"Perfect" Power Law Graphs: Generation, Sampling, Construction, and Fitting

Jeremy Kepner

SIAM Annual Meeting, Minneapolis, July 9, 2012

This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

Outline

Introduction

- Sampling
- Sub-sampling
- Reuter's Data
- Summary

- Develop a background model for graphs based on "perfect" power law
- Examine effects of sampling such a power law
- Develop techniques for comparing real data with a power law model

Detection Theory

Can we construct a background model based on power law degree distribution?

"Perfect" Power Law Matrix Definition

Power Law Distribution Construction

- Nd = number of bins (before unique)
 - Simple algorithm naturally generates perfect power law
 - Smooth transition from integer to logarithmic bins
 - "Poor man's" slope estimator: α = log(n₁)/log(d_{max})

Power Law Edge Construction

Power law vertex list matlab code

```
function v = PowerLawEdges(di,ni);
A1 = sparse(1:numel(di),ni,di);
A2 = fliplr(cumsum(fliplr(A1),2));
[tmp tmp d] = find(A2);
A3 = sparse(1:numel(d),d,1);
A4 = fliplr(cumsum(fliplr(A3),2));
[v tmp tmp] = find(A4);
```

- Degree distribution independent of
 - Vertex labels
 - Edge pairing
 - Edge order

Algorithm generates list of vertices corresponding to any distribution

• All other aspects of graph can be set based on desired properties

- Power law model works for any $\alpha > 0$, $d_{max} > 1$, $N_d > 1$
- Desire distribution that fits α , N, M
- Can invert formulas $- N = \sum_{i} n(d_{i})$
 - M = Σ_i n(d_i) d_i

- Highly non-linear; requires a combination of
 - Exhaustive search, simulated annealing, and Broyden's algorithm
 - Given α , N, M can solve for N_d and d_{max}
 - Not all combinations of α , N, M are consistent with power law

Outline

- Introduction
- Sampling
- Sub-sampling
- Reuter's Data
- Summary

Graph Construction Effects

- 10^{4} Generate a perfect power law \bigcirc measured NxN randomize adjacency input model matrix A 10 $- \alpha = 1.3, d_{max} = 1000, N_{d} = 50$ - N = 18K. M = 84K 10² Make undirected, unweighted, with no self-loops 10 A = triu(A + A');A = double(logical(A));10[°] 10^{3} 10° 10^{1} A = A - diag(diag(A));aearee
 - Graph theory best for undirected, unweighted graphs with no self-loops
 - Often "clean up" real data to apply graph theory results
 - Process mimics "bent broom" distribution seen in real data sets

 10^{4}

Power Law Recovery

Procedure

- Compute α , N, M from measured
- Fit perfect power law to these parameters
- Rebin measured data using perfect power law degree bins

 Perfect power law fit to "cleaned up" graph can recover much of the shape of the original distribution

Correlation Construction Effects

 Generate a perfect power law NxN randomize incidence matrix E

$$- \alpha = 1.3, d_{max} = 1000, N_{d} = 50$$

$$-$$
 N = 18K, M = 84K

 Make unweighted and use to form correlation matrix A with no self-loops

$$A = triu(E' * E);$$

$$A = A - diag(diag(A));$$

 Correlation graph construction from incidence matrix results in a "bent broom" distribution that strongly resembles a power law

Power Law Lost

Procedure

- Compute α , N, M from measured
- Fit perfect power law to these parameters
- Rebin measured data using perfect power law degree bins

- Perfect power law fit to correlation shows non-power law shape
- Reveals "witches nose" distribution

Power Law Preserved

- In degree is power law
 - α = 1.3, d_{max} = 1000, N_d = 50
 - N = 18K, M = 84K
- Out degree is constant
 - N = 16K, M = 84K
 - Edges/row = 5 (exactly)
- Make unweighted and use to form correlation matrix A with no self-loops

degree

Uniform distribution on correlated dimension preserves power law shape

Edge Ordering: Densification

- "Densification" is the observation that M/N increases with N
- Densification is a natural byproduct of randomly drawing edges from a power law distribution
- Linear ordering has constant M/N

Edge Ordering: Power Law Exponent (α)

- Compute α cumulatively and piecewise for 2 random orderings 1.8 Linear random 1.6 Random cumulative d 1.4 Edge ordering and sampling linear have large effect on the cumulative 1.2 power law exponent linear 02 0.4 06 0.8 0 fraction of total edges
 - Power law exponent is fundamental to distribution
 - Strongly dependent on edge ordering and sample size

Outline

- Introduction
- Sampling
- Sub-sampling
- Reuter's Data
- Summary

- Anomaly detection requires good estimates of background
- Traversing entire data sets to compute background counts is increasingly prohibitive
 - Can be done at ingest, but often is not
- Can background be accurately estimated from a sub-sample of the entire data set?

Sampling a Power Law

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Linear Degree Estimate

Non-Linear Degree Estimate

Outline

- Introduction
- Sampling
- Sub-sampling
- Reuter's Data
- Summary

Reuter's Incidence Matrix

- Entities extracted from Reuter's Corpus
- E(i,j) = # times entity appeared in document
- $N_{doc} = 797677$
- $N_{ent} = 47576$
- M = 6132286
- Four entity classes wirdifferent statistics
 - LOCATION
 - ORGANZATION
 - PERSON
 - TIME

• Fit power law model to each entity class

E(:,PERSON) Degree Distribution

E(:,PERSON)^t x E(:,PERSON)

Procedure E(:,PERSON)^t * E(:,PERSON) out distribution 10^{5} measured Make unweighted and \triangle model fit rebin use to form correlation α 10 matrix A with no selfα PERSON α PERSON loops 10^{3} (d_{out}) = double(logical(E)); Ε 10^{2} A = triu(E' * E);A = A - diag(diag(A));10 $\sim \sim \sim$ 10 10⁰ 10^{1} 10^{4} 10 10 d_{out}

- Perfect power law fit to correlation shows non-power law shape
- Reveals "witches nose" distribution

Document Densification

Constant M/N consistent with sequential ordering of documents

Entity Densification

• Increasing M/N consistent with random ordering of entities

Document Power Law Exponent (α)

- Increasing α consistent with sequential ordering of documents

Entity Power Law Exponent (α)

- Decreasing α consistent with random ordering of entities

- Developed a background model for graphs based on "perfect" power law
 - Can be done via simple heuristic
 - Reproduces much of observed phenomena
- Examine effects of sampling such a power law
 - Lossy, non-linear transformation of graph construction mirrors many observed phenomena
- Traditional sampling approaches significantly overestimate the probability of low degree vertices
 - Assuming a power law distribution it is possible to construct a simple non-linear estimate that is more accurate
- Develop techniques for comparing real data with a power law model
 - Can fit perfect power-law to observed data
 - Provided binning for statistical tests

Acknowledgements

- Nicholas Arcolano
- Michelle Beard
- Nadya Bliss
- Bob Bond
- Matthew Schmidt
- Ben Miller
- Bill Arcand
- Bill Bergeron
- David Bestor
- Chansup Byun,

- Matt Hubbell
- Pete Michaleas
- Julie Mullen
- Andy Prout
- Albert Reuther
- Tony Rosa
- Charles Yee

Appendix

Sub-Sampling Formula

- f = fraction of total edges sampled
- $\underline{n}_1 = #$ of vertices of degree 1
- <u>d_{max}</u> = maximum degree
- Allowed slope: $\ln(\underline{n}_1)/\ln(\underline{d}_{max}/f) < \alpha < \ln(\underline{n}_1)/\ln(\underline{d}_{max})$
- Cumulative distribution

 $\mathsf{P}(\alpha,d) = (\mathsf{f}^{1-\alpha} \underline{d}_{\max}{}^{\alpha} / \underline{n}_1) \Sigma_{\mathsf{i} < \mathsf{d}} \, \mathsf{i}^{1-\alpha} \, \mathsf{e}^{-\mathsf{fi}}$

- Find α^* such that $P(\alpha^*, \infty) = 1$
- Find $d_{50\%}$ such that $P(\alpha^*, d_{50\%}) = \frac{1}{2}$
- Compute $K = 1/(1 + \ln(d_{50\%})/\ln(f))$
- Non-linear estimate of true degree of vertex v from sample <u>d(v)</u>
 d(v) = <u>d(v) / f<sup>1-1/(K <u>d(v))</u></sub>
 </u></sup>