
“Perfect” Power Law Graphs:
Generation, Sampling,

Construction, and Fitting

Jeremy Kepner

SIAM Annual Meeting, Minneapolis, July 9, 2012

This work is sponsored by the Department of the Air Force under Air Force Contract
#FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions
are those of the authors and are not necessarily endorsed by the United States
Government.

D4M- 2

Outline

• Introduction

• Sampling

• Sub-sampling

• Reuter’s Data

• Summary

D4M- 3

Goals

• Develop a background model for graphs based on “perfect”
power law

• Examine effects of sampling such a power law

• Develop techniques for comparing real data with a power law
model

D4M- 4

Detection Theory

DETECTION OF SIGNAL IN NOISE DETECTION OF SUBGRAPHS IN GRAPHS

NOISE

SIGNAL

N-D SPACE

THRESHOLD

ASSUMPTIONS
• Background (noise) statistics
• Foreground (signal) statistics
• Foreground/background separation
• Model ≈ reality

NOISE SIGNAL

Can we construct a background model based on power law degree distribution?Can we construct a background model based on power law degree distribution?

H0 H1

Example background model:
Powerlaw graph

Example subgraph of interest:
Fully connected (complete)

D4M- 5

“Perfect” Power Law Matrix Definition

Vertex In Degree
Distribution

• Graph represented as a rectangular sparse matrix
– Can be undirected, multi-edged, self-loops, disconnected, hyper edges, …

• Out/in degree distributions are independent first order statistics
– Only constraint: Σ n(dout) dout = Σ n(din) din = M

in degree, din

n(
d i

n)
nu

m
be

r o
f v

er
tic

es

Nin

Adjacency/Incidence
Matrix

A
Nout

M = ΣA
edges

103

102

101

100

100 101 102 103 104 105

-αin

105

104

103

102

101

100

100 101 102 103

n(
d o

ut
)

nu
m

be
r o

f v
er

tic
es

-αout

out degree, dout

Vertex Out Degree
Distribution

D4M- 6

Power Law Distribution Construction

• Simple algorithm naturally generates perfect power law
• Smooth transition from integer to logarithmic bins
• “Poor man’s” slope estimator: α = log(n1)/log(dmax)

n1

1
1 2 3 … 8 16 32 … dmax
integer logarithmic

n(di) = n1/di
α

• Perfect power law matlab code

function [di ni] = PPL(alpha,dmax,Nd)

logdi = (0:Nd) * log(dmax) / Nd;

di = unique(round(exp(logdi)));

logni = alpha * (log(dmax) - log(di));

ni = round(exp(logni));

• Parameters
– alpha = slope
– dmax = largest degree vertex
– Nd = number of bins (before unique)

D4M- 7

Power Law Edge Construction

• Algorithm generates list of vertices corresponding to any distribution
• All other aspects of graph can be set based on desired properties

• Power law vertex list matlab code

function v = PowerLawEdges(di,ni);

A1 = sparse(1:numel(di),ni,di);

A2 = fliplr(cumsum(fliplr(A1),2));

[tmp tmp d] = find(A2);

A3 = sparse(1:numel(d),d,1);

A4 = fliplr(cumsum(fliplr(A3),2));

[v tmp tmp] = find(A4);

• Degree distribution independent of
– Vertex labels
– Edge pairing
– Edge order

random vertex labels

ra
nd

om
 e

dg
e

pa
irs

D4M- 8

Fitting α, N, M

• Power law model works for any
α > 0, dmax > 1, Nd > 1

• Desire distribution that fits
α, N, M

• Can invert formulas
– N = Σi n(di)
– M = Σi n(di) di

• Highly non-linear; requires a combination of
– Exhaustive search, simulated annealing, and Broyden’s algorithm

• Given α, N, M can solve for Nd and dmax

• Not all combinations of α, N, M are consistent with power law

Allowed N and M for α = 1.3

M

N

D4M- 9

Outline

• Introduction

• Sampling

• Sub-sampling

• Reuter’s Data

• Summary

D4M- 10

Graph Construction Effects

• Generate a perfect power law
NxN randomize adjacency
matrix A
– α = 1.3, dmax = 1000, Nd = 50
– N = 18K, M = 84K

• Make undirected, unweighted,
with no self-loops
A = triu(A + A’);

A = double(logical(A));

A = A - diag(diag(A));

• Graph theory best for undirected, unweighted graphs with no self-loops
• Often “clean up” real data to apply graph theory results
• Process mimics “bent broom” distribution seen in real data sets

degree
co

un
t

D4M- 11

Power Law Recovery

Procedure
• Compute α, N, M from

measured
• Fit perfect power law to

these parameters
• Rebin measured data using

perfect power law degree
bins

• Perfect power law fit to “cleaned up” graph can recover much of the
shape of the original distribution

degree
co

un
t

D4M- 12

Correlation Construction Effects

• Generate a perfect power law
NxN randomize incidence
matrix E
– α = 1.3, dmax = 1000, Nd = 50
– N = 18K, M = 84K

• Make unweighted and use to
form correlation matrix A with
no self-loops

E = double(logical(E));

A = triu(E’ * E);

A = A - diag(diag(A));

• Correlation graph construction from incidence matrix results in a “bent
broom” distribution that strongly resembles a power law

degree
co

un
t

D4M- 13

Power Law Lost

Procedure
• Compute α, N, M from

measured
• Fit perfect power law to

these parameters
• Rebin measured data using

perfect power law degree
bins

• Perfect power law fit to correlation shows non-power law shape
• Reveals “witches nose” distribution

degree
co

un
t

D4M- 14

Power Law Preserved

• In degree is power law
α = 1.3, dmax = 1000, Nd = 50

– N = 18K, M = 84K

• Out degree is constant
– N = 16K, M = 84K
– Edges/row = 5 (exactly)

• Make unweighted and use to
form correlation matrix A with
no self-loops

• Uniform distribution on correlated dimension preserves power law
shape

degree
co

un
t

D4M- 15

Edge Ordering: Densification

• Compute M/N cumulatively
and piecewise for 2
orderings
– Linear
– Random

• By definition M/N goes from
1 to infinity for finite N

• Elimination of multi-edges
reduces M and causes M/N
to grow more slowly

• “Densification” is the observation that M/N increases with N
• Densification is a natural byproduct of randomly drawing edges from a

power law distribution
• Linear ordering has constant M/N

Linear

random

D4M- 16

Edge Ordering: Power Law Exponent (α)

• Compute α cumulatively
and piecewise for 2
orderings
– Linear
– Random

• Edge ordering and sampling
have large effect on the
power law exponent

• Power law exponent is fundamental to distribution
• Strongly dependent on edge ordering and sample size

random

linear

random
cumulative

linear
cumulative

D4M- 17

Outline

• Introduction

• Sampling

• Sub-sampling

• Reuter’s Data

• Summary

D4M- 18

Sub-Sampling Challenge

• Anomaly detection requires good estimates of background

• Traversing entire data sets to compute background counts
is increasingly prohibitive
– Can be done at ingest, but often is not

• Can background be accurately estimated from a sub-sample
of the entire data set?

D4M- 19

Sampling a Power Law

• Generate power law
• Select fraction of edges

Whole distribution

1/40 sample

D4M- 20

Linear Degree Estimate

• Divide measured degree by fraction
• Accurate for high degree
• Overestimates low degree
• Can we do better?

Whole distribution

Linear estimate

D4M- 21

Non-Linear Degree Estimate

• Assume power law input
• Create non-linear estimate
• Matches median degree

Whole distribution

Non-Linear estimate

D4M- 22

Outline

• Introduction

• Sampling

• Sub-sampling
• Reuter’s Data

• Summary

D4M- 23

Reuter’s Incidence Matrix

• Entities extracted from
Reuter’s Corpus

• E(i,j) = # times entity
appeared in document

• Ndoc = 797677
• Nent = 47576
• M = 6132286

• Four entity classes with
different statistics
– LOCATION
– ORGANZATION
– PERSON
– TIME

• Fit power law model to each entity class

LOCATION ORGANIZTION PERSON TIME

D
O

C
U

M
EN

T E

D4M- 24

E(:,PERSON) Degree Distribution

M N M/N α Mfit Nfit Mfit/Nfit

Document 299333 170069 1.76 1.92 302478 170066 1.78

Entity 299333 37191 8.05 1.21 299748 37449 8.00

D4M- 25

E(:,PERSON)t x E(:,PERSON)

• Perfect power law fit to correlation shows non-power law shape
• Reveals “witches nose” distribution

Procedure
• Make unweighted and

use to form correlation
matrix A with no self-
loops

E = double(logical(E));

A = triu(E’ * E);

A = A - diag(diag(A));

D4M- 26

Document Densification

• Constant M/N consistent with sequential ordering of documents

D4M- 27

Entity Densification

• Increasing M/N consistent with random ordering of entities

D4M- 28

Document Power Law Exponent (α)

• Increasing α consistent with sequential ordering of documents

D4M- 29

Entity Power Law Exponent (α)

• Decreasing α consistent with random ordering of entities

D4M- 30

Summary

• Developed a background model for graphs based on
“perfect” power law
– Can be done via simple heuristic
– Reproduces much of observed phenomena

• Examine effects of sampling such a power law
– Lossy, non-linear transformation of graph construction mirrors

many observed phenomena

• Traditional sampling approaches significantly overestimate
the probability of low degree vertices
– Assuming a power law distribution it is possible to construct a

simple non-linear estimate that is more accurate

• Develop techniques for comparing real data with a power
law model
– Can fit perfect power-law to observed data
– Provided binning for statistical tests

D4M- 31

Acknowledgements

• Nicholas Arcolano
• Michelle Beard
• Nadya Bliss
• Bob Bond
• Matthew Schmidt
• Ben Miller
• Bill Arcand
• Bill Bergeron
• David Bestor
• Chansup Byun,

• Matt Hubbell
• Pete Michaleas
• Julie Mullen
• Andy Prout
• Albert Reuther
• Tony Rosa
• Charles Yee

D4M- 32

Appendix

D4M- 33

Sub-Sampling Formula

• f = fraction of total edges sampled
• n1 = # of vertices of degree 1
• dmax = maximum degree
• Allowed slope: ln(n1)/ln(dmax/f) < α < ln(n1)/ln(dmax)

• Cumulative distribution
P(α,d) = (f1-α dmax

α / n1) Σi<d i1-α e-fi

• Find α* such that P(α*,∞) = 1
• Find d50% such that P(α*,d50%) = ½
• Compute K = 1/(1 + ln(d50%)/ln(f))

• Non-linear estimate of true degree of vertex v from sample d(v)
d(v) = d(v) / f1-1/(K d(v))

