

High-Productivity and High-Performance Analysis of Filtered Semantic Graphs

Aydın Buluç Lawrence Berkeley National Laboratory February 28, 2013 SIAM CSE, Boston

Key Contributors (past and present)

- Aydın Buluç (Berkeley Lab)
- Erika Duriakova (University College Dublin)
- Armando Fox (UC Berkeley)
- John Gilbert (UC Santa Barbara)
- Shoaib Kamil (MIT)
- Adam Lugowski (UC Santa Barbara)
- Lenny Oliker (Berkeley Lab)
- Steve Reinhardt (Cray Inc / YarcData)
- Sam Williams (Berkeley Lab)

A useless binary graph

Good for benchmarking though (i.e. Graph500)

A useful semantic graph

class edge_attr:
 isText
 isPhoneCall
 weight

Edge filter illustration

G.addEFilter(lambda e: e.weight > 0)

class edge_attr:
 isText
 isPhoneCall
 weight

Edge filter illustration

```
G.addEFilter(lambda e: e.weight > 0)
G.addEFilter(lambda e: e.isPhoneCall)
```


The need for filters

Graph of text & phone calls

Betweenness centrality

Betweenness centrality on text messages

Betweenness centrality on phone calls

Parallel Graph Analysis Software

Parallel Graph Analysis Software

Parallel Graph Analysis Software

Knowledge Discovery Toolbox

http://kdt.sourceforge.net/

A general graph library with operations based on linear algebraic primitives

- Aimed at domain experts who know their problem well but don't know how to program a supercomputer
- Easy-to-use Python interface
- Runs on a laptop as well as a cluster with 10,000 processors
- Version 0.2 released in March 2012; Version 0.3 expected in a month

Lugowski, Alber, **B.**, Gilbert, Reinhardt, Teng, and Waranis. A flexible open-source toolbox for scalable complex graph analysis. *SIAM Conference on Data Mining (SDM)*, 2012

Attributed semantic graphs and filters

Example:

- Vertex types: Person, Phone,
 Camera, Gene, Pathway
- Edge types: PhoneCall, TextMessage, CoLocation, Sequence Similarity
- Edge attributes: StartTime, EndTime
- Calculate centrality just for emails among engineers sent between times sTime and eTime

Algorithm implementation is agnostic to the filters applied


```
def onlyEngineers(self):
    return self.position == Engineer
def timedEmail (self, sTime, eTime):
    return ((self.type == email) and
           (self.Time > sTime) and
            (self.Time < eTime))</pre>
start = dt.now() - dt.timedelta(days=30)
end = dt.now()
# G denotes the graph
G.addVFilter(onlyEngineers)
G.addEFilter(timedEmail(start, end))
# rank via centrality based on recent
email transactions among engineers
bc = G.rank('approxBC')
```

Lugowski, **B.**, Gilbert, Reinhardt. Scalable complex graph analysis with the knowledge discovery toolbox. In *ICASSP*, 2012

Filter options and implementation

- Filter defined as unary predicates, checked in order they were added
- Each KDT object maintains a stack of filter predicates
- All operations respect filters, enabling filter-agnostic algorithm design

On-the-fly filters	Materialized filters
Edges are retained	Edges are pruned on copy
Check predicate on each edge/vertex traversal	Check predicate once on materialization
Cheap but done on each run	Expensive but done once

Targeting "domain experts"

Problems with Customizing in KDT

- Filtering on attributed semantic graphs is slow
 - In plain KDT, filters are pure Python functions.
 - Requires a per-vertex or per-edge upcall into Python
 - Can be as slow as 80X compared to pure C++

- Adding new graph algorithms to KDT is slow
 - A new graph algorithm = composing linear algebraic primitives + customizing the semiring operation
 - Semirings in Python; similar performance bottleneck

Review: Selective Embedded Just In Time Specialization (SEJITS)

Catanzaro, Kamil, Lee, Asanovic, Demmel, Keutzer, Shalf, Yelick, Fox. SEJITS: Getting productivity and performance with selective embedded JIT specialization. *PMEA*, 2009

SEJITS for filter/semiring acceleration

Standard KDT

SEJITS for filter/semiring acceleration

Embedded DSL: Python for the whole application

- Introspect, translate Python to equivalent C++ code
- Call compiled/optimized C++ instead of Python

B., Duriakova, Gilbert, Fox, Kamil, Lugowski, Oliker, Williams. High-Performance and High-Productivity Analysis of Filtered Semantic Graphs, *IPDPS*, 2013

Details about the experimental setting

- Filtered breadth-first search and maximal independent set
- Edge values are generated to guarantee a particular filter permeability by weighting the random number generator.

```
struct TwitterEdge {
  bool follower;
  time_t latest; // set if count > 0
  short count; // number of retweets
};
```

The edge filter written in Python: (translated to C++ on the fly by SEJITS)

```
class MyFilter(PcbFilter):
    def __init__(self, target_date):
        self.target = strtoftime(target_date)

def filter(e):
    # if it is a retweet edge
    if (e.count > 0 and
        # and it is before the target date
        e.latest < self.target):
        return True
    else:
        return False</pre>
```

SEJITS+KDT multicore performance

- MIS= Maximal
 Independent Set
- 36 cores of Mirasol (Intel Xeon E7-8870)
- Erdős-Rényi (Scale 22, edgefactor=4)

Synthetic data with weighted randomness to match filter permeability Notation: [semiring impl] / [filter impl]

SEJITS+KDT real graph performance

- Breadth-first search
- 16 cores of Mirasol (Intel Xeon E7-8870)

SIZES (VERTEX AND EDGE COUNTS) OF DIFFERENT COMBINED TWITTER GRAPHS.

Label	Vertices	Edges (millions)		
	(millions)	Tweet	Follow	Tweet&follow
Small	0.5	0.7	65.3	0.3
Medium	4.2	14.2	386.5	4.8
Large	11.3	59.7	589.1	12.5
Huge	16.8	102.4	634.2	15.6

STATISTICS ABOUT THE LARGEST STRONGLY CONNECTED COMPONENTS
OF THE TWITTER GRAPHS

	Vertices	Edges traversed	Edges processed
Small	78,397	147,873	29.4 million
Medium	55,872	93,601	54.1 million
Large	45,291	73,031	59.7 million
Huge	43,027	68,751	60.2 million

SEJITS+KDT cluster performance

- Breadth-first search
- 576 cores of Hopper (Cray XE6 at NERSC with AMD Opterons)
- R-MAT (Scale 25, edgefactor=16, symmetric)

A *roofline model* for shows how SEJITS moves KDT analytics from being Python *compute bound* to being *bandwidth bound*.

SEJITS does not impede scaling

As the compute limitations are lifted, parallel scaling gets **harder** due to higher bandwidth/sec requirements of the computation.

Roofline analysis: Why SEJITS+KDT works?

Even with SEJITS, there are run-time overheads with function calls via pointers.

How is it so close to the Combinatorial BLAS performance?

Because once we are bandwidth bound, additional complexity does not hurt.

Main contribution

- Both Boost Graph Library (BGL) and Parallel Boost Graph Library (PBGL) implement the filtered graph abstraction.
- Why do we re-invent the wheel?

- ✓ High-productivity programming
- ✓ Targeting domain scientists

```
# bigG contains the input graph
comp = bigG.connComp()
giantComp = comp.hist().argmax()
G = bigG.subgraph(comp==giantComp)

clus = G.cluster('Markov')

clusNedge = G.nedge(clus)

smallG = G.contract(clus)

# visualize
```

Conclusions

- KDT + Combinatorial BLAS: Making parallel graph analysis accessible to domain scientists.
- Layered software architecture allows concurrent advances in performance and functionality.
- High-performance filtered semantic graph processing is possible without changes from the graph algorithm developer.
- Possible to write callbacks in high-level language while retaining low-level language performance
- Possible to define datatypes at runtime [Ongoing work]