
Extended Sparse Matrices as 
Tools for Graph Computation

Adam Lugowski

1

SIAM Annual Meeting   July 11, 2012



Knowledge
Discovery
Toolbox

kdt.sourceforge.net

2



KDT Graphs: distributed sparse matrices
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Transposed Adjacency Matrix:
sparse structure distributed

in 2D layout

Edge attributes can
be arbitrary objects
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Graph Traversals are M×M or M×V 
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User-defined semirings on user-defined objects
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Algorithm logic in custom semirings
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Semiring:

mul(1, 3)      mul(1, 5)

add(3, 5)
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traverse
outgoing edges

def mul(x, y):
return y

choose among
incoming edges

def add(x, y):
return y
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Sparse Matrix Operations
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•Matrix-Matrix 
multiplication
•Matrix-Vector 
multiplication
•Element-Wise (eg. A .* B)
•Scale by Vector

•Apply
•Reduce
•Prune
•Find
•Load/Save
•Construct
•Generate

All customizable with user-defined callbacks



Why (sparse) adjacency matrices?

Traditional graph 
computations

Graphs in the language of 
linear algebra

Data driven,
unpredictable communication

Fixed communication patterns

Irregular and unstructured,
poor locality of reference

Operations on matrix blocks 
exploit memory hierarchy

Fine grained data accesses,
dominated by latency

Coarse grained parallelism,
bandwidth limited
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centrality(‘approxBC’)
pageRank

. . .cluster(‘Markov’)
contract

Complex methods

•SpMV, SpGEMM Sparse-matrix classes/methods
(e.g., Apply, EWiseApply, Reduce)

Underlying infrastructure (Combinatorial BLAS)

Building blocks

DiGraph VecMat
•bfsTree,neighbor
•degree,subgraph
•load,UFget
•+, -, sum, scale

•SpMV
•SpGEMM
•load, eye
•reduce, scale
•+, []

•max, norm,sort
•abs, any, ceil 
•range, ones
•+,-,*,/,>,==,&,[]

Domain Experts

Algorithm Experts

HPC Experts
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Example workflow
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# the variable bigG contains the input graph
# find and select the giant component
comp = bigG.connComp()
giantComp = comp.hist().argmax()
G = bigG.subgraph(comp==giantComp)

# cluster the graph
clus = G.cluster(’Markov’)

# contract the clusters
smallG = G.contract(clus)

Example workflow KDT code
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BFS on a Scale 29 RMAT graph
(500M vertices, 8B edges)

Machine: NERSC’s Hopper



Ongoing work:
High-performance Python

1. Speed up Python callbacks

1. Introducing runtime-defined types
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SEJITS (A. Fox and S. Kamil)

• Selective Embedded Just-In-Time Specialization
1. Take Python code
2. Translate it to equivalent C++ code
3. Compile with GCC
4. Call compiled version instead of Python version

The way to make Python fast is to not use Python.
-- Me
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Python is great at high-level operations, slow at inner loops.

https://github.com/shoaibkamil/asp/wiki/
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SEJITS: Speeding up Python with C++

def mul(x, y):
return y

double mul(const Obj2& arg1, double arg2)
{

return arg2;
}

SEJITS converts
Python routine to C++

Compiles it (gcc) at runtime.

Compiled C++ routine called
instead of Python

mul(1, 3)      mul(1, 5)

3

4

5
×

mul.o
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SEJITS Integration into KDT:
Filtering
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A filter is a predicate (Python function) 
which returns True if an edge is to be kept, 

False otherwise.



texts and phone calls

# draw graph
draw(G)

# Each edge has this attribute:
class edge_attr:

isText
isPhoneCall
weight
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Betweenness Centrality

bc = G.centrality(“approxBC”)
# draw graph with node sizes
# proportional to BC score
draw(G, bc)
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Betweenness Centrality on texts

# BC only on text edges
G.addEFilter(

lambda e: e.isText)
bc = G.centrality(“approxBC”)
# draw graph with node sizes
# proportional to BC score
draw(G, bc)
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SEJITS brings performance back

Time (in seconds) for a single BFS iteration on Scale 23 RMAT (8M vertices, 130M 
edges) with 10% of elements passing filter. Machine is Mirasol.



Roofline analysis: why this works
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Attributes
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0.4

“Graph”

“Weighted Graph”

“Semantic Graph”
(T, F, 0.4)

(T, 23453)(F, 53224)



Extended Attribute Support

• Completely remove user-written C++ code
– User friendliness, allows systemwide installs

• adds flexibility
– remove limitations on number of types allowed
– remove limitation on assumption of what an 

object is
– allows definition of well-formatted datafiles
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Extended Attribute Support

• Requirements:
– Type defined in Python

• Fixed-size

– Memory allocated in C++, object used in Python
– Be able to operate on Python-defined structure 

through C++
• For SEJTIS
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Extended Attribute Support

• Inspiration from ctypes.Structure:

class MyEdge(Structure):

_fields_ = [("weight", c_double),

("isPhoneCall", c_bool),

("isText", c_bool)]
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Acts like Python, C++ friendly

Python:
e = MyEdge()

e.weight = 10

But also have:
• sizeof, addressof, offset, type
• placement new
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Can generate translations at runtime,
performance equivalent to compile time-defined structs



Conclusion

• KDT is a high-performance graph analysis 
toolkit written for a high-productivity 
language

• Possible to write callbacks in high-level 
language while retaining low-level language 
performance

• Possible to define datatypes at runtime

26



Thank You

kdt.sourceforge.net
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