
 

SIAM Annual Meeting 

July 10, 2012 

 High-performance Metagenomic Data 
Clustering and Assembly 

Kamesh Madduri 

 madduri@cse.psu.edu 

 

Computer Science and Engineering 

Pennsylvania State University 



• Motivating ‘big data’ application: Identification of 
biomass-degrading genes and genomes from cow 
rumen 

 

• Analysis of 268 Gbp metagenomic data 

• Efficient parallelization of memory-intensive phases 
of de Bruijn graph-based genome assembly 

• Parallel performance results 

– 150X speedup over serial approach (256-node Cray XT4 
system) 

Talk Outline and Contributions 

2 



Preliminaries 

ACACGTGTGCACTACTGCACTCTACTCCACTGACTA 

DNA sequences/  
reads 

Genome 
nucleotide 

Sequencer 

Sample 

ACATCGTCTG 

TCGCGCTGAA 
Align 

the reads 

contigs 

“Scaffold”  

the contigs 

Genome assembler 

3 



• New Sequencing technology (2005 - ) 
– “High-throughput” 

– Illumina HiSeq 2000: 2 billion paired-end  

 reads/run, 100 bp read length. 

– Applied Biosystems SoLiD 4: 2.25 billion  

 reads/run, 125 bp average read length. 

– 454 GS FLX Titanium: 1 million  

    high quality reads/run, average length  

    of 400 bp. 

 

Next-Generation Sequencers produce “short-
read” data 

Image sources: www.illumina.com, www.454.com 
(Double-stranded) DNA 

fragment of known length 

mate pair 

4 



• Genome Assembly: “a big 
jigsaw puzzle” 

• De novo: Latin expression 
meaning “from the 
beginning” 

– No prior reference 
organism 

– Computationally falls within 
the NP-hard class of 
problems  

 

De novo Genome Assembly 

DNA extraction 

Fragment  

the DNA 

Clone into vectors Isolate vector DNA 

Sequence the library 

CTCTAGCTCTAA 

AGGTCTCTAA 

AAGTCTCTAA 
AAGCTATCTAA 

CTCTAGCTCTAAGGTCTCTAACTAAGCTAATCTAA 

Genome Assembly 

5 



• A large number of reads: millions -> billions 

• Short reads 

– 1000-2000 bp with prior-generation sequencing 
instruments, 25-125 bp now. 

• Repeats in genome 

– Complicates contig ordering 

• Experimental: Sequencing errors,  

 absent mate-pairs 

De novo Genome Assembly: Computational 
Challenges 

6 



Application: Identification of biomass-degrading Genes 
and Genomes from cow rumen 

Image Source: Hess et al., Science 331(6016), 463-467, 2011. 

Goal: Identify microbial enzymes that aid in 

deconstruction of plant polysaccharides. 

Cow rumen microbes known to be particularly effective 

In breaking down switchgrass. 

7 



• Two major complications for de novo assembly 

– Uneven representation of organisms within a sample 

– Polymorphisms between closely related members in an 
environment 

 

• Assembly is difficult even if we have an estimate of 
organism representation in a sample 

• If coverage is not known, Poisson likelihood estimates 
used by isolate genome assemblers break down. 

Metagenomes 

8 



• Break up the (short) reads into overlapping 
strings of length k.  

 

 

 

 

• Construct a de Bruijn graph (a directed graph 
representing overlap between strings) 

Eulerian path-based genome assembly strategies 

ACGTTATATATTCTA ACGTT CGTTA GTTAT 

TTATA ….. TTCTA 

k = 5 

CCATGATATATTCTA CCATG CATGA ATGAT 

TGATA ….. TTCTA 

9 



• Each (k-1)-mer represents a node in the graph 

• Edge exists between node a to b iff there exists a k-mer such 
that its prefix is a and suffix is b. 

 

 

 

 

 

• Traverse the graph (if possible, identifying an Eulerian path) to 
form contigs. 

• However, correct assembly is just one of the many possible 
Eulerian paths. 

de Bruijn graphs 

AAGACTCCGACTGGGACTTT 

AAG AGA GAC ACT CTT TTT 

CTG 

TGG GGG 

GGA 

CTC 
TCC CCG 

CGA 

ACTCCGACTGGGACTTTGAC 

TGA 

10 



• Velvet (EBI) 

• Meraculous (JGI) 

• ABySS (Canada Genome Sciences Center) 

• ALLPATHS (Broad Institute) 

• YAGA (Iowa State) 

• SOAPdenovo (Beijing Genome Institute) 

• Contrail (Univ of Maryland) 

• Euler-SR (UCSD) 

• …. 

Algorithms and Software based on this 
approach 

11 



• Metagenome composition and coverage estimate not 
known 

• Data size quite large 

– 268 Gb, 1.2 billion paired-end reads 

– Velvet (serial execution) requires 2+ TB memory 

• Unclear on quality assessment of resulting assembly 

• Difficulty experimenting with existing software 

– what parameters to use 

– what routines to change for metagenomes? 

– Sub-optimal data representation 

 

 

 

JGI “cow rumen” dataset: Challenges 

12 



• What values of k are appropriate for this data set? 

• If the data is error-free, # of unique kmers should be 
bounded by length of genome. 

• Experimented with different values of k  

– 31, 37, 45 (note: read length is 125) 

• Surprising results 

– 80% of total enumerated kmers are unique 

– High percentage of kmers that occur just once 

– Very low coverage? 

Kmer spectrum 

13 



Kmer frequency spectrum 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 to 10 11 to
50

51 to
100

101 to
1000

1000
and

higher

F
ra

c
ti

o
n

 o
f 

to
ta

l 
#
 o

f 
 

d
is

ti
n

c
t 

k
m

e
rs

 

Frequency of Occurrence 

k=31

k=37

k=45

14 



Assembly and Clustering Methodology 

15 



Breakdown of parallel de Bruijn graph-
based assembly scheme 

FASTQ input data 

Sequences after  
error resolution 

1 Preprocessing 

Determine  
appropriate  
value of k to use 

2 Kmer spectrum 

Preliminary de Bruijn graph  
construction 

3 

Vertex/edge compaction 
(lossless transformations) 

4 

Error resolution + further 
graph compaction 

5 

Scaffolding 6 

Kmer histograms 
16 



Breakdown of parallel de Bruijn graph-
based assembly scheme 

FASTQ input data 

Sequences after  
error resolution 

1 Preprocessing 

Determine  
appropriate  
value of k to use 

2 Kmer spectrum 

Preliminary de Bruijn graph  
construction 

3 

Vertex/edge compaction 
(lossless transformations) 

4 

Error resolution + further 
graph compaction 

5 

Scaffolding 6 

Kmer histograms 

Compute and  

memory-intensive 

17 



• Process base quality information 

• Mark ambiguous bases 

 

• Try to merge paired reads 

 

• Write back filtered reads 

• Parallelization strategy: split input files into 
“P” parts; each node processes its file 
independently 

– Predominantly I/O bound 

1. Preprocessing 

Paired-end reads 

Insert length of ~ 200bp 

125bp 
125bp 

18 



• Need a dictionary to track occurrences of each kmer 

• Hashing expensive for large data sizes; maintaining 
an ordered set unnecessary when updates are 
predominantly insert-only (“cow rumen” dataset, 
large “k”) 

• Alternative: Ingest all kmers, perform lexicographical 
sort 

• Parallelization: enumerate kmers independently + 
one global sort to get kmer count 

2. Kmer spectrum construction 

19 



Finding unique kmers: hashing vs sorting 

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
o

n
d

s
) 

# of reads (in millions) 

Splay tree update time for a data set of 19.5 million (125 bp) reads 

(k=61) 

Serial performance results on a 512 GB system  

(2.6 GHz Opteron processor) 

51 GB memory 

Serial sort,  

18.6 GB memory 

4.2x faster 

20 



• Store edges only, represent vertices (kmers) 
implicitly. 

• Distributed graph representation 

• Sort by start vertex 

• Edge storage format: 

3. Graph construction 

ACTAGGC CTAGGCA 

Store edge (ACTAGGCA), orientation,  

originating read id (x), edge count  

Read ‘x’: 

Use 2 bits per nucleotide 
21 



• High percentage of unique kmers  

 Try compacting kmers from same read first 

– If kmer length is k, potentially k-times space 
reduction! 

 

 

 

• Parallelization: computation can be done 
locally after sorting by read ID 

4. Vertex compaction 

ACTAG CTAGG TAGGA AGGAC 

ACTAGGAC 

22 



• Split ‘high-degree’ vertices 

• Identify connected components 

• Error resolution and scaffolding can be 
concurrently performed on multiple 
independent components 

 

 

 

 

 

 

Metagenome-specific steps 

Compress/remove whiskers Identify and fix “low coverage” edges 

Long  

String 1 

Long  

String 2 

Long  

String 1 

Long  

String 2 

23 



• Current data set (after preprocessing) requires 
320 GB for in-memory graph construction 

– Experimented with 64 nodes (256-way parallelism) 
and 128 nodes (512-way) of NERSC Franklin (Cray 
XT4 system, 2.3 GHz quad-core Opteron 
processor) 

• MPI across nodes + OpenMP within a node 

• Local sort: multicore-parallel quicksort 

• Global sort: sample sort 

 

 

 

Parallel Implementation Details 

24 



 

 

 

 

 

 

 
 

• Comparison: Velveth (up to graph construction) takes ~ 12 
hours on the 512 GB Opteron system. 

 

Parallel Performance 

0

20

40

60

80

100

120

140

160

Assembly step

Preprocessing

Kmer Freq.

Graph construct

Graph compact

0

20

40

60

80

100

120

140

160

Assembly step

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
o

n
d

s
) 

128 nodes: 213 seconds 64 nodes: 340 seconds 

25 



• Overview of the de novo genome assembly 
problem for short-read sequence data 

• Outlined components of a de Bruijn graph-
based assembler customized for metagenomic 
data 

• Significant performance improvement over 
serial state-of-the-art approach 

– 150x faster at 256-way node concurrency on a 
Cray XT4 system 

Talk Summary 

26 



• Shruthi Prabhakara, Raj Acharya, Penn State 

• M. Poss, M. Roossinck, Penn State 

• Alex Sczyrba, Rob Egan, Jarrod Chapman, 
Kostas Mavromatis, DOE Joint Genome 
Institute 

• Victor Markowitz, John Shalf, Kathy Yelick, 
Lawrence Berkeley National Laboratory 

Acknowledgments 

27 



Questions? 

Thank you! 

28 


