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Why generate random graphs?

Enable sharing of surrogate data
— Computer network traffic
— Social networks

— Financial transactions

Statistical analysis

— Sample uniformly from a specified space

Testing graph algorithms
— Scalability
— Versatility (e.g., vary degree distributions)
— Characterizing algorithm performance

Insight into...
— Generative process
— Community structure
— Comparison
— Evolution

— Uncertainty

Block Two-Level Erdds-Rényi (BTER) graph;
image courtesy of Nurcan Durak.
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Markov Chains: common method ) &=

to generate random graphs

For this talk, a Markov chain (MC) is a graph whose nodes are realizations of
a graph with desired features

— Normally, MC graph is never constructed
— We generate its vertices, as we walk on the graph
A random walk on an MC (with the right features) can yield a random
graph.
To generate a random graph using an MC
— Find an arbitrary node of the MC
— Take a loooong random walk
— You will arrive at a uniform random vertex of the graph
e given that you have a ""'good” MC
Challenges
— Generating a graph with given properties
— Rewiring a graph to preserve desired features
— Patience



) Sandia

_Math can prove convergence, but ().
~~ = cannot grant you patience

* |ntheory, we need to prove
the MC eventually produces
a random graph.

W * In practice, bounds for
convergence may be
impractical or nonexistent.

- o Practitioners use
unprincipled methods.

— e.g., 10K steps on the MC
e |Interpretations of statistical

Source: http://metsmerizedonline.com/wp-content/uploads/2013/02/Are- tOOIS may be hard.
We-There-Yet.ipg
: S . — What does Gelman Rubin test
Can we find principled and practical mean from a graphs
metrics to think about convergence? perspective?
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Can we find principled and practical @V
metrics for convergence?

We propose:
independent
O(N®) steps

edges

required for a
random
sample

e What is a mathematically sound definition of “random
enough?”

e Goals: practical, sound, and interpretable.
 An imperfect analogy:

Randomization
via bugs in the
code.

5|V| steps are
sufficient

— To solve Ax=b, we do not compute A1b, we compute an x,
that yields a small residual for Ax-b.

— We learn how to deal with this imperfection.
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Testing independence of edges

@ -

State O: edge is absent

State 1: edge is present
probability that the edge will be inserted
probability that the edge will be deleted

1-o

p

94

1-5

T: transition matrix of the edge

Assume the addition/deletion of an edge can be approximated

as a Markov process.

The full Markov chain (MC) can be approximated as a collection

of smaller Markov chains.

Convergence of the smaller MCs is a necessary condition for

convergence of the full MC.
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Convergence of smaller Markov chains

e Eigenvalues of Tare 1 and 1 —(a+8)

* Eigenvalues form a basis, so initial state v can be written
as v=c,e,+c,e,.
e After N iterations, we have

p=T"v=cg+c,(1-(a+p)) e,

* The second term decays and p converges to c,e,;, which
indicates the probability the edge is present/absent in a
random graph.

* For tolerance g, the number of iterations required, N, is

N =In(/&)/ (a+ B)
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Preserving the degree distributions
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A.-L. Barabasi and R. Albert. Emergence of scaling
in random networks. Science, 286(5349):509-512, 1999.

Choose two
Random edges

Swap them

Degree distribution is like a
histogram of degrees.

It is one of the critical features
that distinguish real graphs
from arbitrary sparse graphs.

Rewiring scheme has long been
used to perturb graphs while
preserving the degree
distribution.

— Converges in O([E[%)-time.

Havel and Hakimi described the
first algorithm to construct a
graph with a given degree
distribution.
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Transition matrix for preserving degre@ssoe

distribution
a
@ B 1 d,: degree of vertex u
m: total number of edges
a: probability that the edge will be inserted d d 1
. : T 2
B: probability that the edge will be deleted o= 5 ﬂ =]1—- (1— —)
2m m

N=Inl/g)/(a+p) o+ fz2

m

To generate a graph with independent edges

N="ng?
with a specified degree distribution we need )
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Joint Degree Distribution

e Joint Degree Distribution (JDD)
specifies the number of edges
between vertices of specified
degrees.

 JDD provides more information
abot a graph.
Degree (1 |2 |3 4 — The degree distribution is
1 0 0 1 implicitly defined by JDD.
e Work on JDD is more recent
and sparse.

2 0O 2
3 . A |
4

O B N B
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Step 1: Pick an edge Step 2: Pick another edge Step 3: Swap edges
(uy,v), and pick one (u,w), such that d(u,)=d(u,)
of its vertices, e.g., u; or d(u,)=d(w)

* This Markov chain can be used to construct uniformly random instances of a graph
with a specified degree distribution.

* No theoretical bounds on convergence.

 Agraph with a specified (feasible) joint degree distribution can be constructed in
linear time.

e Stanton & P., ACM J. Experimental Algorithmics, 2012

2/28/2013 Pinar - SIAM CSE13 11



Transition matrix for preserving degr ool
| distribution

1-a m @ @
a
d,: degree of vertexu m: # edges
0 1
B f(d,): #vertices of degreed,

J(d,d,). #edges between d and d,

8: probability that the edge will be deleted B= 1, f(d,)-1 N f(d,)-1

m 2mf(d,) 2mf(d,)
N=In(1/¢e)/(a+ p)
04

a: probability that the edge will be inserted

2J(d,,d.)

1
mf(d,)f(d,) @+F=—

1N

To generate a graph with independent edges

N=mlne™
with a specified degree distribution we need



How does edge practice wok in ) .
practice?

A
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A
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C. Elegans
297 vertices,
4296 edges

Netscience Power
1461 vertices, 4941 vertices,
5484 edges 13188 edges
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Preserving degree
distribution

Errors correspond to
0.5|E|, 2.5|E|, 5|E], and
7.5|E| iterations

1000 graphs generated
starting from the original

5|E| iterations seem to
be sufficient.
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e FErrors correspond to
e 1000 graphs generated
A starting from the
| | original
C. Elegans Netscience Power

Edge independence in practice
|E|, 5|E|,10|E|, and
e 10|E| iterations seem as
297 vertices, 1461 vertices, 4941 vertices,

A '/\ — I |/\ * Preserving JDD
15| E| iterations.

A /\ sufficient.

4296 edges 5484 edges 13188 edges
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Alternative Way to measu re @laboraturies
independence

Does knowing the current status (present/absent) of an edge
help us predict its status in the next iteration better?

— How about its status after 10 steps? 20 steps?

— How many steps will be sufficient for the prediction to fail?
The point we fail, the edge becomes independent
A popular method in statistics

Method:

— Generate a long sequence

— Fit a model to predict k steps ahead

— Thin this sequence with smallest k for which the
prediction fails
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~Edges become independent rapid@““*"a‘“"es

Preserving DD Preserving JDD
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e All potential edges are included in the analysis.

e Only a few remain after 7.5|E| and 15| E| iterations for
preserving DD and JDD, respectively.
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Some edges are tougher than others

= | | | | * Preserving JDD on Soc-Epinions

10° I — Edges are sampled down to
[ ] 10%.

10 || [ « After 30|E| iterations 90% of
, i | the edges become

107 T | independent.

10" _| H_m_’_‘ * Most of the remaining ones are
| | close to independence.

1000 200 200 600“ 1 s00° There are a few outliers.

Normalized thinning factor k/|E|

Soc-Epinionsl
75879 vertices, 405740 edges
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Diminishing returns for extra steps

0.2 ‘ |
N = 30|E| 22 N = 30|E]|
—N = 150|E]| —N = 150|E]|
—N = 270E| 20! —N =270[E] |
0.15¢ —N = 390|E| | —N = 390|E|
2 >15;
c 0.1 &
) b
o) 0 10+
0.05}
5,
0 | | ‘ 0 ‘ ‘ ‘ ‘
5 10 15 20 25 3C 175.9 17595 176 176.05 176
Diameter Maximum eigenvalue

* Preserving JDD on soc-epinionsl
e Distributions are very similar
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Conclusions

Generating uniformly random instances of a graph with given properties is
a fundamental problem in graph analysis.

Markov chains are commonly used for this purpose, but
guaranteeing/testing their convergence is a challenge.

We proposed to use

— edge independence as a practical metric.

— smaller Markov chains for presence/absence of edges as a guide.
We showed how the method applies to DD and JDD preserving MCs.
Empirical studies on several graphs validated the approach.

We are not guaranteeing convergence of the chain, but providing a metric
that quantifies what is satisfied.
— Results should be interpreted accordingly.

The same approach can be used to guarantee independence of a bigger
structures.
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A new workshop

SIAM Workshop on Network Science
Dates: July 7-8, 2013

Place: San Diego, CA

Co-located with SIAM Annual Meeting
There will be a call for posters

Contact:

— Ali Pinar (apinar@sandia.gov), Sandia National Labs
— Madhav Marathe (mmarathe@vbi.vt.edu), Virginia Tech
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