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Introduction n.. ===~~~ = Dotclleol

® Buzzword ,Big Data" everywhere

® Rapid growth of irregularly structured data:
® Physics/astronomy: Accelerators, telescopes: Terabytes / day
® Facebook: 1G+ members, 1G+ actions / day
® Web graph, log files, smartphone actions, ...

® Big data: Not only graph data, but also graphs!
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Network Analysis

® Possible questions for analysts:

® Who has high influence in a network?

® How does the network decompose into “natural” groups?
® How does the network evolve in the future?
-

® Commercial interests:
® Online marketing and ads

® Recommendation systems
(“Customers also bought”)

® Cyber- and homeland security
Changes to technical infrastructure

H. Meyerhenke, C. Staudt: Combinatorial and Numerical Algorithms for Network Analysis Institute of Theoretical Informatics,
Karlsruhe Institute of Technology (KIT)



Challenges

Analysts need information from the piles of data...

. but:

® Data different from graphs in scientific computing!
® Power-law degree distribution

Small world property — no long paths

Limited locality, highly unstructured

Difficult to partition

Vertices and edges can have types

® Graph analytics tax current hardware:

® Classical numbercrunchers better
on structured problems

® Many analytics algorithms scale
to a few million edges, but not billions
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Analytics Tool: Graph Clustering = o

® Divide vertices into groups (clusters, communities) s.t.
W vertices of the same group are “similar” to each other
® vertices of different groups are “dissimilar” to each other

® Graphs: Well-connected vs not well-connected

® Also called community detection
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[Shen and Cheng, J. Stat. Mech. 2010]

® Visualization
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10t DIMACS Implementation Challenge

W Scientific competitions on “best” algorithm

implementations CONTEMPORARY
® Topics of 10t Challenge: Graph MATHEMATICS
partitioning and graph clustering st
Graph Partitioning
® Two different graph clustering challenges: and Graph Clustering
" Modularity maximization
® Mix challenge: Four different objectives H DAﬂd;BG/;
combined et Sanders

Dorothea Wagner
Editors

® Graph archive from various sources and

applications:
http://www.cc.gatech.edu/dimacs10/
downloads.shtml

® Participants submitted their results for
specified test set

gy American Mathematical Society e
A )< Center for Discrete Mathematics — Mariri”
=< and Theoretical Computer Science Biyly”

American Mathematical Society

H. Meyerhenke et al.: Current Trends in Graph Clustering Institute of Theoretical Informatics,
Karlsruhe Institute of Technology (KIT)



Modularity Challenge @ = bt

m (Still) Very popular objective: Modularity
aEe) =Y [ EQC) (Zvec' (10g(l.)>2]
m 2m

cecC

® Expected deviation from random graph with same degree
sequence

® NP-hard to optimize for modularity [Brandes et al., IEEE TKDE 2008]

® Modularity has some known ISsues [Berry et al., Phys Rev E 2011], [Good, de
Montoye, Clauset, Phys. Rev. E 2010] and [Lancichinetti and S. Fortunato, Phys. Rev. E 2011]

® Quality competition: Find solution with highest modularity value!
® Pareto competition: Trade-off quality and running time!
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Modularity Challenge
® Winner CGGCi based on core groups: (Ovelgdnne and
® Compute several solutions quickly with reasonable Geyer-Schulz, KIT)

quality

® Base algorithm: Randomized greedy agglomerative

® Determine core groups, i. e., groups of nodes that
belong together in all previous solutions

® Refine solution, starting from core groups, iterate/
recurse with “multilevel-ish” approach

® Intriguing: Different base algorithms yield similar
quality

[Image: Michael Ovelgdnne,
UMD College Park]

Core Groups
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OUR APPROACH
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Our Approach based on core groups by 0-G

Compute clustering

® Motivation:

® Obtain high parallel
performance...

® ...while retaining a high
solution quality

® Idea: Combine core group
approach with highly
parallel base algorithm

A

® Base Algorithm: Label
propagation, also known
as peer pressure clustering

[Image: Michael Ovelgbnne,
UMD College Park]

Create graph induced by clustering
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Base Algorithm: Label Propagation...

...and some of our insights

® Label Propagation: [Raghavan, U.N., Albert, R., Kumara,

scale networks. Physical Review E 76(3), 036106 (2007)]

® Start with singleton clustering
® While labels can still change

® For each vertex vin random order do

® Label v with label of majority of its
neighbors, arbitrary tie-breaking

® Some minor experimental insights: (\

® Randomization does not really help with
quality

S.: Near linear time algorithm to detect community structures in large- Qg
\\\\
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Figure 6.5. Initial clustering and weights.
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Figure 6.6. Clustering after first itera

tion.
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Figure 6.7. Clustering after second iteration.
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® Running time improvement for some s : 10318
instances (hardly any quality penalty): : > o) | &) 5 7
Stop when only few labels remain el i @ ¢ ;;};;

® Huge running time improvement: Active g B Fmamustemg.s
VS inactive vertices [Eric Robinson: Complex Graph Algorithms. In: Graph

Algorithms in the Language of Linear Algebra. SIAM, 2011.]
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Computing Core Groups in Parallel

® Core Groups: Maximal overlaps of clusters
® Core group: All vertices that agree on all base clusterings
® Problem: Cluster IDs are different in different base clusterings

® Variant 1: BFS (not maximal, but connected core groups)

® Do not expand BFS at vertex v if v does not agree with source on all base
clusterings

® Variant 2: Hashing (highly parallel!)
® Use k-way hash function for k base clusterings

[Image: Michael Ovelgbnne,
UMD College Park]

Core Groups
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Implementation and Experimental Settings == wrrmomaen

® C++ with STL containers and OpenMP
® Support for dynamic graphs easy
® High-level interfaces, easy to switch

® Experimental platform (so far):
B 2x 8-core Intel Xeon™ E5-2670 CPU, 2.6 GHz
u 64 GB RAM
®m GCC4.7.1 C++ compiler

® Test graphs from DIMACS Implementation Challenge archive:

®m Different applications: Web graphs, citation networks, optimization
matrices, street networks, R-MAT

® Focus on large graphs: Millions of vertices, millions/billions of edges
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Quality

Difference between 1xLP and core group recursion
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Running Time
Linear scaling on R-MAT graphs (1x LP)

logn21

logn20

logn19

lognl8

lognl7

lognl6

KIT

Karlsruhe Institute of Technology

| ! I | ! I
é é e%e ¢

 — SRR SRR S -
T RS S S -
R S R S R -
I o O S -
ISP SO S SR -
B O SR URPRPRPP AT -

| N | | .
10 10° 10t 102 10°

H. Meyerhenke, C. Staudt: Combinatorial and Numerical Algorithms for Network Analysis

Institute of Theoretical Informatics,
Karlsruhe Institute of Technology (KIT)



Comparison to Challenge Results AT

Running time and modularity (1x LP) Korbruhe insiuteof Technology

B RG [oveigsnne and Geyer-schuiz] Was Pareto Challenge winner
® PLP is about 2 orders of magnitude faster
® RG about 0.06 better in modularity

@ CLU_TBB was one of two parallel codes
® Second best group in Pareto challenge
® PLP is slightly better in quality

(unnormalized)
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Comparison to Agglomerative Algorithm == wasoen

® Similar to CLU_TBB: Agglomerative algorithm by Riedy et al.

W Later improved concerning running time:
® [Riedy, Meyerhenke, Bader, MTAAP 2012]

® Parallelism in agglomeration: Merge matching edges concurrently
® Problem: Matchings can become small

® Comparison:
® PLP is faster with fewer cores
® PLP‘s quality is in general better
® PLP offers more parallelism

® Web graph uk-2007 (n = 105,896,555, m = 3,301,876,564):

® Agglomerative: Modularity around 0.48,
took in Challenge 8 minutes (on faster system with 40 cores)

® PLP: Modularity > 0.97 in less than two minutes
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S u m m a ry Karlsruhe Institute of Technology

® Community detection one of the main network analysis
kernels

® Parallel implementation of label propagation clustering
algorithm (PLP)

® Objective: Fast running time with high quality due to core
group approach

® Insight: Recursive core groups not helping unless large
number of base algorithms used

® Ongoing improvement: Apply Louvain-type local search to
core groups without recursion (with PLP base clusterings)

H. Meyerhenke, C. Staudt: Combinatorial and Numerical Algorithms for Network Analysis Institute of Theoretical Informatics,
Karlsruhe Institute of Technology (KIT)



19

KIT

Karlsruhe Institute of Technology

FURTHER ONGOING WORK
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Seed Set Expansion T

Karlsruhe Institute of Technology

Based on thesis by Jonathan Dimond (KIT / Georgia Tech)

® Useful to find community around
specified vertices

® Use Cases:
® Reduce cost for expensive analysis
® Selection for visualization
® Find possible collaborators

® Results so far:

® Algorithms related to random walks
work well in static setting

® Agglomerative approach worse
® Dynamic setting: No clear picture
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Algebraic Distance T

Following [Chen and Safro, SIAM J. on SC,2011] o ety

® Useful as a preprocessing tool
® Perform a few Jacobi or Gauss-Seidel iterations on r random vectors

III.I III.I
W > O=0=0=Ox P PulD=O=0=0=0=-0
- 0-0-0-0-0-00000P¥

0-0-0-0-0-0-0-0-0-0-0-0 0-0-0-0-0-0-0-0-0-0-0-0

® Vertices that are well connected will have similar values
® Interpret vector entries as coordinates of r-dimensional points
® Distance between vertices = distance between their r-dim. Points

® Ongoing: Investigate if useful for seed set expansion
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Djokovic Relation

® Djokovic relation: Relation based on shortest paths

® Finds edges whose endpoints divide the graph w.r.t. graph distance to
source edge

® Useful for finding convex cuts (or similar)
® Convex cuts yield nicely shaped parts

i R. Glantz, H. Meyerhenke:
Finding all Convex Cuts of a
A Plane Graph in Cubic Time.

Accepted at 8th International
. Conference on Algorithms and
. Complexity (CIAC'13).
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Lean Algebraic Multigrid A\KIT

Based on [Livne, Brandt; SIAM J. Scientific Computing, to appear]

Algebraic Multigrid (AMG): Solver for linear systems from PDEs
Designed for sparse matrices with “PDE structure”
Does not work well on complex networks

Lean AMG: Extension to Laplacian matrices of complex networks

Motivation for solving Laplacian problems:
® Machine learning
W Spectral clustering (images, genes, ...)
® Network flows, electrical circuits

Ongoing work:
Python frontend, C/C++ parallel backend for performance-critical parts

Objective: Solve Laplacian problems within larger graph framework
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Thank you!

http://parco.iti.kit.edu
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