
Extended Sparse Matrices as
Tools for Graph Computation

Adam Lugowski

1

SIAM Annual Meeting July 11, 2012

Knowledge
Discovery
Toolbox

kdt.sourceforge.net

2

KDT Graphs: distributed sparse matrices

1

1

1 1 1

1 1

1 1

1 1

1

G

1 2

3

4
7

6

5

G

Transposed Adjacency Matrix:
sparse structure distributed

in 2D layout

Edge attributes can
be arbitrary objects

3

Graph Traversals are M×M or M×V

1

1

1 1 1

1 1

1 1

1 1

1

G
1 2

3

4
7

6

5

7

fin

× =
7

7

7

fout

distance 1 from vertex 7

User-defined semirings on user-defined objects

4

Algorithm logic in custom semirings

1

1

1 1 1

1 1

1 1

1 1

1

G

6

3

4

5

fin

× =

4

4

5

fout
Semiring:

mul(1, 3) mul(1, 5)

add(3, 5)

3

5

traverse
outgoing edges

def mul(x, y):
return y

choose among
incoming edges

def add(x, y):
return y

5

Sparse Matrix Operations

6

•Matrix-Matrix
multiplication
•Matrix-Vector
multiplication
•Element-Wise (eg. A .* B)
•Scale by Vector

•Apply
•Reduce
•Prune
•Find
•Load/Save
•Construct
•Generate

All customizable with user-defined callbacks

Why (sparse) adjacency matrices?

Traditional graph
computations

Graphs in the language of
linear algebra

Data driven,
unpredictable communication

Fixed communication patterns

Irregular and unstructured,
poor locality of reference

Operations on matrix blocks
exploit memory hierarchy

Fine grained data accesses,
dominated by latency

Coarse grained parallelism,
bandwidth limited

7

centrality(‘approxBC’)
pageRank

. . .cluster(‘Markov’)
contract

Complex methods

•SpMV, SpGEMM Sparse-matrix classes/methods
(e.g., Apply, EWiseApply, Reduce)

Underlying infrastructure (Combinatorial BLAS)

Building blocks

DiGraph VecMat
•bfsTree,neighbor
•degree,subgraph
•load,UFget
•+, -, sum, scale

•SpMV
•SpGEMM
•load, eye
•reduce, scale
•+, []

•max, norm,sort
•abs, any, ceil
•range, ones
•+,-,*,/,>,==,&,[]

Domain Experts

Algorithm Experts

HPC Experts
8

Example workflow

9

the variable bigG contains the input graph
find and select the giant component
comp = bigG.connComp()
giantComp = comp.hist().argmax()
G = bigG.subgraph(comp==giantComp)

cluster the graph
clus = G.cluster(’Markov’)

contract the clusters
smallG = G.contract(clus)

Example workflow KDT code

10

BFS on a Scale 29 RMAT graph
(500M vertices, 8B edges)

Machine: NERSC’s Hopper

Ongoing work:
High-performance Python

1. Speed up Python callbacks

1. Introducing runtime-defined types

12

SEJITS (A. Fox and S. Kamil)

• Selective Embedded Just-In-Time Specialization
1. Take Python code
2. Translate it to equivalent C++ code
3. Compile with GCC
4. Call compiled version instead of Python version

The way to make Python fast is to not use Python.
-- Me

13

Python is great at high-level operations, slow at inner loops.

https://github.com/shoaibkamil/asp/wiki/

1

1

1 1 1

1 1

1 1

SEJITS: Speeding up Python with C++

def mul(x, y):
return y

double mul(const Obj2& arg1, double arg2)
{

return arg2;
}

SEJITS converts
Python routine to C++

Compiles it (gcc) at runtime.

Compiled C++ routine called
instead of Python

mul(1, 3) mul(1, 5)

3

4

5
×

mul.o

14

SEJITS Integration into KDT:
Filtering

15

A filter is a predicate (Python function)
which returns True if an edge is to be kept,

False otherwise.

texts and phone calls

draw graph
draw(G)

Each edge has this attribute:
class edge_attr:

isText
isPhoneCall
weight

16

Betweenness Centrality

bc = G.centrality(“approxBC”)
draw graph with node sizes
proportional to BC score
draw(G, bc)

17

Betweenness Centrality on texts

BC only on text edges
G.addEFilter(

lambda e: e.isText)
bc = G.centrality(“approxBC”)
draw graph with node sizes
proportional to BC score
draw(G, bc)

18

SEJITS brings performance back

Time (in seconds) for a single BFS iteration on Scale 23 RMAT (8M vertices, 130M
edges) with 10% of elements passing filter. Machine is Mirasol.

Roofline analysis: why this works

20

Attributes

21

0.4

“Graph”

“Weighted Graph”

“Semantic Graph”
(T, F, 0.4)

(T, 23453)(F, 53224)

Extended Attribute Support

• Completely remove user-written C++ code
– User friendliness, allows systemwide installs

• adds flexibility
– remove limitations on number of types allowed
– remove limitation on assumption of what an

object is
– allows definition of well-formatted datafiles

22

Extended Attribute Support

• Requirements:
– Type defined in Python

• Fixed-size

– Memory allocated in C++, object used in Python
– Be able to operate on Python-defined structure

through C++
• For SEJTIS

23

Extended Attribute Support

• Inspiration from ctypes.Structure:

class MyEdge(Structure):

fields = [("weight", c_double),

("isPhoneCall", c_bool),

("isText", c_bool)]

24

Acts like Python, C++ friendly

Python:
e = MyEdge()

e.weight = 10

But also have:
• sizeof, addressof, offset, type
• placement new

25

Can generate translations at runtime,
performance equivalent to compile time-defined structs

Conclusion

• KDT is a high-performance graph analysis
toolkit written for a high-productivity
language

• Possible to write callbacks in high-level
language while retaining low-level language
performance

• Possible to define datatypes at runtime

26

Thank You

kdt.sourceforge.net

27

