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Why generate random graphs? 
• Enable sharing of surrogate data

– Computer network traffic
– Social networks
– Financial transactions

• Statistical analysis
– Sample uniformly from a specified space

• Testing graph algorithms
– Scalability
– Versatility (e.g., vary degree distributions)
– Characterizing algorithm performance

• Insight into…
– Generative process
– Community structure
– Comparison
– Evolution
– Uncertainty
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Block Two-Level Erdös-Rényi (BTER) graph; 
image courtesy of Nurcan Durak. 



Markov Chains: common method 
to generate random graphs  
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• For this talk, a Markov chain (MC) is a graph whose nodes are realizations of 
a graph  with desired features
– Normally, MC graph is never constructed
– We generate its vertices, as we walk on the graph

• A random walk on an MC  (with the right features)  can yield a random 
graph.   

• To generate a random graph using an MC 
– Find an arbitrary node of the MC
– Take a loooong random walk
– You will arrive at a uniform random vertex of the graph 

• given that you have a ``good” MC  
• Challenges 

– Generating a graph with given properties
– Rewiring a graph to preserve desired features
– Patience   



Math can prove convergence, but 
cannot grant you patience 
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• In theory, we need to prove 
the MC eventually produces 
a random graph. 

• In practice, bounds for 
convergence may be 
impractical or nonexistent. 

• Practitioners use 
unprincipled methods.
– e.g., 10K steps on the MC 

• Interpretations of statistical 
tools may be hard.
– What does Gelman Rubin test 

mean from a graphs 
perspective?  

Source: http://metsmerizedonline.com/wp-content/uploads/2013/02/Are-
We-There-Yet.jpg

Can we find principled and practical 
metrics to think about convergence? 



Can we find principled and practical 
metrics for convergence? 
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• What is a mathematically sound definition of “random 
enough?”  

• Goals: practical, sound, and interpretable. 
• An imperfect analogy: 

– To solve Ax=b, we do not compute A-1b, we compute an x, 
that yields a small residual for Ax-b.

– We learn how to deal with this imperfection.  

) steps O(N6) steps 
required for a 

random 
sample

Randomization 
via bugs in the 

code.

5|V| steps are 
sufficient ? ?

edges

We propose: 
independent 

edges



Testing independence of edges
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α1-α 1-β

β0 1

α: probability that the edge will be inserted
β: probability that the edge will be deleted

T = 1−α α
β 1− β
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• Assume the addition/deletion of an edge can be approximated 
as a Markov process.  

• The full Markov chain (MC) can be approximated as a collection 
of smaller Markov chains. 

• Convergence of the smaller MCs is a necessary condition for 
convergence of the full MC.

T:  transition  matrix of  the edge
State 0: edge is absent

State 1: edge is present



Convergence of smaller Markov chains
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• Eigenvalues of T are 1 and 1 –(α+β)
• Eigenvalues form a basis, so initial state v can be written 

as v=c1e1+c2e2.
• After N iterations, we have

• The second term decays and p converges to c1e1, which
indicates the probability the edge is present/absent in a 
random graph. 

• For tolerance ε, the number of iterations required, N, is

p = T Nv = c1e1 + c2 (1− (α + β))N e2

N = ln(1/ε) / (α + β)



Preserving the degree distributions

2/28/2013 Pinar - SIAM CSE13 8

• Degree distribution is like a 
histogram of degrees. 

• It is one of the critical features 
that distinguish real graphs 
from arbitrary sparse graphs. 

• Rewiring scheme has long been 
used to perturb graphs while 
preserving the degree 
distribution. 
– Converges in O(|E|6)-time. 

• Havel and Hakimi described the 
first algorithm to construct a 
graph with a given degree 
distribution. 

A.-L. Barabasi and R. Albert. Emergence of scaling
in random networks. Science, 286(5349):509-512, 1999.

Actor 
Collaboration WWW Power Grid

Choose two 
Random edges

Swap them



Transition matrix for preserving degree 
distribution
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α1-α 1-β

β0 1

α: probability that the edge will be inserted

β: probability that the edge will be deleted α = dudv

2m2

u v

du: degree of vertex u
m: total number of edges

β =1− (1− 1
m

)2

N = ln(1 /ε) / (α + β) α + β ≥ 2
m

To generate a graph with independent edges 
with a specified degree distribution we need   N = m

2
lnε−1



Joint Degree Distribution
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• Joint Degree Distribution (JDD) 
specifies the number of edges
between vertices of  specified 
degrees.

• JDD provides more information 
abot a graph. 
– The degree distribution is 

implicitly defined by JDD. 
• Work on JDD is more recent 

and sparse. 
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Preserving JDD

• This Markov chain can  be used to construct uniformly random instances of a graph 
with a specified degree distribution. 

• No theoretical bounds on convergence.  
• A graph  with a specified (feasible) joint degree distribution can be constructed in 

linear time. 
• Stanton & P., ACM J. Experimental Algorithmics, 2012
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Transition matrix for preserving degree 
distribution
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α1-α 1-β

β0 1

α: probability that the edge will be inserted

β: probability that the edge will be deleted

α ≅ 2J(du,dv )
mf (du ) f (dv )

u v

du: degree of vertex u m: # edges

β = 1
m

+ f (du )−1
2mf (du )

+ f (dv )−1
2mf (dv )

N = ln(1 /ε) / (α + β)
α + β ≥ 1

m

To generate a graph with independent edges 
with a specified degree distribution we need   

N = m lnε−1

f(du): #vertices of  degree du

J(du,dv): #edges between du and dv



How does edge practice wok in 
practice?  
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• Preserving degree 
distribution

• Errors correspond to  
0.5|E|, 2.5|E|, 5|E|, and 
7.5|E| iterations

• 1000 graphs generated 
starting from the original

• 5|E| iterations seem to 
be sufficient.

C. Elegans
297 vertices,
4296 edges

Netscience
1461 vertices,
5484 edges

Power
4941 vertices,
13188 edges



Edge independence in practice
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• Preserving JDD
• Errors correspond to      

|E|, 5|E|,10|E|, and 
15|E| iterations. 

• 1000 graphs generated 
starting from the 
original

• 10|E| iterations seem as 
sufficient.

C. Elegans
297 vertices,
4296 edges

Netscience
1461 vertices,
5484 edges

Power
4941 vertices,
13188 edges



Alternative way to measure 
independence
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• Does knowing the current status (present/absent) of an edge
help us predict its status in the next iteration better? 
– How about its status after 10 steps? 20 steps? 
– How many steps will be sufficient for the prediction to fail? 

• The point we fail, the edge becomes  independent
• A popular method in statistics
• Method:

– Generate a long sequence
– Fit a model to predict  k steps ahead
– Thin this sequence with smallest k  for which the 

prediction fails 



Edges become independent rapidly
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• All potential edges are included in the analysis.
• Only a few remain after 7.5|E| and 15|E| iterations for 

preserving DD and JDD, respectively. 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

k/|E|

Fr
ac

tio
n 

of
 in

de
pe

nd
en

t e
dg

es

 

 

C. Elegans
Netscience
Power

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

k/|E|

Fr
ac

tio
n 

of
 in

de
pe

nd
en

t e
dg

es
 

 

C. Elegans
Netscience
Power

Preserving DD Preserving JDD



Some edges are tougher than others
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• Preserving JDD on Soc-Epinions
– Edges are sampled down to 

10%.
• After 30|E| iterations 90% of 

the edges become 
independent. 

• Most of the remaining ones are 
close to independence.

• There are a few outliers.  0 200 400 600 800
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Soc-Epinions1
75879 vertices,405740 edges



Diminishing returns for extra steps
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• Preserving JDD on soc-epinions1
• Distributions are very similar
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Conclusions
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• Generating uniformly random instances of a graph with given properties is 
a fundamental problem in graph analysis. 

• Markov chains are commonly used for this purpose, but 
guaranteeing/testing their convergence is a challenge. 

• We proposed to use
– edge independence as a  practical metric. 
– smaller Markov chains for presence/absence of edges as a guide. 

• We showed how the method applies to DD and JDD preserving MCs. 
• Empirical studies on several graphs validated  the approach. 
• We are not guaranteeing convergence of the chain, but providing a metric  

that quantifies what is satisfied. 
– Results should be interpreted accordingly.

• The same approach can be used to guarantee  independence of a bigger 
structures.    



A new workshop
• SIAM Workshop on Network Science 
• Dates: July 7-8, 2013
• Place:  San Diego, CA
• Co-located with SIAM Annual Meeting
• There will be a call for posters  
• Contact: 

– Ali Pinar (apinar@sandia.gov), Sandia National Labs
– Madhav Marathe (mmarathe@vbi.vt.edu), Virginia Tech

July 13, 2012 Pinar - MMDS12 20
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