
Analyzing Graph Structure in Streaming Data
with STINGER
Jason Riedy, Robert C. McColl, David Ediger, and David A.
Bader with Anita Zakrzewska and Oded Green
Georgia Institute of Technology

28 February 2013

Outline

Background
Where graphs appear... (hint: everywhere)
Data volumes and rates of change
Why analyze data streams?

Technical Bits
How to analyze streams of graph-structured data
STING status and immediate plans
Community detection and monitoring

Observations

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 2/30

Exascale Data Analysis

Health care Finding outbreaks, population epidemiology

Social networks Advertising, searching, grouping

Intelligence Decisions at scale, regulating algorithms

Systems biology Understanding interactions, drug design

Power grid Disruptions, conservation

Simulation Discrete events, cracking meshes

The data is full of semantically rich relationships.
Graphs! Graphs! Graphs!

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 3/30

Full of structures: not simple ones.
Yifan Hu’s (AT&T) visualization of the in-2004 data set

http://www2.research.att.com/~yifanhu/gallery.html

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 4/30

http://www2.research.att.com/~yifanhu/GALLERY/GRAPHS/GIF_SMALL/LAW@in-2004.html
http://www2.research.att.com/~yifanhu/gallery.html

Full of structures: not well-defined ones.

LinkedIn Labs Map of my network
http://inmaps.linkedinlabs.com

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 5/30

http://inmaps.linkedinlabs.com/share/Jason_Riedy/135243263311536682812471775171414573322
http://inmaps.linkedinlabs.com

No shortage of data...

Existing (some out-of-date) data volumes

NYSE 1.5 TB generated daily into a maintained 8 PB archive

Google “Several dozen” 1PB data sets (CACM, Jan 2010)

LHC 15 PB per year (avg. 21 TB daily)
http://public.web.cern.ch/public/en/lhc/

Computing-en.html

Wal-Mart 536 TB, 1B entries daily (2006)

EBay 2 PB, traditional DB, and 6.5PB streaming, 17 trillion
records, 1.5B records/day, each web click is 50-150
details. http://www.dbms2.com/2009/04/30/

ebays-two-enormous-data-warehouses/

Faceboot > 1B monthly users...

• All data is rich and semantic (graphs!) and changing.

• Base data rates include items and not relationships.

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 6/30

http://public.web.cern.ch/public/en/lhc/Computing-en.html
http://public.web.cern.ch/public/en/lhc/Computing-en.html
http://www.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/
http://www.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/

General approaches

• High-performance static graph analysis
• Develop techniques that apply to unchanging massive graphs.
• Provides useful after-the-fact information, starting points.
• Serves many existing applications well: market research, much

bioinformatics, ...
• Needs to be O(|E |).

• High-performance streaming graph analysis
• Focus on the dynamic changes within massive graphs.
• Find trends or new information as they appear.
• Serves upcoming applications: fault or threat detection, trend

analysis, ...
• Can be O(|∆E |)? O(Vol(∆V))? Less data ⇒ faster, cheaper.

Both very important to different areas.
Remaining focus is on streaming.

Note: Not CS theory streaming, but analysis of streaming data.

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 7/30

Why analyze data streams?

Data volumes

NYSE 1.5TB daily

LHC 41TB daily

Facebook Who knows?

Data transfer
• 1 Gb Ethernet: 8.7TB daily at

100%, 5-6TB daily realistic

• Multi-TB storage on 10GE: 300TB
daily read, 90TB daily write

• CPU ↔ Memory: QPI,HT:
2PB/day@100%

Data growth

• Facebook: > 2×/yr

• Twitter: > 10×/yr

• Growing sources:
Bioinformatics,
µsensors, security

Speed growth

• Ethernet/IB/etc.: 4× in next 2
years. Maybe.

• Flash storage, direct: 10× write,
4× read. Relatively huge cost.

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 8/30

STING: the How-To Part

• STING: Spatio-Temporal Interaction Networks and Graphs

• Shared-memory framework (in progress) for
• inserting and removing typed edges and vertices in batches,
• running analysis kernels on pre- and post-combinations of

• the batch of changes,
• the graph,
• other kernels’ results,
• ...

• STINGER data structure maintains the graph.

• Free software available through
http://www.cc.gatech.edu/stinger/, supports OpenMP
and Cray XMT.

• Generally, STING is the framework and STINGER is the data
structure, but we often say STINGER.

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 9/30

http://www.cc.gatech.edu/stinger/

STING’s focus

Source data

predictionaction

summary

Control

VizSimulation / query

• STING manages queries against changing graph data.
• Visualization and control often are application specific.

• Ideal: Maintain many persistent graph analysis kernels.
• Keep one current snapshot of the graph resident.
• Let kernels maintain smaller histories.
• Also (a harder goal), coordinate the kernels’ cooperation.

• Gather data into a typed graph structure, STINGER.

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 10/30

STINGER
STING Extensible Representation:

• Rule #1: No explicit locking.
• Rely on atomic operations, or
• tolerate data (but not data structure) inconsistency.

• Rule #2: In memory...

• Massive graph: Scattered updates, scattered reads rarely
conflict. Be optimistic whenever possible.

• Use time stamps for some view of time.
SIAM CSE 2013—Graph Structure with STING—Jason Riedy 11/30

STING status and immediate plans

Current distribution: http://www.cc.gatech.edu/stinger/

• Oriented towards research and demonstration.

• Included kernels:
• insertion and removal demo / benchmark [1],
• updating clustering coefficients [2, 3],
• updating connected components [4, 3],
• community re-agglomeration,
• static benchmarks: BFS, components.

• Available:
• incremental betweenness centrality∗ [5].

• Uses:
• Multiple internal projects.
• External collaborators at Intel, CMU, SAIC, Nobilis, and others.

Development: rad branch

• Framework supporting communicating, run-time work-flow.

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 12/30

http://www.cc.gatech.edu/stinger/

Community detection

What do we mean?
• Partition a graph’s

vertices into disjoint
communities / clusters.

• A community locally
maximizes some metric...

• No single accepted hard
definition.

• Try to capture that
vertices are more similar
within one community
than between
communities. Jason’s network via LinkedIn Labs

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 13/30

http://inmaps.linkedinlabs.com/share/Jason_Riedy/135243263311536682812471775171414573322

Community detection

Assumptions

• Disjoint partitioning of
vertices.

• There is no one unique
answer.

• Many metrics are
NP-complete to
optimize or just plain
ill-defined.

• Graph is lossy
representation.

• Want an adaptable
detection method. Jason’s network via LinkedIn Labs

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 14/30

http://inmaps.linkedinlabs.com/share/Jason_Riedy/135243263311536682812471775171414573322

Sequential agglomerative method

A

B

C

D

E

F
G

• A common method (e.g. Clauset, et
al. [6]) agglomerates vertices into
communities.

• Each vertex begins in its own
community.

• An edge is chosen to contract.
• Merging maximally increases

modularity.
• Priority queue.

• Known often to fall into an O(n2)
performance trap with modularity
(Wakita & Tsurumi [7]).

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 15/30

Sequential agglomerative method

A

B

C

D

E

F
G

C

B

• A common method (e.g. Clauset, et
al. [6]) agglomerates vertices into
communities.

• Each vertex begins in its own
community.

• An edge is chosen to contract.
• Merging maximally increases

modularity.
• Priority queue.

• Known often to fall into an O(n2)
performance trap with modularity
(Wakita & Tsurumi [7]).

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 16/30

Sequential agglomerative method

A

B

C

D

E

F
G

C

B

D

A

• A common method (e.g. Clauset, et
al. [6]) agglomerates vertices into
communities.

• Each vertex begins in its own
community.

• An edge is chosen to contract.
• Merging maximally increases

modularity.
• Priority queue.

• Known often to fall into an O(n2)
performance trap with modularity
(Wakita & Tsurumi [7]).

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 17/30

Sequential agglomerative method

A

B

C

D

E

F
G

C

B

D

A

B

C

• A common method (e.g. Clauset, et
al. [6]) agglomerates vertices into
communities.

• Each vertex begins in its own
community.

• An edge is chosen to contract.
• Merging maximally increases

modularity.
• Priority queue.

• Known often to fall into an O(n2)
performance trap with modularity
(Wakita & Tsurumi [7]).

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 18/30

Parallel agglomerative method

A

B

C

D

E

F
G

• We use a matching to avoid the queue.
[8, 9, 10]

• Compute a heavy weight, large
matching.

• Simple greedy algorithm.
• Maximal matching.
• Within factor of 2 in weight.

• Merge all matched communities.

• Maintains some balance.

• Produces different results. Fast.

• Agnostic to weighting, matching...
• Can maximize modularity, minimize

conductance.

• Think AMG, ParMetis, ... Effectively
Õ(|E |).

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 19/30

Parallel agglomerative method

A

B

C

D

E

F
G

C

D

G

• We use a matching to avoid the queue.
[8, 9, 10]

• Compute a heavy weight, large
matching.

• Simple greedy algorithm.
• Maximal matching.
• Within factor of 2 in weight.

• Merge all matched communities.

• Maintains some balance.

• Produces different results. Fast.

• Agnostic to weighting, matching...
• Can maximize modularity, minimize

conductance.

• Think AMG, ParMetis, ... Effectively
Õ(|E |).

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 20/30

Parallel agglomerative method

A

B

C

D

E

F
G

C

D

G

E

B

C

• We use a matching to avoid the queue.
[8, 9, 10]

• Compute a heavy weight, large
matching.

• Simple greedy algorithm.
• Maximal matching.
• Within factor of 2 in weight.

• Merge all matched communities.

• Maintains some balance.

• Produces different results. Fast.

• Agnostic to weighting, matching...
• Can maximize modularity, minimize

conductance.

• Think AMG, ParMetis, ... Effectively
Õ(|E |).

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 21/30

Adapting for streaming data

Static implementation notes

• Uses a simple binned edge list.

• Only stores undirected edges, not pairs of directed edges.

• Very un-STINGER.

• Example of adapting an existing fast code into STING.

Simplest thing that could work.

• Parallel agglomeration produces a contracted community graph.

• Community graph vertex: set of original graph vertices

• Batch of edge insertions and removals touches a subset of
original graph vertices.

• Extract using STINGER, then re-start agglomeration.

• Consistent with some contraction ordering starting from
scratch, possibly not locally maximal.

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 22/30

Extracting vertices, edges

Before changing STINGER graph

1 Collect unique vertices from edge change batch.
• (common operation across kernels)

2 Extract affected vertices into new communities.
• Except the last one... Use community volume to check.

Given changed STINGER graph

1 Append corrective edges to community graph edge list.
• Append edge with negative weight to cancel old edge between

old communities, positive weight to link new communities.
• (Edge removals handled similarly.)

• Operations ∝ to volume of affected vertices.

• Re-agglomeration ∝ edges in community graph plus batch size.

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 23/30

Performance: Setup

Test cases
• Three graphs from DIMACS10, initial communities:

Name |V | |E | |C | |EC |

caidaRouterLevel 192 244 1 218 132 18 343 30 776
coPapersDBLP 540 486 30 866 466 1 401 205 856

eu-2005 862 664 16 138 468 55 624 194 971

• Edge action generation: 15/16 insertion, 1/16 removal
• Insertion: Between two communities (∝ density), select

endpoints with prob. inversely proportional to degree.
• Removal: Randomly sample from existing edges inside

communities, then from inserted edges if exhausted.

• Only for execution performance, not quality. Using a real
stream for quality is in progress.

Platform: Quad 6-core, 2.0GHz Intel Westmere-based system with 1
TiB RAM (courtesy or Oracle).

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 24/30

Community graph expansion

Batch size

E
dg

es
 in

 C
' r

el
at

iv
e

to
 G

10−5

10−4

10−3

10−2

10−1

100

caidaRouterLevel

100 101 102 103 104 105

coPapersDBLP

100 101 102 103 104 105

eu−2005

100 101 102 103 104 105

Batch size

1

100

1000

10000

100000

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 25/30

Updates per second, w/STINGER

Threads (x86)

U
pd

at
es

 p
er

 s
ec

on
d

103

104

105

106

107

caidaRouterLevel

5 10 15 20

coPapersDBLP

5 10 15 20

eu−2005

5 10 15 20

Batch size

1

100

1000

10000

100000

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 26/30

Updates per second, only re-agglom.

Threads (x86)

U
pd

at
es

 p
er

 s
ec

on
d

103

104

105

106

107

108

caidaRouterLevel

5 10 15 20

coPapersDBLP

5 10 15 20

eu−2005

5 10 15 20

Batch size

1

100

1000

10000

100000

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 27/30

Latency, w/STINGER

Threads (x86)

La
te

nc
y:

 s
ec

on
ds

 p
er

 b
at

ch

10−3

10−2

10−1

100

101

caidaRouterLevel

5 10 15 20

coPapersDBLP

5 10 15 20

eu−2005

5 10 15 20

Batch size

1

100

1000

10000

100000

Static

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 28/30

Speed-up over static

Threads (x86)

S
pe

ed
−

up
 o

ve
r

st
at

ic

101

101.5

102

102.5

103

103.5

104

caidaRouterLevel

5 10 15 20

coPapersDBLP

5 10 15 20

eu−2005

5 10 15 20

Batch size

1

100

1000

10000

100000

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 29/30

Observations

• Straight-forward to adapt some surprising graph algorithms to
streaming data.

• STING provides a useful platform for quick development.
• Good base-line performance on general (OpenMP) and

specialized (XMT) architectures.
• Tunable latency v. raw throughput (updates/sec).
• Developing a work-flow and blackboard model.
• External users finding issues, e.g. lower performance on

high-degree vertices.
• Good and bad.

http://www.cc.gatech.edu/stinger

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 30/30

http://www.cc.gatech.edu/stinger

Acknowledgment of support

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 31/30

Bibliography I

D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “STINGER:
High performance data structure for streaming graphs,” in The
IEEE High Performance Extreme Computing Conference
(HPEC), Waltham, MA, Sep. 2012, best paper award.

D. Ediger, E. J. Riedy, D. A. Bader, and H. Meyerhenke,
“Tracking structure of streaming social networks,” in 5th
Workshop on Multithreaded Architectures and Applications
(MTAAP), May 2011.

J. Riedy, H. Meyerhenke, D. A. Bader, D. Ediger, and T. G.
Mattson, “Analysis of streaming social networks and graphs on
multicore architectures,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Kyoto,
Japan, Mar.
2012. [Online]. Available: http://www.slideshare.net/jasonriedy/
icassp-2012-analysis-of-streaming-social-networks-and-graphs-on-multicore-architectures

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 32/30

http://www.slideshare.net/jasonriedy/icassp-2012-analysis-of-streaming-social-networks-and-graphs-on-multicore-architectures
http://www.slideshare.net/jasonriedy/icassp-2012-analysis-of-streaming-social-networks-and-graphs-on-multicore-architectures

Bibliography II

D. Ediger, K. Jiang, E. J. Riedy, and D. A. Bader, “Massive
streaming data analytics: A case study with clustering
coefficients,” in 4th Workshop on Multithreaded Architectures
and Applications (MTAAP), Atlanta, GA, Apr. 2010. [Online].
Available:
http://www.cc.gatech.edu/∼bader/papers/StreamingCC.html

O. Green, R. McColl, and D. A. Bader, “A fast algorithm for
incremental betweenness centrality,” in ASE/IEEE International
Conference on Social Computing (SocialCom), Amsterdam, The
Netherlands, Sep. 2012.

A. Clauset, M. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical Review E, vol. 70,
no. 6, p. 66111, 2004.

K. Wakita and T. Tsurumi, “Finding community structure in
mega-scale social networks,” CoRR, vol. abs/cs/0702048, 2007.

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 33/30

http://www.cc.gatech.edu/~bader/papers/StreamingCC.html

Bibliography III

E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader,
“Parallel community detection for massive graphs,” in 9th
International Conference on Parallel Processing and Applied
Mathematics (PPAM11). Springer, Sep. 2011.

E. J. Riedy, D. A. Bader, and H. Meyerhenke, “Scalable
multi-threaded community detection in social networks,” in 6th
Workshop on Multithreaded Architectures and Applications
(MTAAP), May 2012. [Online]. Available:
http://www.slideshare.net/jasonriedy/
mtaap12-scalable-community-detection

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 34/30

http://www.slideshare.net/jasonriedy/mtaap12-scalable-community-detection
http://www.slideshare.net/jasonriedy/mtaap12-scalable-community-detection

Bibliography IV

E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader,
“Parallel community detection for massive graphs,” in 10th
DIMACS Implementation Challenge Workshop - Graph
Partitioning and Graph Clustering. Atlanta, Georgia:
(workshop paper), Feb. 2012, won first place in the Mix
Challenge and Mix Pareto Challenge. [Online]. Available:
http://www.cc.gatech.edu/dimacs10/papers/[15]
-dimacs10-community-detection.pdf

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 35/30

http://www.cc.gatech.edu/dimacs10/papers/[15]-dimacs10-community-detection.pdf
http://www.cc.gatech.edu/dimacs10/papers/[15]-dimacs10-community-detection.pdf

	Background
	Technical Bits
	Observations
	Appendix

