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Network Clusters 
�  Networks are not uniformly/homogeneously linked 

but we observe formation of clusters 

�  Why clusters? What do they correspond to?   
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Blogosphere [Adamic&Glance]  



From Clusters to Communities 
�  Idea: Clusters form communities  
◦  Cluster: nodes with a certain connectivity 

structure  
◦  Community: nodes with a shared latent 

property  

� Many reasons why communities form:  
◦ World Wide Web  
◦  Citation networks  
◦  Social networks  
◦ Metabolic networks  
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Basis for Community Formation 
�  How and why do communities form?  
�  Granovetter’s Strength of weak ties suggest 

and the models of small-world suggest:  
◦  Strong ties are well embedded in the network  
◦  Weak ties span long-ranges  

�  Given a network, how to find communities?  
◦  Find weak ties and then identify the “boundary” of 

communities 
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Overlapping Communities 
� Communities can overlap 
◦ The notion of weak-ties is extended for 

overlapping communities. 
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Communities in Networks 
�  Assumptions about the structure of communities  
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Granovetter and all  
non-overallping methods  

Overlapping methods  
(CPM, MMSB, and so on) 



Step Back: Community Detection 
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Ground-Truth 
� Networks with a an explicit 

notion of Ground-Truth: 
◦  Collaborations: Conferences 

& Journals as proxies for areas 

◦  Social Networks: People join 
to groups, create lists 

◦  Information Networks: Users 
create topic based groups 
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Example of Ground-Truth 
�  LiveJournal social network 
◦  Users create and join to groups created 

around culture, entertainment, expression, 
fandom, life/style, life/support, gaming, 
sports, student life and technology  

�  TuDiabetes network  
◦ Groups form around specific types of 

diabetes, different age groups, emotional and 
social support, arts and crafts groups, 
different geo regions  

�  A user can be a member of 0 or more groups  
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Networks with Ground-Truth 
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Ground-Truth: Consequences 

� How real groups map on the network? 
 ⇒   Insights for Better Algorithms 

� How to evaluate and interpret? 
 ⇒  “Precision” of Algorithms 
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Groups and Networks 
�  Nodes u and v share k groups 
�  What is edge prob. P(edge | k) as a func. of k? 
�  Today’s  wisdom: 

Yang and Leskovec, SIAM AN '12 12 

P(edge | k) = 0 

P(edge | k) = decreasing 



Edge Probability 
�  Nodes u and v share k groups 
�  What is edge prob. P(edge | k) as a func. of k? 
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Communities in Networks  
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DOES	
  IT	
  MATTER?	
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Detecting Dense Overlaps 
� Can present community detection 

methods detect dense overlaps? No!  
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Natural Model 
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Provably generates power-law degree distributions and other 
patterns real-world networks exhibit. [Lattanzi, Sivakumar, STOC ‘09]  
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Model-based Community Detection 
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•  Task:  
•  Given network G(V,E), Find B(V,C,M) and {pc} 

•  Optimizing Likelihood (MLE) 

•  How to solve? 
•  Approach: Coordinate ascent 

•  (1) Stochastic search over B, while keeping {pc} fixed 
•  (2) Optimize {pc}, while keeping B fixed (convex!) 

•  Works well in practice! 

AGM Model Fitting 
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Facebook example 

19 

Accuracy: 89% 

High school 

Stanford 2 
(Basketball 
club) Stanford 1 

(Squash club) 

Company 
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Experimental Setup 

�  Evaluation: 
◦  F-score: Precision, Recall 
◦  Mutual Information [Lancichinetti&Fortunato, PR-E ‘09] 
◦  Ω - index [Gregory, J of Stat. Mech. ’11] 
◦  The number of communities 

�  Methods for comparison: 
◦  Clique Percolation [Palla et al., Nature ‘05] 
◦  Link Clustering  [Ahn et al., Nature ‘10] 
◦  Mixed Membership Stochastic Blockmodels [Airoldi et al., JMLR ’08] 
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Experimental Results: Ground-Truth 
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•  Overall (only overlaps) AGM 
improves (F1≈0.6) 

•  57% (21%) over Link 
clustering  

•  48% (22%) over CPM  
•  10% (26%) over MMSB  

 
 



Experimental Results: Meta data-based 

� Evaluation based on node metadata 
[Ahn et al. ‘10]  

� Similar level of improvement  
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Conclusion 
� Ground-Truth Communities  
◦ ⇒ Overlaps are denser  
◦ Present methods can’t detect such 

overlaps  
� Community-Affiliation Graph Model  
◦ ⇒ Model-based Community Detection  
◦ Outperforms state-of-the-art  
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Thank you! 

•  Code & Data: http://snap.stanford.edu 


