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@ Goals

« Develop a background model for graphs based on “perfect”
power law

- Examine effects of sampling such a power law

« Develop techniques for comparing real data with a power law
model
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& Detection Theory

DETECTION OF SIGNAL IN NOISE

ASSUMPTIONS

» Background (noise) statistics
» Foreground (signal) statistics
» Foreground/background separation

* Model = reality

DETECTION OF SUBGRAPHS IN GRAPHS

el =

Example subgraph of interest:
Fully connected (complete)

Example background model:
Powerlaw graph

Can we construct a background model based on power law degree distribution?
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@ “Perfect” Power Law Matrix Definition

Adjacencyl/Incidence

Matrix Vertex Out Degree
Nis s Distribution Vertex In Degree
Distribution
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* Graph represented as a rectangular sparse matrix

— Can be undirected, multi-edged, self-loops, disconnected, hyper edges, ...
* Out/in degree distributions are independent first order statistics

— Only constraint: X n(d,) d,; = X n(d;,) d;, = M
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[E]

Power Law Distribution Construction

» Perfect power law matlab code

function

logdi
di
logni

ni

« Parameters 1
- alpha = slope

n,
(¢

[di ni] = PPL(alpha,dmax, Nd)
(0:Nd) * log(dmax) / Nd;
unique (round (exp (logdi))) ;
alpha * (log(dmax) - log(di)) ;

round (exp (logni) ) ;

123 .. 816 32 ... dax

- dmax = largest degree vertex integer logarithmic
- Nd

= number of bins (before unique)

e Simple algorithm naturally generates perfect power law
* Smooth transition from integer to logarithmic bins
* “Poor man’s” slope estimator: o = log(n,)/log(d,.,)
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@ Power Law Edge Construction

random vertex labels

* Power law vertex list matlab code

function v = PowerLawEdges (di,ni) ;
Al = sgparse(l:numel(di) ,ni,di);

A2 = fliplr(cumsum(fliplr(Al),2));

[tmp tmp d] = find(A2);
A3 = gparse(l:numel(d),d,1); "
A4 = fliplr(cumsum(fliplr (A3),2)); '§;
[v tmp tmp] = find(A4); 8;
O |
D |
* Degree distribution independent of S
— Vertex labels S
— Edge pairing T E
— Edge order

* Algorithm generates list of vertices corresponding to any distribution
* All other aspects of graph can be set based on desired properties
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I&] Fitting o, N, M

Allowed N and M for oo = 1.3

Power law model works for any
a>0, d_>1  Ny>1

Desire distribution that fits
o N, M

Can invert formulas
— N =2;n(d)
- M=% n(d) g

Highly non-linear; requires a combination of
— Exbhaustive search, simulated annealing, and Broyden’s algorithm

* Given o, N, M can solve for N, and d, .,
* Not all combinations of o, N, M are consistent with power law
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@ Graph Construction Effects

4

. Generate a perfect power law 10 -
NxN randomize adjacency A ,Tejf r“;iﬁe.
matrix A .

— a=13,d_, = 1000, N, = 50
— N=18K, M = 84K

10

« Make undirected, unweighted,
with no self-loops

A = triu(A + A');
A = double(logical (Ad)) ;
A = A - diag(diag(d)) ;

* Graph theory best for undirected, unweighted graphs with no self-loops
* Often “clean up” real data to apply graph theory results
* Process mimics “bent broom” distribution seen in real data sets
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@ Power Law Recovery

4

Procedure 10
O measured

« Compute o, N, M from R @

measured 10 ) model fit

: rebin

 Fit perfect power law to =

these parameters 210

&)

 Rebin measured data using

perfect power law degree 10

bins

* Perfect power law fit to “cleaned up” graph can recover much of the
shape of the original distribution
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@ Correlation Construction Effects

« Generate a perfect power law 10
Nxt;l _raEdomize incidence
matrix

~ a=13,d_, =1000, N, = 50 10

« Make unweighted and use to
form correlation matrix A with

no

>

N = 18K, M = 84K

self-loops 1

= double(logical (E)) ;
= triu(E’ * E); 10° 10 10° 10 10°

- A - diag(diag(a)) ; degree

* Correlation graph construction from incidence matrix results in a “bent

broom” distribution that strongly resembles a power law

10
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@ Power Law Lost

P roced ure measured
« Compute o, N, M from model fit

measured L, =

 Fit perfect power law to
these parameters

* Rebin measured data using
perfect power law degree
bins

* Perfect power law fit to correlation shows non-power law shape
* Reveals “witches nose” distribution
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@ Power Law Preserved

* In degree is power law T ————y
o = 1.3, d,, = 1000, Ny = 50 A :
— N=18K, M = 84K :

* Out degree is constant
— N =16K, M = 84K
— Edges/row = 5 (exactly)

count

@O
O @@sO

« Make unweighted and use to
form correlation matrix A with i
no self-loops

* Uniform distribution on correlated dimension preserves power law
shape
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@ Edge Ordering: Densification

« Compute M/N cumulatively 6
and piecewise for 2

orderings
) 5
— Linear
— Random
4
<
» By definition M/N goes from =
1 to infinity for finite N 3
.. ] 2
 Elimination of multi-edges
reduces M and causes M/N random
to grow more slowly 1

0 0.2 0.4 0.6 0.8 1
fraction of total edges

* “Densification” is the observation that M/N increases with N

* Densification is a natural byproduct of randomly drawing edges from a
power law distribution

* Linear ordering has constant M/N
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@ Edge Ordering: Power Law Exponent (o)

« Compute o cumulatively 2
and piecewise for 2
orderings 1.8
— Linear
— Random 1.6

 Edge ordering and sampling
have large effect on the 1.2
power law exponent

0 0.2 0.4 0.6 0.8 1
fraction of total edges

* Power law exponent is fundamental to distribution
* Strongly dependent on edge ordering and sample size
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@ Sub-Sampling Challenge

 Anomaly detection requires good estimates of background

* Traversing entire data sets to compute background counts
Is increasingly prohibitive
— Can be done at ingest, but often is not

« Can background be accurately estimated from a sub-sample
of the entire data set?
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@ Sampling a Power Law

in degree

4

10" ————————

Whole distribution

10:*

—
o
n
T

*e* m® e

10't 1/40 sample’

 Generate power law

» Select fraction of edges

10O e - - ' . =
10° 10’ 10 10 10 10°
in vertex
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[E]

Linear Degree Estimate

104: ! ' UL | ' ' UL | T ! ' """:[
; * Divide measured degree by fraction
| Whole distribution - Accurate for high degree
10°F : « Overestimates low degree
R - Can we do better?
R IL e
2 10°F — T -
© i -=-
Linear estimate -
10' E
100 el el L L .
10° 10’ 10° 10° 10° 10°
in vertex
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Non-Linear Degree Estimate

pis

10 ¢ i) 3 ) T L R s
: J
: « Assume power law input
| Whole distribution - Create non-linear estimate
10°F e - Matches median degree
e
2 10°F s Tipgremnt e 0 e e :
© r . — .
10'F -'-__ -
Non-Linear estimate T
100 M| A P | | L P
10° 10' 10° 10° 10* 10°
in vertex
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Reuter’s Incidence Matrix

Entities extracted from LOCATION ORGANIZTION
Reuter’s Corpus AT —

E(i,j) = # times entity
appeared in document

Ndoc
Nent
M

Four entity classes wi
different statistics

797677
47576
6132286
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* Fit power law model to each entity class
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E(:,PERSON) Degree Distribution

E(:;,PERSON) document distribution

E(:;,PERSON) entity distribution

10° 10
O  measured O measured
o o
10% A model fit ﬁ A model fit
+  rebin 10 ¢ +  rebin
10}
10°F
?:é 10°} <
10°}
10°}
1-
10"} 10
100 0 3 100 0 4
10 10 10
ddoc dent
Document 299333 170069 1.76 1.92 302478 170066 1.78
Entity 299333 37191 8.05 1.21 299748 37449 8.00
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[E] E(:,PERSON)t x E(:,PERSON)

Procedure .y - F(:’PEESQN).t *‘ E(i!E.IE,RSON) ou‘t distripgtic??
. O measured
 Make unweighted and 5 A model ft
. E
use to form correlation A b
matrix A with no self- Y N C Enoon |
loops NN |
F\E_’z A e i
E = double(logical (E)); < o
A = triu(E’ * E); 107y ]
A = A - diag(diag(d)) ;
101 3 =
100 - —_— - —_— T Al
10° 10' 10° 10° 10°
dout
* Perfect power law fit to correlation shows non-power law shape
* Reveals “witches nose” distribution
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Document Densification

M/N document

N

fraction of total edges

| | I I
<— location
organization
person
- time S G
ﬁt::‘:‘%_‘_ )TN ’\\17‘ = (' A O 3 ‘Ex.“\-‘ e
35 e S ees Aty e F
Tl e TR "‘-* Tt S ‘r:j"‘r.?ﬂé-i;r.:.'a;‘ﬂ'*f'*;’“ r\%:%r\%;h—ir'_f‘_’@-“;’ SeEeSaes
| - i 71 V | V | 1
0 0.1 0.2 0.3 0.4 0.9 1

* Constant M/N consistent with sequential ordering of documents
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Entity Densification
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0 \ | 1
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10

* Increasing M/N consistent with random ordering of entities
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Document Power Law Exponent ()

28 T T T T T T T T T
—O— location

—&— organization
2.6 —o— person

2.4

2.2

o document

1.8

| ' |
u ‘ﬂ’ﬁ“" ‘ 's
|

1.6

1.4

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
fraction of total edges

* Increasing o consistent with sequential ordering of documents
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Entity Power Law Exponent ()

[E]

—©— location

—&— organization

—O— person

2.5

Anua 0

0.5 0.6 0.7 0.8 0.9

0.4
fraction of total edges

tent with random ordering of ent

0.3

0.2

0.1
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ing o consis

* Decreas
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Summary

Developed a background model for graphs based on
“perfect” power law

— Can be done via simple heuristic
— Reproduces much of observed phenomena

Examine effects of sampling such a power law

— Lossy, non-linear transformation of graph construction mirrors
many observed phenomena

Traditional sampling approaches significantly overestimate
the probability of low degree vertices

— Assuming a power law distribution it is possible to construct a
simple non-linear estimate that is more accurate

Develop techniques for comparing real data with a power
law model
— Can fit perfect power-law to observed data

— Provided binning for statistical tests
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Sub-Sampling Formula

f = fraction of total edges sampled
n, = # of vertices of degree 1
d,.x = maximum degree

Allowed slope: In(n,)/In(d,../f) < & < In(n,)/In(d, ..,.)

Cumulative distribution

P((X,d) - (f1-oc gmaxa / ﬂ1) Zi<d i1-oc e-ﬁ
Find o* such that P(a*,~) =1
Find dsyo, such that P(a*,dsyq,) = V2

Compute K'=1/(1 + In(dsge,)/In(f))

Non-linear estimate of true degree of vertex v from sample d(v)
d(v) = d(v) / f1-1(Kdw)
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