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About me …
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Graphs are Essential to 
Data-Mining and Machine Learning

• Identify influential people and information
• Find communities
• Target ads and products 
• Model complex data dependencies
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Loopy Belief Propagation
Conditional Random Field



Collaborative Filtering: Exploiting Dependencies

City of God

Wild Strawberries

The Celebration

La Dolce Vita

Women on the Verge of a
Nervous Breakdown

What do I 
recommend???



Matrix Factorization
Alternating Least Squares (ALS)
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PageRank

• Everyone starts with equal ranks
• Update ranks in parallel 
• Iterate until convergence

Rank of 
user i Weighted sum of 

neighbors’ ranks
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How should we program
graph-parallel algorithms?

Low-level tools like 
MPI and Pthreads?

- Me, during my first years of grad school
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Threads, Locks, and MPI
• ML experts         repeatedly solve the same 

parallel design challenges:
– Implement and debug complex parallel system
– Tune for a single parallel platform
– Six months later the conference paper contains:

“We implemented ______ in parallel.”
• The resulting code:

– is difficult to maintain and extend
– couples learning model and implementation
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How should we program
graph-parallel algorithms?
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High-level 
Abstractions!

- Me, now



The Graph-Parallel Abstraction
• A user-defined Vertex-Program runs on each vertex
• Graph constrains interaction along edges

– Using messages  (e.g. Pregel [PODC’09, SIGMOD’10])

– Through shared state (e.g., GraphLab [UAI’10, VLDB’12])

• Parallelism: run multiple vertex programs simultaneously
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“Think like a Vertex.”
-Malewicz et al. [SIGMOD’10]



Better for Machine Learning

Graph-parallel Abstractions
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Shared State

ii

Dynamic Asynchronous

Messaging

ii

Synchronous



The GraphLab Vertex Program
Vertex Programs directly access adjacent vertices and edges

GraphLab_PageRank(i) 
// Compute sum over neighbors
total = 0
foreach( j in neighbors(i)): 

total = total + R[j] * wji

// Update the PageRank
R[i] = 0.15 + total 

// Trigger neighbors to run again
priority = |R[i] – oldR[i]|
if R[i] not converged then
signal neighborsOf(i) with priority
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Benefit of Dynamic PageRank
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GraphLab Asynchronous Execution

CPU 1

CPU 2

The scheduler determines the order that vertices are executed
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Asynchronous Belief Propagation

Synthetic Noisy Image

Cumulative Vertex Updates

Many
Updates

Few
Updates

Algorithm identifies and focuses 
on hidden sequential structure

Graphical Model

Challenge = Boundaries



GraphLab Ensures a Serializable Execution

• Enables: Gauss-Seidel iterations, Gibbs 
Sampling, Graph Coloring, …



Never Ending Learner Project (CoEM)

• Language modeling: named entity recognition 
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GraphLab 16 Cores 30 min

15x Faster!6x fewer CPUs!

Hadoop (BSP) 95 Cores 7.5 hrs

Distributed
GraphLab

32 EC2 
machines

80 secs

0.3% of Hadoop time



GraphLab provided a
powerful new abstraction

But…

Thus far…

We couldn’t scale up to 
Altavista Webgraph from 2002

1.4B vertices, 6.6B edges
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Natural Graphs
Graphs derived from natural 

phenomena



Properties of Natural Graphs
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Power-Law Degree Distribution

Regular Mesh Natural Graph



Power-Law Degree Distribution
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AltaVista WebGraph
1.4B Vertices, 6.6B Edges

Degree

More than 108 vertices 
have one neighbor.



Power-Law Degree Distribution
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“Star Like” Motif

President
Obama Followers



Asynchronous Execution
requires heavy locking (GraphLab)

Challenges of High-Degree Vertices

Touches a large
fraction of graph

(GraphLab)

Sequentially process
edges

Sends many
messages
(Pregel)

Edge meta-data
too large for single

machine

Synchronous Execution
prone to stragglers (Pregel)
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Graph Partitioning
• Graph parallel abstractions rely on partitioning:

– Minimize communication
– Balance computation and storage
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Machine 1 Machine 2

Comm. Cost
O(# cut edges)



Power-Law Graphs are 
Difficult to Partition

• Power-Law graphs do not have low-cost balanced 
cuts [Leskovec et al. 08, Lang 04]

• Traditional graph-partitioning algorithms perform 
poorly on Power-Law Graphs.
[Abou-Rjeili et al. 06]
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CPU 1 CPU 2



Machine 1 Machine 2

Random Partitioning

• GraphLab resorts to random (hashed) 
partitioning on natural graphs

10 Machines  90% of edges cut
100 Machines  99% of edges cut!
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Machine 1 Machine 2

• Split High-Degree vertices
• New Abstraction Equivalence on Split Vertices
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Program
For This

Run on This



Gather Information
About Neighborhood

Update Vertex

Signal Neighbors &
Modify Edge Data

A Common Pattern for
Vertex-Programs

GraphLab_PageRank(i) 
// Compute sum over neighbors
total = 0
foreach( j in neighbors(i)): 

total = total + R[j] * wji

// Update the PageRank
R[i] = total 

// Trigger neighbors to run again
priority = |R[i] – oldR[i]|
if R[i] not converged then

signal neighbors(i) with priority
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Formal GraphLab2 Semantics

• Gather(SrcV, Edge, DstV)  A
– Collect information from neighbors

• Sum(A, A)  A
– Commutative associative Sum

• Apply(V, A)  V
– Update the vertex

• Scatter(SrcV, Edge, DstV)  (Edge, signal)
– Update edges and signal neighbors

30



GraphLab2_PageRank(i)

Gather( j  i ) : return  wji * R[j]
sum(a, b) :  return a + b;

Apply(i, Σ) : R[i] = 0.15 + Σ

Scatter( i j ) :
if R[i] changed then trigger j to be recomputed

PageRank in GraphLab2
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Machine 2Machine 1

Machine 4Machine 3

GAS Decomposition

Σ1 Σ2

Σ3 Σ4

+            +            +  
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Master
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Minimizing Communication in PowerGraph

YYY

A vertex-cut minimizes 
machines each vertex spans

Percolation theory suggests that power law graphs 
have good vertex cuts. [Albert et al. 2000]

Communication is linear in 
the number of machines 

each vertex spans
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New Theorem:
For any edge-cut we can directly 
construct a vertex-cut which requires 
strictly less communication and storage.



Constructing Vertex-Cuts

• Evenly assign edges to machines
– Minimize machines spanned by each vertex

• Assign each edge as it is loaded
– Touch each edge only once

• Propose two distributed approaches:
– Random Vertex Cut
– Greedy Vertex Cut
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Machine 2Machine 1 Machine 3

Random Vertex-Cut
• Randomly assign edges to machines

YYYY ZYYYY ZY ZY Spans 3 Machines

Z Spans 2 Machines

Balanced Vertex-Cut

Not cut!
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Random Vertex-Cuts vs. Edge-Cuts 

• Expected improvement from vertex-cuts:
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Order of Magnitude
Improvement



Streaming Greedy Vertex-Cuts

• Place edges on machines which already have 
the vertices in that edge.

Machine1 Machine 2

BA CB

DA EB
37



Greedy Vertex-Cuts Improve Performance
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computation performance. 38



System Design

• Implemented as C++ API
• Uses HDFS for Graph Input and Output
• Fault-tolerance is achieved by check-pointing 

– Snapshot time < 5 seconds for twitter network
39

EC2 HPC Nodes

MPI/TCP-IP PThreads HDFS

PowerGraph (GraphLab2) System



Implemented Many Algorithms

• Collaborative Filtering
– Alternating Least Squares
– Stochastic Gradient 

Descent
– SVD
– Non-negative MF

• Statistical Inference
– Loopy Belief Propagation
– Max-Product Linear 

Programs
– Gibbs Sampling

• Graph Analytics
– PageRank
– Triangle Counting
– Shortest Path
– Graph Coloring
– K-core Decomposition

• Computer Vision
– Image stitching

• Language Modeling
– LDA
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PageRank on the Twitter Follower Graph
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Natural Graph with 40M Users,  1.4 Billion Links

Reduces Communication Runs Faster
32 Nodes x 8 Cores (EC2 HPC cc1.4x)



PageRank on Twitter Follower Graph
Natural Graph with 40M Users,  1.4 Billion Links

Hadoop results from [Kang et al. '11]
Twister (in-memory MapReduce) [Ekanayake et al. ‘10]
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GraphLab2 is Scalable
Yahoo Altavista Web Graph (2002):

One of the largest publicly available web graphs
1.4 Billion Webpages,  6.6 Billion Links

1024 Cores (2048 HT)
64 HPC Nodes

7 Seconds per Iter.
1B links processed per second

30 lines of user code
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Topic Modeling
• English language Wikipedia 

– 2.6M Documents, 8.3M Words, 500M Tokens

– Computationally intensive algorithm
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Smola et al.

PowerGraph

Million Tokens Per Second

100 Yahoo! Machines
Specifically engineered for this task

64 cc2.8xlarge EC2 Nodes
200 lines of code & 4 human hours



Triangle Counting

• For each vertex in graph, count
number of triangles containing it

• Measures both “popularity” of the vertex and 
“cohesiveness” of the vertex’s community:

More Triangles
Stronger Community

Fewer Triangles
Weaker Community



Counted: 34.8 Billion Triangles
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Triangle Counting on The Twitter Graph
Identify individuals with strong communities.

64 Machines
1.5 Minutes

1536 Machines
423 Minutes

Hadoop
[WWW’11]

S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11

282 x Faster

Why? Wrong Abstraction  
Broadcast O(degree2) messages per Vertex



EC2 HPC Nodes

MPI/TCP-IP PThreads HDFS

GraphLab2 System

Graph 
Analytics

Graphical
Models

Computer
Vision Clustering Topic

Modeling
Collaborative

Filtering

Machine Learning and Data-Mining 
Toolkits

Apache 2 License

http://graphlab.org



GraphChi: Going small with GraphLab

Solve huge problems on 
small or embedded 

devices?

Key: Exploit non-volatile memory 
(starting with SSDs and HDs)



GraphChi – disk-based GraphLab

Novel Parallel Sliding 
Windows algorithm

• Single-Machine
– Parallel, asynchronous execution

• Solves big problems
– That are normally solved in cloud

• Efficiently exploits disks
– Optimized for stream acces

– Efficient on both SSD and 
hard-drives



Triangle Counting in Twitter Graph

40M Users  
1.2B Edges

Total: 34.8 Billion Triangles

Hadoop results from [Suri & Vassilvitskii '11]

64 Machines, 1024 Cores
1.5 Minutes

PowerGraph

GraphChi

Hadoop

1536 Machines
423 Minutes

59 Minutes, 1 Mac Mini!



Apache 2 License

http://graphlab.org
Documentation… Code… Tutorials… (more on the way) 



Active Work

• Cross language support (Python/Java)
• Support for incremental graph computation
• Integration with Graph Databases
• Declarative representations of GAS 

decomposition:
– my.pr := nbrs.in.map(x => x.pr).reduce( (a,b) => a + b )
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Joseph E. Gonzalez
Postdoc, UC Berkeley
jegonzal@eecs.berkeley.edu
jegonzal@cs.cmu.eduhttp://graphlab.org



Why not use Map-Reduce
for 

Graph Parallel algorithms?



Data Dependencies are Difficult
• Difficult to express dependent data in Map 

Reduce
– Substantial data transformations 
– User managed graph structure
– Costly data replication
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Iterative Computation is Difficult
• System is not optimized for iteration:
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The Pregel Abstraction
Vertex-Programs interact by sending messages.

iiPregel_PageRank(i, messages) : 
// Receive all the messages
total = 0
foreach( msg in messages) :

total = total + msg

// Update the rank of this vertex
R[i] = total

// Send new messages to neighbors
foreach(j in out_neighbors[i]) :

Send  msg(R[i]) to vertex j

56Malewicz et al. [PODC’09, SIGMOD’10]



Barrier
Pregel Synchronous Execution

Compute Communicate



Communication Overhead 
for High-Degree Vertices

Fan-In vs. Fan-Out
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Pregel Message Combiners on Fan-In

Machine 1 Machine 2

++B

A

C

D
Sum

• User defined commutative associative (+) 
message operation:
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Pregel Struggles with Fan-Out

Machine 1 Machine 2

B

A

C

D

• Broadcast sends many copies of the same 
message to the same machine!
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Fan-In and Fan-Out Performance

• PageRank on synthetic Power-Law Graphs
– Piccolo was used to simulate Pregel with combiners
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GraphLab Ghosting

• Changes to master are synced to ghosts

Machine 1

A
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Machine 2

DD

A

B

CGhost
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GraphLab Ghosting

• Changes to neighbors of high degree vertices 
creates substantial network traffic

Machine 1

A

B

C

Machine 2

DD

A

B

C Ghost
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Fan-In and Fan-Out Performance

• PageRank on synthetic Power-Law Graphs
• GraphLab is undirected
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Comparison with GraphLab & Pregel
• PageRank on Synthetic Power-Law Graphs:

RuntimeCommunication
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High-degree vertices High-degree vertices

GraphLab2 is robust to high-degree vertices.



GraphLab on Spark
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#include <graphlab.hpp>

struct vertex_data : public graphlab::IS_POD_TYPE { float rank;
vertex_data() : rank(1) { }

};

typedef graphlab::empty edge_data;
typedef graphlab::distributed_graph<vertex_data, edge_data> graph_type;
class pagerank :
public graphlab::ivertex_program<graph_type, float>,
public graphlab::IS_POD_TYPE {
float last_change;

public:
float gather(icontext_type& context, const vertex_type& vertex,

edge_type& edge) const {
return edge.source().data().rank / edge.source().num_out_edges();

}

void apply(icontext_type& context, vertex_type& vertex,
const gather_type& total) {

const double newval = 0.15*total + 0.85;
last_change = std::fabs(newval - vertex.data().rank);
vertex.data().rank = newval;

}

void scatter(icontext_type& context, const vertex_type& vertex,
edge_type& edge) const {

if (last_change > TOLERANCE) context.signal(edge.target());
}

};

struct pagerank_writer {
std::string save_vertex(graph_type::vertex_type v) {
std::stringstream strm;
strm << v.id() << "\t" << v.data() << "\n";
return strm.str();

}
std::string save_edge(graph_type::edge_type e) { return ""; }

};

int main(int argc, char** argv) {
graphlab::mpi_tools::init(argc, argv);
graphlab::distributed_control dc;

graphlab::command_line_options clopts("PageRank algorithm.");
graph_type graph(dc, clopts);
graph.load_format(“biggraph.tsv”, "tsv");

graphlab::omni_engine<pagerank> engine(dc, graph, clopts);
engine.signal_all();
engine.start();

graph.save(saveprefix, pagerank_writer(), false, true false);

graphlab::mpi_tools::finalize();
return EXIT_SUCCESS;

}

import spark.graphlab._

val sc = spark.SparkContext(master, “pagerank”)

val graph = Graph.textFile(“bigGraph.tsv”)
val vertices = graph.outDegree().mapValues((_, 1.0, 1.0))

val pr = Graph(vertices, graph.edges).iterate(
(meId, e) => e.source.data._2 / e.source.data._1, 
(a: Double, b: Double) => a + b, 
(v, accum) => (v.data._1, (0.15 + 0.85*a), v.data._2), 
(meId, e) => abs(e.source.data._2-e.source.data._1)>0.01)

pr.vertices.saveAsTextFile(“results”)

Interactive!


