rreerer

A
m‘

High-Productivity and High-
Performance Analysis of Filtered
Semantic Graphs

Aydin Bulucg

Lawrence Berkeley National Laboratory
February 28, 2013 —

Key Contributors (past and present)

e Aydin Bulug (Berkeley Lab)

e Erika Duriakova (University College Dublin)
 Armando Fox (UC Berkeley)

e John Gilbert (UC Santa Barbara)

e Shoaib Kamil (MIT)

 Adam Lugowski (UC Santa Barbara)

* Lenny Oliker (Berkeley Lab)

» Steve Reinhardt (Cray Inc / YarcData)
 Sam Williams (Berkeley Lab)

A useless binary graph

Good for benchmarking though
(1.e. Graph500)

A useful semantic graph

(T, F, 0)
(F, T, 1) mr2 (063
(T, T, 3)
T,F,0
. (T, T, 1) . (! T FZ‘
(F, F, 0) (F, T, 1) (rp.2

class edge_attr:

‘ (5 T.4) ‘ isText

(T. T, 5) isPhonecall
U weight

Edge filter illustration

G.addEFilter(lambda e: e.weight > 0)

(F,T, 1) (T, F, 2) (T, F, 3)
(T, T, 3)
® ., ® g
(T, F. 2)
(F, T, 1)

class edge_attr:

‘ £ 1.4 ‘ isText

(T. T, 5) isPhonecall
U weight

Edge filter illustration

G.addEFilter(lambda e: e.weight > 0)
G.addeEFilter(lambda e: e.isPhonecCall)

(F, T, 1)

(T, T, 3)
® ... © |

(F, T, 1)

class edge_attr:

‘ £ 1.4 ‘ isText

(T. T, 5) isPhonecall
U weight

The need for filters

Graph of text Betweenness
& phone calls centrality
o \ O
o) o
o} o -
0 i 0
Betweenness Betweenness o RIS
. . $ 0
centrality on centralityon .)
e} o
text messages phone calls) o
o 0}

Parallel Graph Analysis Software

Discrete
structure analysis

l

Graph theory

l

Parallel Graph Analysis Software

Discrete
structure analysis

Domain scientists

KnoWIedge Discovery Toolbox (KDT) --------------------------------------

Graph algorithm
developers 1
Graph theory
Distributed Combinatorial BLAS
HPC scientists 1
and engineers

Shared-address space

Combinatorial BLAS o
I’ Communication Support

(MPI, GASNet, etc)

Threading Support
(OpenMP, Cilk, etc))

Parallel Graph Analysis Software

Domain scientists Discrete

Knowledge Discovery Toolbox (KDT) --------------------------------------

structure analysis

Distributed Combinatorial BLAS

Shared-address space
Combinatorial BLAS

Graph algorithm
developers 1
Graph theory
HPC scientists 1
and engineers

I

Communication Support
(MPI, GASNet, etc)

Threading Support
(OpenMP, Cilk, etc))

 KDT is higher level (graph abstractions)
 Combinatorial BLAS is for performance

Breadth-first search in
the language of linear
algebra

from

parents:

1

to

5

Particular semiring operations:
Multiply: select
Add: minimum

from
° 1
1
e o o
° 2 |
° °
o o
o o
AT X ATX

1 Multiple traverses outgoing edges
Add chooses among incoming edges

4 5
from
3 6 1 .
® 2
4 o0 1)
@ 0 |@ ® |2 K
) ® ® 2
parents: @ ® o
? 7 2 4 2
Al X ATX

S

Select vertex with
minimum label as parent

4 5
from
3 6 1 ®
®
® o=l |9 S
1 0O |@ -
0 ® “| |9
parents: 3 5 @
7 ® ® L

AlX

® ® 9 e
>
—
<

Result: Deterministic
breadth-first search

from

Knowledge e

Discovery o e
Toolbox | —
http://kdt.sourceforge.net/ A general graph library with

operations based on linear
algebraic primitives

* Aimed at domain experts who know their problem well but don’t
know how to program a supercomputer

* Easy-to-use Python interface
* Runs on a laptop as well as a cluster with 10,000 processors
* Version 0.2 released in March 2012; Version 0.3 expected in a month

N
B;KEDLM %ﬁﬁi} llel Computing [ioratory e ﬁ (te, Microsoft:

eeeeeeeeeeeeeeeeee

Lugowski, Alber, B., Gilbert, Reinhardt, Teng, and Waranis. A flexible open-source toolbox for
scalable complex graph analysis. SIAM Conference on Data Mining (SDM),2012

Attributed semantic graphs and filters

Example:

Vertex types: Person, Phone,
Camera, Gene, Pathway

Edge types: PhoneCall, TextMessage,

Colocation, Sequence Similar

ity

Edge attributes: StartTime, EndTime

Calculate centrality just for emails
among engineers sent between times

sTime and eTime

Algorithm implementation is
agnostic to the filters applied

—_—

def onlyEngineers (self):
return self.position == Engineer

def timedEmail (self, sTime, eTime):

return ((self.type == email) and
(self.Time > sTime) and
(self.Time < eTime))

start = dt.now() - dt.timedelta (days=30)
end = dt.now()

G denotes the graph
G.addVFilter (onlyEngineers)
G.addEFilter (timedEmail (start, end))

rank via centrality based on recent
email transactions among engineers
bec = G.rank ('’ approxBC’)

Lugowski, B.,, Gilbert, Reinhardt. Scalable complex graph analysis with the knowledge discovery

toolbox. In ICASSP, 2012

Filter options and implementation

* Filter defined as unary predicates, checked in order they

were added

* Each KDT object maintains a stack of filter predicates

* All operations respect filters, enabling filter-agnostic

algorithm design

On-the-fly filters

Materialized filters

Edges are retained

Edges are pruned on copy

Check predicate on each
edge/vertex traversal

Check predicate once on
materialization

Cheap but done on each run

Expensive but done once

Targeting “domain experts”

Performam/ccmcelOtual

simplicity
Combinatorial
Customizability BLAS

g

KDT’s non-semantic graphs

KDT with just in
time compilation KDT’s semantic

graphs

Problems with Customizing in KDT

* Filtering on attributed semantic graphs is slow
* In plain KDT, filters are pure Python functions.
* Requires a per-vertex or per-edge upcall into Python
e Can be as slow as 80X compared to pure C++

* Adding new graph algorithms to KDT is slow

* A new graph algorithm = composing linear algebraic
primitives + customizing the semiring operation

e Semirings in Python; similar performance bottleneck

Review: Selective Embedded Just In Time

Specialization (SEJITS)

Program

Non-DSL Code in DSL | Code in DSL
Code A B

Code in DSL

Data A

Interpreter DSL

Codegen

v

External
Compiler

v

Dynamic
> Link Library

Data —> —

Compile Phase

Execute Phase

Result

Catanzaro, Kamil, Lee, Asanovic, Demmel, Keutzer, Shalf, Yelick, Fox. SEJITS: Getting productivity
and performance with selective embedded JIT specialization. PMEA, 2009

SEJITS for filter/semiring acceleration

Standard KDT

Filter (Py)

Semiring (Py)

Python | KDT Algorithm

!

C++ CombBLAS
Primitive

SEJITS for filter/semiring acceleration

Standard KDT KDT+SEJITS

[pr—— Y

Filter (Py) I Filter (Py) :

| |

Semiring (Py) 1 | Semiring (Py) | !

Python | KDT Algorithm KDT Algorithm | (-7 I ——— !
l l SEJITS ITransIation

C++ CombBLAS CombBLAS [o\ g N

Primitive Primitive Filter (C++) | |

[

: Semiring (C++) :

N e - —— -

Embedded DSL: Python for the whole application
* Introspect, translate Python to equivalent C++ code
e Call compiled/optimized C++ instead of Python

B., Duriakova, Gilbert, Fox, Kamil, Lugowski, Oliker, Williams. High-Performance and High-
Productivity Analysis of Filtered Semantic Graphs, /PDPS, 2013

Details about the experimental setting

* Filtered breadth-first search and maximal independent set

 Edge values are generated to guarantee a particular filter
permeability by weighting the random number generator.

struct TwitterEdge {
bool follower;
time_t latest; // set if count > 0
short count; // number of retweets

}s

The edge filter written in Python:
(translated to C++ on the fly by SEJITS)

class MyFilter(PcbFilter):
def __init__(self, target_date):
self.target = strtoftime(target_date)

def filter(e):
if it is a retweet edge
if (e.count > 0 and
and it is before the target date
e.latest < self.target):
return True
else:
return False

SEJITS+KDT multicore performance

T 10F ' =
I F

3

2 - MIS= Maximal

:cg“ Independent Set

§ L - 36 cores of Mirasol
3 (Intel Xeon E7-8870)
£ - Erdés-Rényi (Scale
” 22, edgefactor=4)

9 01 F Python/Python KDT =i -

= Python/SEJITS KDT ==]

= SEJITS/SEJITS KDT metpmm

é’ ’ C-||-+/C++ COmbBLAS === N

1% 10% 100%
Filter Permeability

Synthetic data with weighted randomness to match filter permeability
Notation: [semiring impl] / [filter impl]

SEJITS+KDT real graph performance

@
S
O
0
o)

9
7}
e
S
S 1
o)
@2
o
E
|_
n
I8
m
C
I
[
=

SI1ZES (VERTEX AND EDGE COUNTS) OF DIFFERENT COMBINED TWITTER

10 |

0.1

Python/Python KDT s
SEJITS/SEJITS KDT st
C++/C++ ICombBLAS ——

small

medium

large huge

Twitter Input Graph

* Breadth-first search

16 cores of Mirasol
(Intel Xeon E7-8870)

STATISTICS ABOUT THE LARGEST STRONGLY CONNECTED COMPONENTS

GRAPHS. OF THE TWITTER GRAPHS
Label Vertices Edges (millions) Vertices Edges traversed Edges processed
(millions) | Tweet Follow Tweet&follow Small 78.397 147,873 29 4 million
Small 0.5 0.7 653 0.3 Medium | 55,872 93,601 54.1 million
Medium 4.2 142 386.5 4.8 Large | 45291 73,031 59.7 million
Large 11.3 59.7 589.1 12.5 Huge | 43,027 68,751 60.2 million
Huge 16.8 1024 634.2 15.6

SEJITS+KDT cluster performance

i

Python/Python KDT = sl
Python/SEJITS KDT e
SEJITS/SEJITS KDT =g 1
CT+/C++ COombBLAS ==y II

1% 10% 100%
Filter Permeability

o
-
T

Mean BFS Time (seconds, log scale)

Breadth-first search

576 cores of Hopper
(Cray XE6 at NERSC
with AMD Opterons)

R-MAT (Scale 25,
edgefactor=16,
symmetric)

A roofline model for shows how SEJITS moves KDT analytics from
being Python compute bound to being bandwidth bound.

SEJITS does not impede scaling

e ——

Python/Python KDT Python/SEJITS KDT SEJITS/SEJITS KDT C++/C++ CombBLAS
E [T T T T T T] 16 [T T T T T]
© [\y]
g 100 | @ 100 F 3
3 ; 15
S 10t S 10 k 4
8 : 8
() (]
E =
= =
1E 1E =
A P
oM o
= 0.1 W | |]]] = 0.1]] |]]
1 4 9 16 25 36 64 121 256 576 1024
Number of MPI Processes Number of MPI Processes
R-MAT Scale 22, 25% permeable R-MAT Scale 25, 25% permeable

As the compute limitations are lifted, parallel scaling gets harder due
to higher bandwidth/sec requirements of the computation.

Roofline analysis: Why

SEJITS+KDT works?

Processed Edges Per Second (in Millions)

12800

6400

3200

1600

800

400

Mirasol (Xeon E7 8870) — 36 cores

CombBLAS Compute Bound

SEJITS Compute Bound

|.. DRAM BandwidthBound . N
P

KDT Compute Bound

1%

10% 100%
Filter Permeability

Even with SEJITS, there are
run-time overheads with
function calls via pointers.

How is it so close to the
Combinatorial BLAS
performance?

Because once we are
bandwidth bound,
additional complexity does
not hurt.

Main contribution

 Both Boost Graph Library (BGL) and Parallel Boost Graph Library
(PBGL) implement the filtered graph abstraction.

e Why do we re-invent the wheel?

v" High-productivity programming
v Targeting domain scientists

A s //
SRl AN
q?%\%‘}w‘ 1 m% # bigG contains the input graph
(?“<{ <§§§§7 comp = bigG.connComp ()

\ §§g giantComp = comp.hist () .argmax ()
zx G = bigG.subgraph (comp==giantComp)
of clus = G.cluster (‘Markov’)

clusNedge = G.nedge (clus)

smallG = G.contract (clus)

visualize

KDT + Combinatorial BLAS: Making parallel graph analysis
accessible to domain scientists.

Layered software architecture allows concurrent advances in
performance and functionality.

High-performance filtered semantic graph processing is
possible without changes from the graph algorithm developer.

Possible to write callbacks in high-level language while retaining
low-level language performance

Possible to define datatypes at runtime [Ongoing work]

