High-Productivity and High-Performance Analysis of Filtered Semantic Graphs

Aydın Buluç
Lawrence Berkeley National Laboratory
February 28, 2013
SIAM CSE, Boston
Key Contributors (past and present)

- Aydın Buluç (Berkeley Lab)
- Erika Duriakova (University College Dublin)
- Armando Fox (UC Berkeley)
- John Gilbert (UC Santa Barbara)
- Shoaib Kamil (MIT)
- Adam Lugowski (UC Santa Barbara)
- Lenny Oliker (Berkeley Lab)
- Steve Reinhardt (Cray Inc / YarcData)
- Sam Williams (Berkeley Lab)
A useless binary graph

Good for benchmarking though (i.e. Graph500)
A useful semantic graph

```python
class edge_attr:
    isText
    isPhoneCall
    weight
```
G.addEFilter(lambda e: e.weight > 0)

class edge_attr:
 isText
 isPhoneCall
 weight

G.addEFilter(lambda e: e.weight > 0)
G.addEFilter(lambda e: e.isPhoneCall)

class edge_attr:
 isText
 isPhoneCall
 weight
The need for filters

Graph of text & phone calls

Betweenness centrality

Betweenness centrality on text messages

Betweenness centrality on phone calls
Parallel Graph Analysis Software

Discrete structure analysis

Graph theory

Computers
Parallel Graph Analysis Software

Knowledge Discovery Toolbox (KDT) -> Distributed Combinatorial BLAS

Graph algorithm developers

Discrete structure analysis

Graph theory

Computers

Domain scientists

HPC scientists and engineers

Shared-address space Combinatorial BLAS

Communication Support (MPI, GASNet, etc)

Threading Support (OpenMP, Cilk, etc)
Parallel Graph Analysis Software

- Knowledge Discovery Toolbox (KDT)
- Distributed Combinatorial BLAS
 - Shared-address space Combinatorial BLAS
 - Communication Support (MPI, GASNet, etc)
 - Threading Support (OpenMP, Cilk, etc)

Domain scientists
Graph algorithm developers
HPC scientists and engineers

Discrete structure analysis
Graph theory
Computers

- KDT is higher level (graph abstractions)
- Combinatorial BLAS is for performance
Breadth-first search in the language of linear algebra
Particular semiring operations:
Multiply: select
Add: minimum

parents:
Multiple traverses outgoing edges. Add chooses among incoming edges.
Select vertex with minimum label as parent

from

\(A^T \)

\(X \)

\(A^T X \)
Result: Deterministic breadth-first search
Knowledge Discovery Toolbox
http://kdt.sourceforge.net/

A general graph library with operations based on linear algebraic primitives

- Aimed at domain experts who know their problem well but don’t know how to program a supercomputer
- Easy-to-use Python interface
- Runs on a laptop as well as a cluster with 10,000 processors
- Version 0.2 released in March 2012; Version 0.3 expected in a month
Attributed semantic graphs and filters

Example:
- Vertex types: Person, Phone, Camera, Gene, Pathway
- Edge types: PhoneCall, TextMessage, CoLocation, Sequence Similarity
- Edge attributes: StartTime, EndTime
- Calculate centrality just for emails among engineers sent between times sTime and eTime

Algorithm implementation is agnostic to the filters applied

```python
def onlyEngineers(self):
    return self.position == Engineer

def timedEmail(self, sTime, eTime):
    return ((self.type == email) and
            (self.Time > sTime) and
            (self.Time < eTime))

start = dt.now() - dt.timedelta(days=30)
end = dt.now()

# G denotes the graph
G.addVFilter(onlyEngineers)
G.addEFilter(timedEmail(start, end))

# rank via centrality based on recent email transactions among engineers
bc = G.rank('approxBC')
```

Lugowski, B., Gilbert, Reinhardt. Scalable complex graph analysis with the knowledge discovery toolbox. In ICASSP, 2012
Filter options and implementation

- Filter defined as unary predicates, checked in order they were added
- Each KDT object maintains a stack of filter predicates
- All operations respect filters, enabling filter-agnostic algorithm design

<table>
<thead>
<tr>
<th>On-the-fly filters</th>
<th>Materialized filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edges are retained</td>
<td>Edges are pruned on copy</td>
</tr>
<tr>
<td>Check predicate on each edge/vertex traversal</td>
<td>Check predicate once on materialization</td>
</tr>
<tr>
<td>Cheap but done on each run</td>
<td>Expensive but done once</td>
</tr>
</tbody>
</table>
Targeting “domain experts”

- Performance
- Conceptual simplicity
- Customizability

- Combinatorial BLAS
- KDT with just in time compilation
- KDT’s semantic graphs
- KDT’s non-semantic graphs
Problems with Customizing in KDT

• Filtering on attributed semantic graphs is slow
 • In plain KDT, filters are pure Python functions.
 • Requires a per-vertex or per-edge upcall into Python
 • Can be as slow as 80X compared to pure C++

• Adding new graph algorithms to KDT is slow
 • A new graph algorithm = composing linear algebraic primitives + customizing the *semiring* operation
 • *Semirings* in Python; similar performance bottleneck
Review: Selective Embedded Just In Time Specialization (SEJITS)

SEJITS for filter/semiring acceleration

Embedded DSL: Python for the whole application
- Introspect, translate Python to equivalent C++ code
- Call compiled/optimized C++ instead of Python

B., Duriakova, Gilbert, Fox, Kamil, Lugowski, Oliker, Williams. High-Performance and High-Productivity Analysis of Filtered Semantic Graphs, *IPDPS*, 2013
Details about the experimental setting

- Filtered breadth-first search and maximal independent set
- Edge values are generated to guarantee a particular filter permeability by weighting the random number generator.

```c
struct TwitterEdge {
    bool follower;
    time_t latest; // set if count > 0
    short count; // number of retweets
};
```

The edge filter written in Python:
(translated to C++ on the fly by SEJITS)

```python
class MyFilter(PcbFilter):
    def __init__(self, target_date):
        self.target = strftime(target_date)

    def filter(e):
        # if it is a retweet edge
        if (e.count > 0 and
            # and it is before the target date
            e.latest < self.target):
            return True
        else:
            return False
```
SEJITS+KDT multicore performance

- MIS= Maximal Independent Set
- 36 cores of Mirasol (Intel Xeon E7-8870)
- Erdős-Rényi (Scale 22, edgefactor=4)

Synthetic data with weighted randomness to match filter permeability
Notation: [semiring impl] / [filter impl]
SEJITS+KDT real graph performance

Sizes (Vertex and Edge Counts) of Different Combined Twitter Graphs.

<table>
<thead>
<tr>
<th>Label</th>
<th>Vertices (millions)</th>
<th>Edges (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tweet</td>
<td>Follow</td>
</tr>
<tr>
<td>Small</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Medium</td>
<td>4.2</td>
<td>14.2</td>
</tr>
<tr>
<td>Large</td>
<td>11.3</td>
<td>59.7</td>
</tr>
<tr>
<td>Huge</td>
<td>16.8</td>
<td>102.4</td>
</tr>
</tbody>
</table>

Statistics about the Largest Strongly Connected Components of the Twitter Graphs.

<table>
<thead>
<tr>
<th></th>
<th>Vertices</th>
<th>Edges traversed</th>
<th>Edges processed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>78,397</td>
<td>147,873</td>
<td>29.4 million</td>
</tr>
<tr>
<td>Medium</td>
<td>55,872</td>
<td>93,601</td>
<td>54.1 million</td>
</tr>
<tr>
<td>Large</td>
<td>45,291</td>
<td>73,031</td>
<td>59.7 million</td>
</tr>
<tr>
<td>Huge</td>
<td>43,027</td>
<td>68,751</td>
<td>60.2 million</td>
</tr>
</tbody>
</table>

- Breadth-first search
- 16 cores of Mirasol (Intel Xeon E7-8870)
A *roofline model* for shows how SEJITS moves KDT analytics from being Python *compute bound* to being *bandwidth bound*.
SEJITS does not impede scaling

![Graphs showing parallel scaling results for different languages and libraries.](image)

R-MAT Scale 22, 25% permeable

R-MAT Scale 25, 25% permeable

As the compute limitations are lifted, parallel scaling gets **harder** due to higher bandwidth/sec requirements of the computation.
Roofline analysis: Why SEJITS+KDT works?

Even with SEJITS, there are run-time overheads with function calls via pointers.

How is it so close to the Combinatorial BLAS performance?

Because once we are bandwidth bound, additional complexity does not hurt.
Main contribution

- Both Boost Graph Library (BGL) and Parallel Boost Graph Library (PBGL) implement the filtered graph abstraction.
- Why do we re-invent the wheel?

- High-productivity programming
- Targeting domain scientists

```python
# bigG contains the input graph
comp = bigG.connComp()
giantComp = comp.hist().argmax()
G = bigG.subgraph(comp==giantComp)
clus = G.cluster(‘Markov’)
clusNedge = G.nedge(clus)
smallG = G.contract(clus)
# visualize
```
Conclusions

- KDT + Combinatorial BLAS: Making parallel graph analysis accessible to domain scientists.
- Layered software architecture allows concurrent advances in performance and functionality.
- High-performance filtered semantic graph processing is possible without changes from the graph algorithm developer.
- Possible to write callbacks in high-level language while retaining low-level language performance.
- Possible to define datatypes at runtime [Ongoing work]