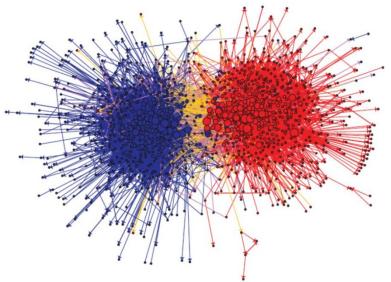
Networks, Communities and the Ground-Truth

Jaewon Yang and Jure Leskovec Stanford University

Network Clusters

 Networks are not uniformly/homogeneously linked but we observe formation of clusters



Blogosphere [Adamic&Glance]

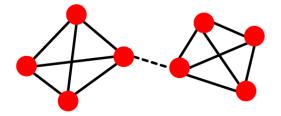
• Why clusters? What do they correspond to?

From Clusters to Communities

- Idea: Clusters form communities
 - Cluster: nodes with a certain connectivity structure
 - Community: nodes with a shared latent property
- Many reasons why communities form:
 - World Wide Web
 - Citation networks
 - Social networks
 - Metabolic networks

Basis for Community Formation

- How and why do communities form?
- Granovetter's Strength of weak ties suggest and the models of small-world suggest:
 - Strong ties are well embedded in the network
 - Weak ties span long-ranges

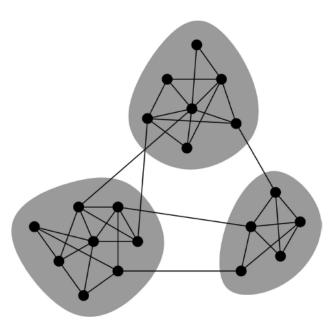


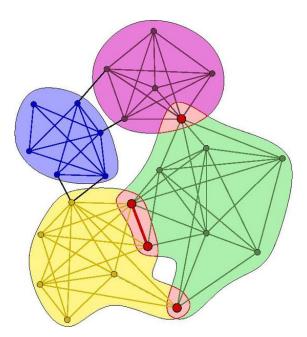
- Given a network, how to find communities?
 - Find weak ties and then identify the "boundary" of communities

4

Overlapping Communities

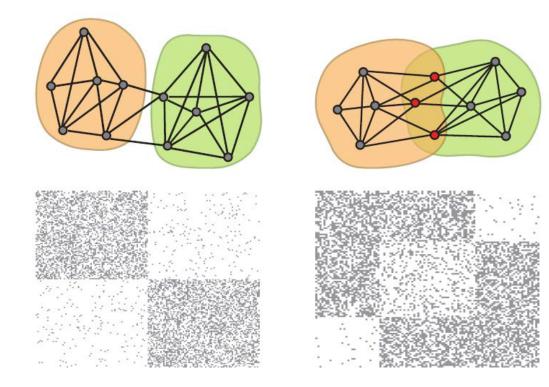
- Communities can overlap
 - The notion of weak-ties is extended for overlapping communities.





Communities in Networks

Assumptions about the structure of communities



Granovetter and all non-overallping methods

Overlapping methods (CPM, MMSB, and so on)

work in the same area publish in same journals Yang and Leskovec, SIAM AN '12

o.uni-trier.de

Computer Science Bibliography

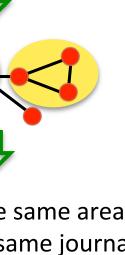
Step Back: Community Detection

(1) Take a complex system

(2) Represent it as a graph

(3) Identify communities (really, clusters)

(4) Interpret clusters as "real" communities



Ground-Truth

- Networks with a an explicit notion of Ground-Truth:
 - Collaborations: Conferences
 & Journals as proxies for areas
 - Social Networks: People join to groups, create lists
 - Information Networks: Users create topic based groups

o.uni-trier.de 5 **Computer Science** Bibliography

work in the same area
publish in same journals

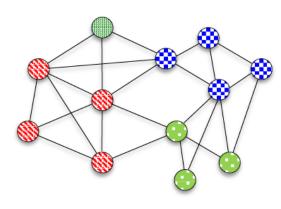
Example of Ground-Truth

LiveJournal social network

- Users create and join to groups created around culture, entertainment, expression, fandom, life/style, life/support, gaming, sports, student life and technology
- TuDiabetes network
 - Groups form around specific types of diabetes, different age groups, emotional and social support, arts and crafts groups, different geo regions
- A user can be a member of 0 or more groups

Networks with Ground-Truth

Dataset	N	E	C	S	A
LiveJournal	4.0 M	34.9 M	311,782	40.06	3.09
Friendster	117 M	2,586.1 M	1,449,666	26.72	0.33
Orkut	3.0 M	117.2 M	8,455,253	34.86	95.93
DBLP	0.4 M	1.3 M	2547	429.79	2.57
IMDB	1.3 M	39.8 M	205	6688.78	1.00
Amazon	0.3 M	0.9 M	49,732	99.86	14.83



Youtube social network

- N ... # of nodes
- # of edges
 # of ground-truth communities E ... C
- average community size S ...
- memberships per node Α...

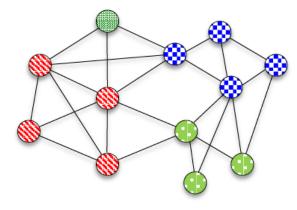
For example:

- 😳 ... fans of Real Madrid
- 🛞 ... subscribe to Lady Gaga videos
- 🋞 ... follow Volvo Ocean Race

10

Ground-Truth: Consequences

 \simeq



Ground-truth groups

Inferred communities

How real groups map on the network?

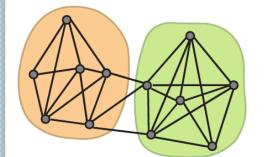
 ⇒ Insights for Better Algorithms

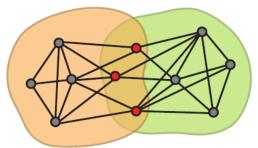
 How to evaluate and interpret?

 ⇒ "Precision" of Algorithms

Groups and Networks

- Nodes u and v share k groups
- What is edge prob. P(edge | k) as a func. of k?
- Today's wisdom:

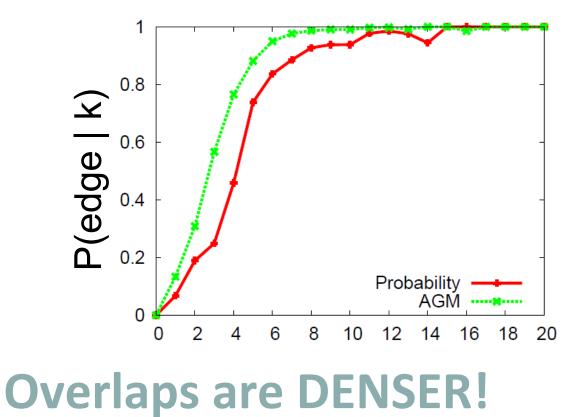




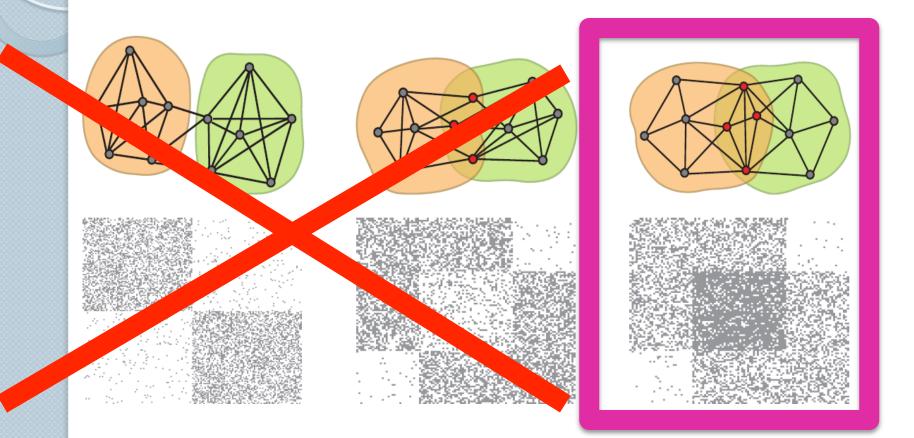
 \square P(edge | k) = decreasing

Edge Probability

- Nodes u and v share k groups
- What is edge prob. P(edge | k) as a func. of k?



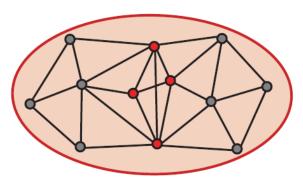
Communities in Networks

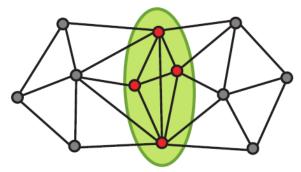


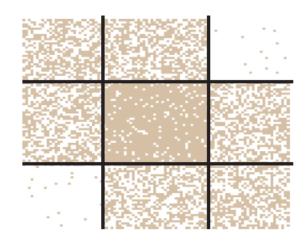
DOES IT MATTER?

Detecting Dense Overlaps

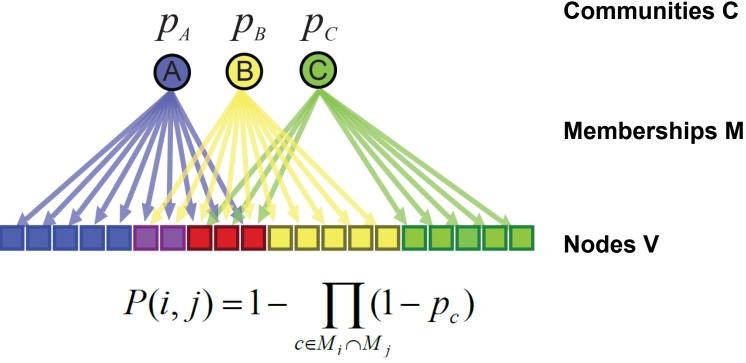
 Can present community detection methods detect dense overlaps? No!







Natural Model



Community-Affiliation Graph Model

Provably generates power-law degree distributions and other patterns real-world networks exhibit. [Lattanzi, Sivakumar, STOC '09]

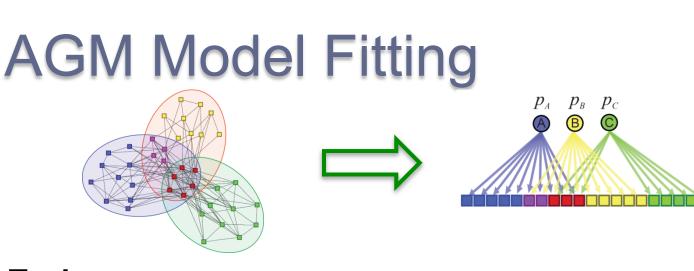
<image>

Given a Graph, find the Model

Affiliation Graph B(V,C,M)
 Number of communities

3) Parameter p_i

Yes, we can!



- Task:
 - Given network G(V,E), Find B(V,C,M) and $\{p_c\}$
- Optimizing Likelihood (MLE)

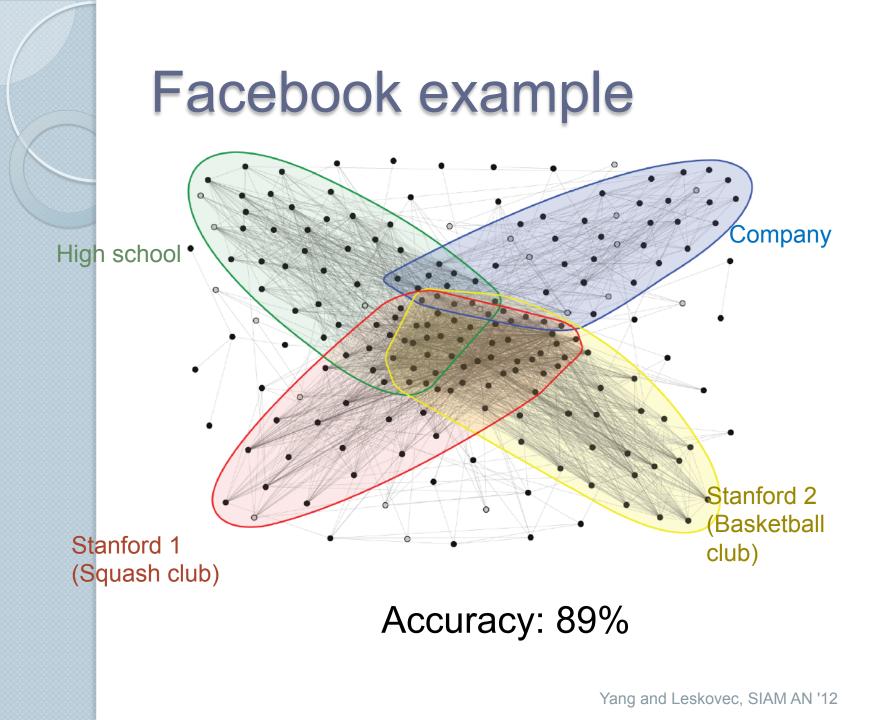
$$\arg\max_{B} P(G \mid B) = \prod_{(i,j) \in E} P(i,j) \prod_{(i,j) \notin E} (1 - P(i,j))$$

$$P(i,j) = 1 - \prod (1 - p_c)$$

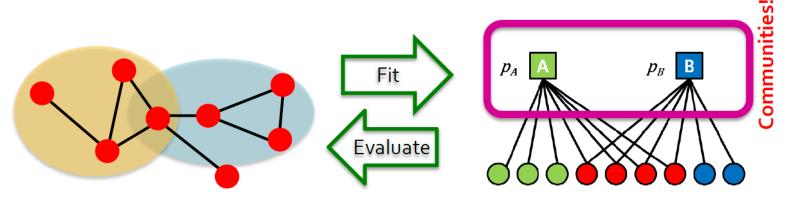
- How to solve?
 - Approach: Coordinate ascent
 - (1) Stochastic search over B, while keeping $\{p_c\}$ fixed
 - (2) Optimize $\{p_c\}$, while keeping B fixed (convex!)
 - Works well in practice!

 $c \in M_i \cap M_i$

18



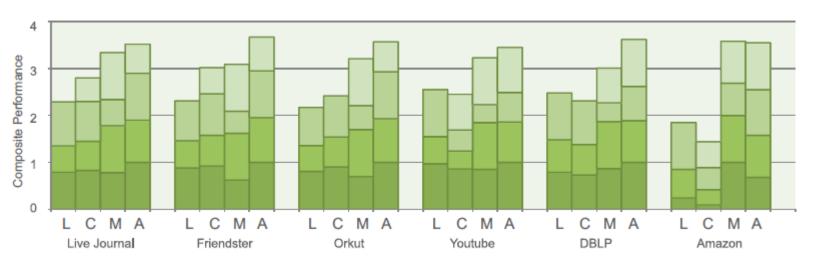
Experimental Setup



• Evaluation:

- F-score: Precision, Recall
- Mutual Information [Lancichinetti&Fortunato, PR-E '09]
- Ω index [Gregory, J of Stat. Mech. '11]
- The number of communities
- Methods for comparison:
 - Clique Percolation [Palla et al., Nature '05]
 - Link Clustering [Ahn et al., Nature '10]
 - Mixed Membership Stochastic Blockmodels [Airoldi et al., JMLR '08]

Experimental Results: Ground-Truth



- Overall (only overlaps) AGM improves (F1≈0.6)
 - 57% (21%) over Link clustering
 - 48% (22%) over CPM
 - 10% (26%) over MMSB

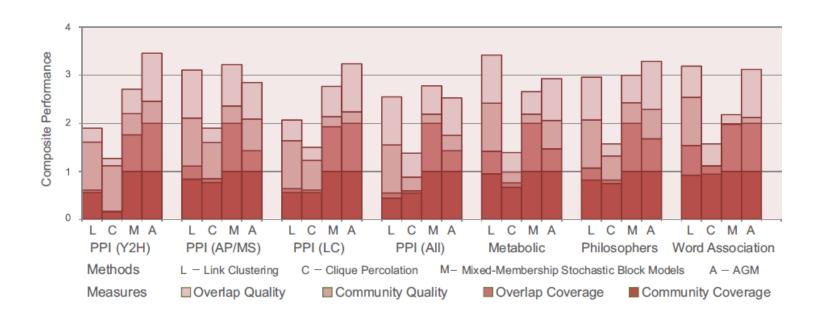
Methods

- L Link Clustering
- C Clique Percolation
- M Mixed-Membership Stochastic Block Model
- A AGM

Measures

- Number of Communities
- Normalized Mutual Information
- F1-score
- Ω-index

Experimental Results: Meta data-based



- Evaluation based on node metadata [Ahn et al. '10]
- Similar level of improvement

22

Conclusion

- Ground-Truth Communities
 - \Rightarrow Overlaps are **denser**
 - Present methods can't detect such overlaps

Community-Affiliation Graph Model

- ⇒ Model-based Community Detection
- Outperforms state-of-the-art

References

- J. Yang, J. Leskovec. Structure and Overlaps of Communities in Networks. http://arxiv.org/abs/1205.6228
- J. Yang, J. Leskovec. Defining and Evaluating Network Communities based on Ground-truth. http://arxiv.org/abs/ 1205.6233
- J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney. Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters. http://arxiv.org/abs/0810.1355

Thank you!

0

Code & Data: http://snap.stanford.edu