BN
Graph Lab}

A System for Distributed Graph-Parallel Machine Learning

Joseph Gonzalez
Postdoc, UC Berkeley AMPLab
PhD @ CMU

The Team:

Yucheng Haijie Aapo Danny Carlos Alex
Low Gu Kyrola Bickson Guestrin Smola Blelloch

About me ...

Scalable Big

Machine . Graphical
Learning Models

BigLearning

Graphs are Essential to
Data-Mining and Machine Learning

ldentify influential people and information
Find communities

Target ads and products

Model complex data dependencies

Example: Estimate Political Bias

Collaborative Filtering: Exploiting Dependencies

W€
um- i3
S Women on the Verge of a

4 4 Nervous Breakdown

The Celebration

City of God

Wild Strawberries

La Dolce Vita

Matrix Factorization
Alternating Least Squares (ALS)

i f(3)
. X- (1) 13
Netflix — fli) _
2 fl2)
| Movies [| P £(5)

Iterate:

1| = arg min
fli] g min -

Factor for
Movie |

Factor for
User i

() s1010e4 SINO|N

PageRank

Rli{] =015+ Y wjR[j]

jENDrs(7)
Rank of .
user i Weighted sum of

neighbors’ ranks

e Everyone starts with equal ranks
e Update ranks in parallel
e [terate until convergence

How should we program
graph-parallel algorithms?

Low-level tools like
MPI| and Pthreads?

- Me, during my first years of grad school

Threads, Locks, and MPI

* Graduate students repeatedly solve the same
parallel design challenges:
— Implement and debug complex parallel system
— Tune for a single parallel platform
— Six months later the conference paper contains:
“We implemented in parallel.”

 The resulting code:
— is difficult to maintain and extend
— couples learning model and implementation

How should we program
graph-parallel algorithms?

High-level
Abstractions!

- Me, now

The Graph-Parallel Abstraction

e A user-defined Vertex-Program runs on each vertex

 Graph constrains interaction along edees

“Think like a Vertex.”

-Malewicz et al. [SIGMOD’10]
>

@%\
@,)

Graph-parallel Abstractions

Pregel

Messaging

\

Synchronous

Better for Machine Learning

N
Graph Lab\

Shared State

@ i

Dynamic Asynchronous

12

The GraphlLab Vertex Program

Vertex Programs directly access adjacent vertices and edges

GraphLab_PageRank(1i)

(// Compute sum over neighbors)

total = ©

foreach(j in neighbors(i)):
total = total + R[J] * wy;

J

/) Update the PageRank
LR[i] = 0.15 + total

]/ Trigger neighbors to run again
priority = |R[i] - oldR[i]]

if R[i] not converged then

. signal neighborsOf(i) with prioritx/

Benefit of Dynamic PageRank

1.00E+08 1.00E+08
1.00E+06 1.00E+06
S 1.00E+04 \ S 1.00E+04 Fregel
wi : = ey)
— 1.00E+02 Pregel : ﬁ 1.00E+02 N {Via Graphlab)
\ - (via GraphLab) = '
1.00E+00
X Graphlab ™. 1.00E+00 \ GraphlLab :
1.00E-02 | w | 1.00E-02 ‘
0 5000 10000 15000 0.0E+00 1.0E+09 2.0E+09
Runtime (s) Updates
1
, 100000000 51% updated only once!
S 1000000 -
él’ 10000
§ 100
1 T T T T T — & |
0 10 20 30 40 50 60 70
Number of Updates

14

GraphLab Asynchronous Execution

The scheduler determines the order that vertices are executed

L S
Q
=
S
Q
c
O
N

Scheduler can prioritize vertices.

Asynchronous Belief Propagation

Challenge = Boundaries

Many
Updates

Few
Updates

Cumulative Vertex Updates

O—O—0O Algorithm identifies and focuses

on hidden sequential structure

Graphical Model

GraphlLab Ensures a Serializable Execution

e Enables: Gauss-Seidel iterations, Gibbs
Sampling, Graph Coloring, ...

Never Ending Learner Project (CoEM)

 Language modeling: named entity recognition

Hadoop (BSP) |95 Cores 7.5 hrs
GraphLab 16 Cores 30 min
Distributed 32 EC2 80 secs
GraphlLab machines

0.3%06 of Hadoop time

Thus far...

GraphLab provided a
powerful new abstraction

But...

We couldn’t scale up to
Altavista Webgraph from 2002

1.4B vertices, 6.6B edges

Natural Graphs
Graphs derived from natural
phenomena

Ov:ieoalmB

Properties of Natural Graphs

*—0o 0o TS < LA
e * T e * e >SS o
o—90 00 repe %S S ~23%
& o o -
e —wgs g .2% . T 33
o909 e Lt s o= S
.‘... \. ® & .’. -
. ‘ . . e “:.o.:
-

Regular Mesh Natural Graph

Power-Law Degree Distribution

21

Number of Vertices

Power-Law Degree Distribution

More than 108 vertices

>/ have one neighbor.

108C‘ .. w 8]

7o)
S

High-Degree
Vertices

AltaVista WebGraph
1.4B Vertices, 6.6B Edges
0

10

Power-Law Degree Distribution
“Star Like” Motif

President

Obama \ Y? Followers

Challenges of High-Degree Vertices

I

® O O

!

Sequentially process Sends many Touches a large Edge meta-data
edges messages fraction of graph too large for single
(Pregel) (GraphLab) machine

99908
WA
WA

Fe 11011

K >

Asynchronous Execution Synchronous Execution
requires heavy locking (GraphLab) prone to stragglers (Pregel)

Graph Partitioning

 Graph parallel abstractions rely on partitioning:
— Minimize communication
— Balance computation and storage

Comm. Cost
O(# cut edges) -

Machine 1 Machine 2

25

Power-Law Graphs are
Difficult to Partition

RN R

CP

1 CPU 2

e Power-Law graphs do not have low-cost balanced
cuts [Leskovec et al. 08, Lang 04]

e Traditional graph-partitioning algorithms perform

poorly on Power-Law Graphs.
[Abou-Rjeili et al. 06]

Random Partitioning

e GraphlLab resorts to random (hashed)
partitioning on natural graphs

|Edges Cut| . 1

- E] p
10 Machines =2 90% of edges cut

100 Machines = 99% of edges cut!

.

GraphlLab2

Program
For This

Run on This

Machine 1 Machine 2

-3 &

e Split High-Degree vertices

 New Abstraction = Equivalence on Split Vertices

28

A Common Pattern for
Vertex-Programs

GraphLab_PageRank(1i)

(// Compute sum over neighbors

total = @ Gather Information
foreach(j in neighbors(i)): .
total = total + R[3] * Wi, About Neighborhood

7. Update the PageRank

~ R[i] = total Update Vertex
// Trigger neighbors to run again
priority = |R[i] - oldR[i]| Signal Neighbors &
if R[1i] not converged then Modify Edge Data

signal neighbors(i) with priority

Formal GraphlLab2 Semantics

Gather(SrcV, Edge, DstV) 2 A

— Collect information from neighbors

Sum(A, A) 2 A

— Commutative associative Sum

Apply(V, A) 2> V

— Update the vertex

Scatter(SrcV, Edge, DstV) = (Edge, signal)
— Update edges and signal neighbors

PageRank in GraphLab2

Ri] =015+ Y wjR[j]

GraphLab2_PageRank(i)

Gather(j = i) : return w;; * R[j]
sum(a, b) : returna + b;

Apply(i, £) : R[1]=0.15+ X

Scatter(1=27):
if R[1] changed then trigger | to be recomputed

31

Gather

Apply

Scatter

GAS Decomposition

Machine 1

’ s Master

1 B -

Machine 2

4

\

Mirror

K

Machine 3

_/“

Machine 4

Minimizing Communication in PowerGraph

New Theorem:
For any edge-cut we can directly
construct a vertex-cut which requires
strictly less communication and storage.

Percolation theory suggests that power law graphs
have good vertex cuts. [Albert et al. 2000]

Constructing Vertex-Cuts

* Evenly assign edges to machines

— Minimize machines spanned by each vertex

e Assign each edge as it is loaded

— Touch each edge only once

* Propose two distributed approaches:
— Random Vertex Cut
— Greedy Vertex Cut

Random Vertex-Cut

e Randomly assign edges to machines

Machine 1 Machine 2

Balanced Vertex-Cut

Machine 3

Random Vertex-Cuts vs. Edge-Cuts

e Expected improvement from vertex-cuts:

Reduction in

100
Q
(o] 4]
©
@)
AN
2 10
(1]
=
£
@)
@)

Order of Magnitude
Improvement

50 100 150
Number of Machines

36

Streaming Greedy Vertex-Cuts

e Place edges on machines which already have
the vertices in that edge.

0—O0 0—O0

Machinel Machine 2

0—©0

37

Runtime Relative

Greedy Vertex-Cuts Improve Performance

to Random

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

B Random

W Greedy

PageRank Collaborative Shortest Path
Filtering

Greedy partitioning improves

computation performance. .

System Design

MPI/TCP-IP PThreads

EC2 HPC Nodes

 Implemented as C++ API
e Uses HDFS for Graph Input and Output

e Fault-tolerance is achieved by check-pointing
— Snapshot time < 5 seconds for twitter network

39

Implemented Many Algorithms

* Collaborative Filtering ¢ Graph Analytics

— Alternating Least Squares — PageRank
— Stochastic Gradient — Triangle Counting
Descent — Shortest Path

— SVD — Graph Coloring

— Non-negative MF — K-core Decomposition
e Statistical Inference e Computer Vision

— Loopy Belief Propagation — Image stitching

— Max-Product Linear

e Language Modeling
— LDA

Programs
— Gibbs Sampling

PageRank on the Twitter Follower Graph

Natural Graph with 40M Users, 1.4 Billion Links
Communication

Graphlab Pregel GraphLab2
(Piccolo)

Reduces Communication

32 Nodes x 8 Cores (EC2 HPC cc1.4x)

41

PageRank on Twitter Follower Graph
Natural Graph with 40M Users, 1.4 Billion Links

Runtime Per Iteration
0 50 100 150 200

Hadoop

Graphtab |
Twister -
—

Piccolo

Hadoop results from [Kang et al. '11] 42
Twister (in-memory MapReduce) [Ekanayake et al. ‘10]

GraphLab?2 is Scalable

Yahoo Altavista Web Graph (2002):
One of the largest publicly available web graphs

1.4 Billion Webpages, 6.6 Billion Links

7 Seconds per lter.

1B links processed per second
30 lines of user code

Topic Modeling

 English language Wikipedia
— 2.6M Documents, 8.3M Words, 500M Tokens
— Computationally intensive algorithm

Million Tokens Per Second
0 20 40 60 80 100 120 140 160

100 Yahoo! Machines

Smola et al.

Specifically engineered for this task

GraphlLab2

44

Triangle Counting i

number of triangles containing it

 For each vertex in graph, count i %?
1

e Measures both “popularity” of the vertex and
“cohesiveness” of the vertex’s community:

Fewer Triangles More Triangles
Weaker Community Stronger Community

Triangle Counting on The Twitter Graph

|ldentify individuals with strong communities.

Counted: 34.8 Billion Triangles

Hadoop B EELRET TR
[WWW’ 11] Iz E R LT

W 64 Machines
1.5 Minutes

Why? Wrong Abstraction >
Broadcast O(degree?) messages per Vertex

GraphLab2

6

4
S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11

Machine Learning and Data-Mining
Toolkits

Graph Graphical Computer Topic Collaborative

: " Clusteri) e
Analytics Models Vision Hstering Modeling Filtering /

MPI/TCP-IP PThreads

EC2 HPC Nodes

http://graphlab.org

Apache 2 License

GraphChi: Going small with GraphLab

N
GraphlLab™ J44

Solve huge problems on /
small or embedded é ;4
devices? v

Key: Exploit non-volatile memory

(starting with SSDs and HDs)

GraphChi — disk-based GraphLab

Novel Parallel Sliding e Single-Machine

Windows algorithm ,
— Parallel, asynchronous execution

e Solves big problems

— That are normally solved in cloud

Interval 1

o Efficiently exploits disks

— Optimized for stream acces

— Efficient on both SSD and
Shard 1 Shard 2 Shard 3 Shard 4 h a rd-d rives

Triangle Counting in Twitter Graph

4oM Users Total: 34.8 Billion Triangles
1.2B Edges

Hadoop

59 Minutes, 1 Mac Mini!

GraphChi
1 64 Machines, 1024 Cores

1.5 Minutes

GraphlLab2

Hadoop results from [Suri & Vassilvitskii '11]

N
Graphla Io\7
Apache 2 License

http://graphlab.org

Documentation... Code... Tutorials... (more on the way)

Active Work

e Cross language support (Python/Java)
e Support for incremental graph computation
* |ntegration with Graph Databases

e Declarative representations of GAS
decomposition:

— my.pr := nbrs.in.map(x => x.pr).reduce((a,b) =>a + b))

A
Graph_ab\—, P

http://graphlab.org

" Joseph E. Gonzalez

Postdoc, UC Berkeley
jegonzal@eecs.berkeley.edu
jegonzal@cs.cmu.edu

52

Why not use Map-Reduce
for
Graph Parallel algorithms?

Data Dependencies are Difficult

e Difficult to express dependent data in Map
Reduce
— Substantial data transformations
— User managed graph structure

— Costly data replication

Independent Data Records

b B E ey 2) [
L < 4
il = IF A . -
o) B | | - N < N
' == e e
- ' 5 gi-.__.. y " ‘ii-.__.. 4

Iterative Computation is Difficult

e System is not optimized for iteration:

Ilterations

Data

Data

Data

Disk v,m:m_a\

Data

o

d 8
tmﬁmzc_u vm:m_a\ ;
EAURUAU AT

The Pregel Abstraction

Vertex-Programs interact by sending messages.

Pregel PageRank(i, messages) :

e

&

e :
// Send new messages to neighbors

foreach(j in out _neighbors[i]) :
Send msg(R[i]) to vertex j

(// Receive all the messages B
total = ©
foreach(msg in messages) :
total = total + msg
\)
// Update the rank of this vertex d
R[i] = total
-

Malewicz et al. [PODC’09, SIGMOD’10]

56

Pregel Synchronous Execution

Communicate

Communication Overhead
for High-Degree Vertices

Pregel Message Combiners on Fan-In

Machine 1 Machine 2

e User defined commutative associative (+)
message operation:

Pregel Struggles with Fan-Out

NS,
<=
00—

Machine 1 Machine 2

 Broadcast sends many copies of the same
message to the same machine!

Fan-In and Fan-Out Performance

 PageRank on synthetic Power-Law Graphs

— Piccolo was used to simulate Pregel with combiners

10
(a'a]
S
=
E 6
S
T 4
° D
e
O [[[T
1.8 1.9 2 2.1 2.2

Power-Law Constant a
= More high-degree vertices 61

GraphlLab Ghosting

Machine 1 Machine 2

 Changes to master are synced to ghosts

GraphlLab Ghosting

Machine 1 Machine 2

 Changes to neighbors of high degree vertices
creates substantial network traffic

Fan-In and Fan-Out Performance

 PageRank on synthetic Power-Law Graphs
 Graphlab is undirected

[HEY
o

Total Comm. (GB)

O N B~ O O

1.8 1.9 2 2.1 2.2

Power-Law Constant alpha

< More high-degree vertices o

Total Network (GB)

Comparison with GraphlLab & Pregel

 PageRank on Synthetic Power-Law Graphs:

Communication
10

\Pregel (Piccolo)

GraphlLab

1.8

O N &~ O

Power-Law Constant a

<«— High-degree vertices

Runtime

30

R N—
Pregel (Piccolo

50 gel ()

Power-Law Constant a

<«— High-degree vertices

GraphlLab?2 is robust to high-degree vertices. |

o
GraphlLa GraphlLab on Spark

#include <graphlab.hpp>

struct vertex_data : public graphlab::IS_POD_TYPE { float rank;
vertex_data() : rank(1) { }
15

typedef graphlab::empty edge_data;
typedef graphlab::distributed_graph<vertex_data, edge_data> graph_type; .
class pagerank : import spark.graphlab.
public graphlab::ivertex_program<graph_type, float>, -
public graphlab::IS_POD_TYPE {
float last_change; P »
public: val sc = spark.SparkContext(master, “pagerank”)
float gather(icontext_type& context, const vertex_type& vertex,
edge_type& edge) const {
return edge.source().data().rank / edge.source().num_out_edges();

} val graph = Graph.textFile(“bigGraph.tsv”)

id apply(icontext_type& context, vertex_type& vertex, i =
void apply(icontext_typek context, vertex_typed vertex val vertices = graph.outDegree().mapValues((_, 1.0, 1.0))

const double newval = ©.15*total + 0.85;
last_change = std::fabs(newval - vertex.data().rank);

| Vertex.aata().rank = newal; val pr = Graph(vertices, graph.edges).iterate(
, , (meId, e) => e.source.data. 2 / e.source.data. 1,
void scatter(icontext_type& context, const vertex_type& vertex, - -
edge_type& edge) const { (a: Double, b: Double) => a + b,
if (last_change > TOLERANCE) context.signal(edge.target());
} (v, accum) => (v.data._1, (0.15 + ©.85*a), v.data._2),

1

(meId, e) => abs(e.source.data._2-e.source.data._1)>0.01)

struct pagerank_writer {
std::string save_vertex(graph_type::vertex_type v) {

std::stringstream strm;
strm << v.id() << "\t" << v.data() << "\n";
return strm.str(); . . c »
, pr.vertices.saveAsTextFile(“results”)
std::string save_edge(graph_type::edge_type e) { return ""; }
15

int main(int argc, char** argv) {
graphlab::mpi_tools::init(argc, argv);
graphlab::distributed_control dc;

Interactive!

graphlab::command_line_options clopts("PageRank algorithm.");
graph_type graph(dc, clopts);
graph.load_format(“biggraph.tsv”, "tsv");

graphlab::omni_engine<pagerank> engine(dc, graph, clopts);
engine.signal_all();
engine.start();

graph.save(saveprefix, pagerank_writer(), false, true false);

graphlab: :mpi_tools::finalize();
return EXIT_SUCCESS; 66

