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Technical Bits
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STING status and immediate plans
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Exascale Data Analysis

Health care Finding outbreaks, population epidemiology

Social networks Advertising, searching, grouping

Intelligence Decisions at scale, regulating algorithms

Systems biology Understanding interactions, drug design

Power grid Disruptions, conservation

Simulation Discrete events, cracking meshes

The data is full of semantically rich relationships.
Graphs! Graphs! Graphs!
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Full of structures: not simple ones.
Yifan Hu’s (AT&T) visualization of the in-2004 data set

http://www2.research.att.com/~yifanhu/gallery.html
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Full of structures: not well-defined ones.

LinkedIn Labs Map of my network
http://inmaps.linkedinlabs.com
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No shortage of data...

Existing (some out-of-date) data volumes

NYSE 1.5 TB generated daily into a maintained 8 PB archive

Google “Several dozen” 1PB data sets (CACM, Jan 2010)

LHC 15 PB per year (avg. 21 TB daily)
http://public.web.cern.ch/public/en/lhc/

Computing-en.html

Wal-Mart 536 TB, 1B entries daily (2006)

EBay 2 PB, traditional DB, and 6.5PB streaming, 17 trillion
records, 1.5B records/day, each web click is 50-150
details. http://www.dbms2.com/2009/04/30/

ebays-two-enormous-data-warehouses/

Faceboot > 1B monthly users...

• All data is rich and semantic (graphs!) and changing.

• Base data rates include items and not relationships.
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General approaches

• High-performance static graph analysis
• Develop techniques that apply to unchanging massive graphs.
• Provides useful after-the-fact information, starting points.
• Serves many existing applications well: market research, much

bioinformatics, ...
• Needs to be O(|E |).

• High-performance streaming graph analysis
• Focus on the dynamic changes within massive graphs.
• Find trends or new information as they appear.
• Serves upcoming applications: fault or threat detection, trend

analysis, ...
• Can be O(|∆E |)? O(Vol(∆V ))? Less data ⇒ faster, cheaper.

Both very important to different areas.
Remaining focus is on streaming.

Note: Not CS theory streaming, but analysis of streaming data.

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 7/30



Why analyze data streams?

Data volumes

NYSE 1.5TB daily

LHC 41TB daily

Facebook Who knows?

Data transfer
• 1 Gb Ethernet: 8.7TB daily at

100%, 5-6TB daily realistic

• Multi-TB storage on 10GE: 300TB
daily read, 90TB daily write

• CPU ↔ Memory: QPI,HT:
2PB/day@100%

Data growth

• Facebook: > 2×/yr

• Twitter: > 10×/yr

• Growing sources:
Bioinformatics,
µsensors, security

Speed growth

• Ethernet/IB/etc.: 4× in next 2
years. Maybe.

• Flash storage, direct: 10× write,
4× read. Relatively huge cost.
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STING: the How-To Part

• STING: Spatio-Temporal Interaction Networks and Graphs

• Shared-memory framework (in progress) for
• inserting and removing typed edges and vertices in batches,
• running analysis kernels on pre- and post-combinations of

• the batch of changes,
• the graph,
• other kernels’ results,
• ...

• STINGER data structure maintains the graph.

• Free software available through
http://www.cc.gatech.edu/stinger/, supports OpenMP
and Cray XMT.

• Generally, STING is the framework and STINGER is the data
structure, but we often say STINGER.
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STING’s focus

Source data

predictionaction

summary

Control

VizSimulation / query

• STING manages queries against changing graph data.
• Visualization and control often are application specific.

• Ideal: Maintain many persistent graph analysis kernels.
• Keep one current snapshot of the graph resident.
• Let kernels maintain smaller histories.
• Also (a harder goal), coordinate the kernels’ cooperation.

• Gather data into a typed graph structure, STINGER.
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STINGER
STING Extensible Representation:

• Rule #1: No explicit locking.
• Rely on atomic operations, or
• tolerate data (but not data structure) inconsistency.

• Rule #2: In memory...

• Massive graph: Scattered updates, scattered reads rarely
conflict. Be optimistic whenever possible.

• Use time stamps for some view of time.
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STING status and immediate plans

Current distribution: http://www.cc.gatech.edu/stinger/

• Oriented towards research and demonstration.

• Included kernels:
• insertion and removal demo / benchmark [1],
• updating clustering coefficients [2, 3],
• updating connected components [4, 3],
• community re-agglomeration,
• static benchmarks: BFS, components.

• Available:
• incremental betweenness centrality∗ [5].

• Uses:
• Multiple internal projects.
• External collaborators at Intel, CMU, SAIC, Nobilis, and others.

Development: rad branch

• Framework supporting communicating, run-time work-flow.
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Community detection

What do we mean?
• Partition a graph’s

vertices into disjoint
communities / clusters.

• A community locally
maximizes some metric...

• No single accepted hard
definition.

• Try to capture that
vertices are more similar
within one community
than between
communities. Jason’s network via LinkedIn Labs
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Community detection

Assumptions

• Disjoint partitioning of
vertices.

• There is no one unique
answer.

• Many metrics are
NP-complete to
optimize or just plain
ill-defined.

• Graph is lossy
representation.

• Want an adaptable
detection method. Jason’s network via LinkedIn Labs
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Sequential agglomerative method

A

B

C

D

E

F
G

• A common method (e.g. Clauset, et
al. [6]) agglomerates vertices into
communities.

• Each vertex begins in its own
community.

• An edge is chosen to contract.
• Merging maximally increases

modularity.
• Priority queue.

• Known often to fall into an O(n2)
performance trap with modularity
(Wakita & Tsurumi [7]).
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Parallel agglomerative method
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• We use a matching to avoid the queue.
[8, 9, 10]

• Compute a heavy weight, large
matching.

• Simple greedy algorithm.
• Maximal matching.
• Within factor of 2 in weight.

• Merge all matched communities.

• Maintains some balance.

• Produces different results. Fast.

• Agnostic to weighting, matching...
• Can maximize modularity, minimize

conductance.

• Think AMG, ParMetis, ... Effectively
Õ(|E |).
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Õ(|E |).

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 21/30



Adapting for streaming data

Static implementation notes

• Uses a simple binned edge list.

• Only stores undirected edges, not pairs of directed edges.

• Very un-STINGER.

• Example of adapting an existing fast code into STING.

Simplest thing that could work.

• Parallel agglomeration produces a contracted community graph.

• Community graph vertex: set of original graph vertices

• Batch of edge insertions and removals touches a subset of
original graph vertices.

• Extract using STINGER, then re-start agglomeration.

• Consistent with some contraction ordering starting from
scratch, possibly not locally maximal.
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Extracting vertices, edges

Before changing STINGER graph

1 Collect unique vertices from edge change batch.
• (common operation across kernels)

2 Extract affected vertices into new communities.
• Except the last one... Use community volume to check.

Given changed STINGER graph

1 Append corrective edges to community graph edge list.
• Append edge with negative weight to cancel old edge between

old communities, positive weight to link new communities.
• (Edge removals handled similarly.)

• Operations ∝ to volume of affected vertices.

• Re-agglomeration ∝ edges in community graph plus batch size.
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Performance: Setup

Test cases
• Three graphs from DIMACS10, initial communities:

Name |V | |E | |C | |EC |

caidaRouterLevel 192 244 1 218 132 18 343 30 776
coPapersDBLP 540 486 30 866 466 1 401 205 856

eu-2005 862 664 16 138 468 55 624 194 971

• Edge action generation: 15/16 insertion, 1/16 removal
• Insertion: Between two communities (∝ density), select

endpoints with prob. inversely proportional to degree.
• Removal: Randomly sample from existing edges inside

communities, then from inserted edges if exhausted.

• Only for execution performance, not quality. Using a real
stream for quality is in progress.

Platform: Quad 6-core, 2.0GHz Intel Westmere-based system with 1
TiB RAM (courtesy or Oracle).
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Community graph expansion
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Updates per second, w/STINGER

Threads (x86)

U
pd

at
es

 p
er

 s
ec

on
d

103

104

105

106

107

caidaRouterLevel

5 10 15 20

coPapersDBLP

5 10 15 20

eu−2005

5 10 15 20

Batch size

1

100

1000

10000

100000

SIAM CSE 2013—Graph Structure with STING—Jason Riedy 26/30



Updates per second, only re-agglom.
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Latency, w/STINGER
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Speed-up over static
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Observations

• Straight-forward to adapt some surprising graph algorithms to
streaming data.

• STING provides a useful platform for quick development.
• Good base-line performance on general (OpenMP) and

specialized (XMT) architectures.
• Tunable latency v. raw throughput (updates/sec).
• Developing a work-flow and blackboard model.
• External users finding issues, e.g. lower performance on

high-degree vertices.
• Good and bad.

http://www.cc.gatech.edu/stinger
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