilities 

Given Approximate 

Probabilities 

Given True 

Probabilities 

• Use the matrix of 

Bernoulli parameters 

that generated the 

observed graph 

• Demonstrates 

performance in an 

idealized situation 

• Approximate 

probabilities are log-

linear in popularity-

based parameters 

• Demonstrates the 

impact of using a 

computationally 

exploitable model 

• Probability matrix is 

estimated using a 

very simple estimator 

based on observed 

densities and degrees 

• Demonstrates the 

loss in performance 

when not given model 

parameters 
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Computationally exploitable model yields nearly the same performance as true model 

Detection Performance 
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Thomson Reuters “Web of Science” Database 

• Citation database for papers in the sciences, social 

sciences, arts, and humanities 

– 42 million records from 1900 to present 

– Articles from over 12,000 journals and 148,000 conference 

proceedings 

• Records typically include 

– Author(s), title, publication date, type 

– Document IDs for works cited 

– May also include a number of other fields, e.g. subject 

area, institution, keywords, abstract 
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Phase transition based in 1996/1997  

• Lower-dimensional residuals example: 

residuals of coefficients over time 

• Consider growth patterns over time of 

coefficients for each subject–subject pair,  

• Two blocks stand out significantly 

– One is citations by documents in the subject 

“Materials Science, Multidisciplinary” 

– The other: “Geosciences, Multidisciplinary” 

• Both subjects were identified by about 100 

more journals (including existing journals) 

in 1996 and 1997 than previous years 

• For further analysis: Is this organic to the 

entities, or a collection artifact? 

Large Deviations in Subject Coefficients 
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Summary 

• Anomaly detection framework for massive graphs 

– Residuals-based analysis for anomalous subgraph detection 

– Wish to incorporate side data (covariates) as attributed graphs 

– Need special structure to enable computational tractability 

• Empirical results demonstrate use of GLMs and effectiveness of 

simplifying approximations in residuals analysis 

• Future directions 

– Computationally tractable approaches to estimation and anomaly 

detection for more complex covariate structures 

– Effect of structural zeros and estimation of risk set 


