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Introduction 

!   Buzzword „Big Data“ everywhere 
!   Rapid growth of irregularly structured data: 

!   Physics/astronomy: Accelerators, telescopes: Terabytes / day 
!   Facebook: 1G+ members, 1G+ actions / day 
!   Web graph, log files, smartphone actions, ... 

!   Big data: Not only graph data, but also graphs! 
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Network Analysis 

!   Possible questions for analysts: 
!   Who has high influence in a network? 
!   How does the network decompose into “natural” groups? 
!   How does the network evolve in the future? 
!   … 

!   Commercial interests: 
!   Online marketing and ads 
!   Recommendation systems 

(“Customers also bought”) 
!   Cyber- and homeland security 
!   Changes to technical infrastructure 
!   … 
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Challenges 

Analysts need information from the piles of data… 
 
… but: 

!   Data different from graphs in scientific computing! 
!   Power-law degree distribution 
!   Small world property – no long paths 
!   Limited locality, highly unstructured 
!   Difficult to partition 
!   Vertices and edges can have types 

!   Graph analytics tax current hardware: 
!   Classical numbercrunchers better  

on structured problems 
!   Many analytics algorithms scale  

to a few million edges, but not billions 

H. Meyerhenke et al.: Current Trends in Graph Clustering 
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Analytics Tool: Graph Clustering 

!   Divide vertices into groups (clusters, communities) s.t. 
!   vertices of the same group are “similar” to each other 
!   vertices of different groups are “dissimilar” to each other 

!   Graphs: Well-connected vs not well-connected 

!   Also called community detection 

!   Applications: 
!   Complexity reduction 
!   Classifying related genes 
!   Distributed data storage, 

computations 
!   Visualization  

H. Meyerhenke et al.: Current Trends in Graph Clustering 

[Shen and Cheng, J. Stat. Mech. 2010] 



Institute of Theoretical Informatics, 
Karlsruhe Institute of Technology (KIT) 

6 

10th DIMACS Implementation Challenge 

!   Scientific competitions on “best” algorithm 
implementations 

!   Topics of 10th Challenge: Graph 
partitioning and graph clustering 

!   Two different graph clustering challenges: 
!   Modularity maximization 
!   Mix challenge: Four different objectives 

combined 

!   Graph archive from various sources and 
applications: 
http://www.cc.gatech.edu/dimacs10/
downloads.shtml 

!   Participants submitted their results for 
specified test set 

H. Meyerhenke et al.: Current Trends in Graph Clustering 
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Modularity Challenge 

!   (Still) Very popular objective: Modularity 

!   Expected deviation from random graph with same degree 
sequence 

!   NP-hard to optimize for modularity [Brandes et al., IEEE TKDE 2008] 

!   Modularity has some known issues [Berry et al., Phys Rev E 2011], [Good, de 
Montoye,  Clauset, Phys. Rev. E 2010] and [Lancichinetti and S. Fortunato, Phys. Rev. E 2011] 

!   Quality competition: Find solution with highest modularity value! 
!   Pareto competition: Trade-off quality and running time! 

H. Meyerhenke et al.: Current Trends in Graph Clustering 
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Summary 
Modularity Challenge 

!   Winner CGGCi based on core groups: 
!   Compute several solutions quickly with reasonable 

quality 
!   Base algorithm: Randomized greedy agglomerative 
!   Determine core groups, i. e., groups of nodes that 

belong together in all previous solutions 
!   Refine solution, starting from core groups, iterate/

recurse with “multilevel-ish” approach 
!   Intriguing: Different base algorithms yield similar 

quality 

H. Meyerhenke et al.: Current Trends in Graph Clustering 

(Ovelgönne and 
Geyer-Schulz, KIT) 

[Image: Michael Ovelgönne, 
UMD College Park] 
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OUR APPROACH 
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Our Approach based on core groups by O-G 

!   Motivation:  
!   Obtain high parallel 

performance... 
!   ...while retaining a high 

solution quality 

!   Idea: Combine core group 
approach with highly 
parallel base algorithm 

!   Base Algorithm: Label 
propagation, also known 
as peer pressure clustering 

H. Meyerhenke, C. Staudt: Combinatorial and Numerical Algorithms for Network Analysis 

Create graph induced by clustering 

Compute clustering 

[Image: Michael Ovelgönne, 
UMD College Park] 
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Base Algorithm: Label Propagation... 
...and some of our insights 

!   Label Propagation: [Raghavan, U.N., Albert, R., Kumara, 
S.: Near linear time algorithm to detect community structures in large-
scale networks. Physical Review E 76(3), 036106 (2007)] 

!   Start with singleton clustering 
!   While labels can still change 

!   For each vertex v in random order do 
!   Label v with label of majority of its 

neighbors, arbitrary tie-breaking 

!   Some minor experimental insights: 
!   Randomization does not really help with 

quality 
!   Running time improvement for some 

instances (hardly any quality penalty): 
Stop when only few labels remain 

!   Huge running time improvement: Active 
vs inactive vertices 

H. Meyerhenke, C. Staudt: Combinatorial and Numerical Algorithms for Network Analysis 

[Eric Robinson: Complex Graph Algorithms. In: Graph  
Algorithms in the Language of Linear Algebra. SIAM, 2011.] 
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Computing Core Groups in Parallel 

!   Core Groups: Maximal overlaps of clusters 
!   Core group: All vertices that agree on all base clusterings 
!   Problem: Cluster IDs are different in different base clusterings 

!   Variant 1: BFS (not maximal, but connected core groups) 
!   Do not expand BFS at vertex v if v does not agree with source on all base 

clusterings 

!   Variant 2: Hashing (highly parallel!) 
!   Use k-way hash function for k base clusterings 

H. Meyerhenke, C. Staudt: Combinatorial and Numerical Algorithms for Network Analysis 

[Image: Michael Ovelgönne, 
UMD College Park] 
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Implementation and Experimental Settings 

!   C++ with STL containers and OpenMP 
!   Support for dynamic graphs easy 
!   High-level interfaces, easy to switch 

!   Experimental platform (so far): 
!   2x 8-core Intel Xeon™ E5-2670 CPU, 2.6 GHz 
!   64 GB RAM 
!   GCC 4.7.1 C++ compiler 

!   Test graphs from DIMACS Implementation Challenge archive: 
!   Different applications: Web graphs, citation networks, optimization 

matrices, street networks, R-MAT 
!   Focus on large graphs: Millions of vertices, millions/billions of edges 

H. Meyerhenke, C. Staudt: Combinatorial and Numerical Algorithms for Network Analysis 
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Quality 
Difference between 1xLP and core group recursion 
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Running Time 
Linear scaling on R-MAT graphs (1x LP) 
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Comparison to Challenge Results 
Running time and modularity (1x LP) 

!   RG [Ovelgönne and Geyer-Schulz] was Pareto Challenge winner 
!   PLP is about 2 orders of magnitude faster 
!   RG about 0.06 better in modularity 

!   CLU_TBB was one of two parallel codes 
!   Second best group in Pareto challenge 
!   PLP is slightly better in quality 

H. Meyerhenke, C. Staudt: Combinatorial and Numerical Algorithms for Network Analysis 
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Comparison to Agglomerative Algorithm 

!   Similar to CLU_TBB: Agglomerative algorithm by Riedy et al. 
!   Later improved concerning running time: 

!   [Riedy, Meyerhenke, Bader, MTAAP 2012] 

!   Parallelism in agglomeration: Merge matching edges concurrently 
!   Problem: Matchings can become small 

!   Comparison: 
!   PLP is faster with fewer cores 
!   PLP‘s quality is in general better 
!   PLP offers more parallelism 

!   Web graph uk-2007 (n = 105,896,555, m = 3,301,876,564): 
!   Agglomerative: Modularity around 0.48,  

took in Challenge 8 minutes (on faster system with 40 cores) 
!   PLP: Modularity > 0.97 in less than two minutes 

H. Meyerhenke, C. Staudt: Combinatorial and Numerical Algorithms for Network Analysis 
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Summary 

!   Community detection one of the main network analysis 
kernels 

!   Parallel implementation of label propagation clustering 
algorithm (PLP) 

!   Objective: Fast running time with high quality due to core 
group approach 

!   Insight: Recursive core groups not helping unless large 
number of base algorithms used 

!   Ongoing improvement: Apply Louvain-type local search to 
core groups without recursion (with PLP base clusterings) 

H. Meyerhenke, C. Staudt: Combinatorial and Numerical Algorithms for Network Analysis 



Institute of Theoretical Informatics, 
Karlsruhe Institute of Technology (KIT) 

19 

FURTHER ONGOING WORK 
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Seed Set Expansion 
Based on thesis by Jonathan Dimond (KIT / Georgia Tech) 

!   Useful to find community around 
specified vertices 

!   Use Cases: 
!   Reduce cost for expensive analysis 
!   Selection for visualization 
!   Find possible collaborators 

!   Results so far: 
!   Algorithms related to random walks 

work well in static setting 
!   Agglomerative approach worse 
!   Dynamic setting: No clear picture 
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Algebraic Distance 
Following [Chen and Safro, SIAM J. on SC, 2011] 

!   Useful as a preprocessing tool 
!   Perform a few Jacobi or Gauss-Seidel iterations on r random vectors 

!   Vertices that are well connected will have similar values 
!   Interpret vector entries as coordinates of r-dimensional points 
!   Distance between vertices = distance between their r-dim. Points 

!   Ongoing: Investigate if useful for seed set expansion 
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Djokovic Relation 

! Djokovic relation: Relation based on shortest paths 
!   Finds edges whose endpoints divide the graph w.r.t. graph distance to 

source edge 
!   Useful for finding convex cuts (or similar) 
!   Convex cuts yield nicely shaped parts 

H. Meyerhenke, C. Staudt: Combinatorial and Numerical Algorithms for Network Analysis 
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R. Glantz, H. Meyerhenke: 
Finding all Convex Cuts of a 
Plane Graph in Cubic Time. 
Accepted at 8th International 
Conference on Algorithms and 
Complexity (CIAC'13). 
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Lean Algebraic Multigrid 
Based on [Livne, Brandt; SIAM J. Scientific Computing, to appear] 

!   Algebraic Multigrid (AMG): Solver for linear systems from PDEs 
!   Designed for sparse matrices with “PDE structure” 
!   Does not work well on complex networks  

!   Lean AMG: Extension to Laplacian matrices of complex networks 
!   Motivation for solving Laplacian problems: 

!   Machine learning 
!   Spectral clustering (images, genes, ...) 
!   Network flows, electrical circuits 

!   Ongoing work: 
Python frontend, C/C++ parallel backend for performance-critical parts 

!   Objective: Solve Laplacian problems within larger graph framework 
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Thank you! 

 
http://parco.iti.kit.edu 
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