
Joseph Gonzalez
Postdoc, UC Berkeley AMPLab
PhD @ CMU

A System for Distributed Graph-Parallel Machine Learning

Yucheng
Low

Aapo
Kyrola

Danny
Bickson

Alex
Smola

Haijie
Gu

The Team:

Carlos
Guestrin

Guy
Blelloch

About me …

2

Machine
Learning

Graphical
Models+

BigLearning

BigScalable

Graphs are Essential to
Data-Mining and Machine Learning

• Identify influential people and information
• Find communities
• Target ads and products
• Model complex data dependencies

3

Liberal Conservative

Post

Post

Post

Post

Post

Post

Post

Post

Example: Estimate Political Bias

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

?
?

?

?

?
?

?

? ?
?

?

?

?
?

? ?

?

?

?

?

?

?

?

?

?

?

?

? ?

?

4

Loopy Belief Propagation
Conditional Random Field

Collaborative Filtering: Exploiting Dependencies

City of God

Wild Strawberries

The Celebration

La Dolce Vita

Women on the Verge of a
Nervous Breakdown

What do I
recommend???

Matrix Factorization
Alternating Least Squares (ALS)

r13

r14

r24

r25

f(1)

f(2)

f(3)

f(4)

f(5)

U
se

r F
ac

to
rs

 (U
)

M
ovie Factors (M

)
U

se
rs

Movies
Netflix

U
se

rs

≈
x

Movies

f(i)

f(j)

Iterate:

Factor for
User i

Factor for
Movie j

PageRank

• Everyone starts with equal ranks
• Update ranks in parallel
• Iterate until convergence

Rank of
user i Weighted sum of

neighbors’ ranks

7

How should we program
graph-parallel algorithms?

Low-level tools like
MPI and Pthreads?

- Me, during my first years of grad school

8

Threads, Locks, and MPI
• ML experts repeatedly solve the same

parallel design challenges:
– Implement and debug complex parallel system
– Tune for a single parallel platform
– Six months later the conference paper contains:

“We implemented ______ in parallel.”
• The resulting code:

– is difficult to maintain and extend
– couples learning model and implementation

9

How should we program
graph-parallel algorithms?

10

High-level
Abstractions!

- Me, now

The Graph-Parallel Abstraction
• A user-defined Vertex-Program runs on each vertex
• Graph constrains interaction along edges

– Using messages (e.g. Pregel [PODC’09, SIGMOD’10])

– Through shared state (e.g., GraphLab [UAI’10, VLDB’12])

• Parallelism: run multiple vertex programs simultaneously

11

“Think like a Vertex.”
-Malewicz et al. [SIGMOD’10]

Better for Machine Learning

Graph-parallel Abstractions

12

Shared State

ii

Dynamic Asynchronous

Messaging

ii

Synchronous

The GraphLab Vertex Program
Vertex Programs directly access adjacent vertices and edges

GraphLab_PageRank(i)
// Compute sum over neighbors
total = 0
foreach(j in neighbors(i)):

total = total + R[j] * wji

// Update the PageRank
R[i] = 0.15 + total

// Trigger neighbors to run again
priority = |R[i] – oldR[i]|
if R[i] not converged then
signal neighborsOf(i) with priority

13

R[4] * w41

+
+

44 11

33 22

Benefit of Dynamic PageRank

1
100

10000
1000000

100000000

0 10 20 30 40 50 60 70

N
um

-V
er

tic
es

Number of Updates

51% updated only once!

Be
tt

er

14

GraphLab Asynchronous Execution

CPU 1

CPU 2

The scheduler determines the order that vertices are executed

ee ff gg

kkjjiihh

ddccbbaa bb

ii
hh

aa

ii

bb ee ff

jj

cc

Sc
he

du
le

r

Scheduler can prioritize vertices.

Asynchronous Belief Propagation

Synthetic Noisy Image

Cumulative Vertex Updates

Many
Updates

Few
Updates

Algorithm identifies and focuses
on hidden sequential structure

Graphical Model

Challenge = Boundaries

GraphLab Ensures a Serializable Execution

• Enables: Gauss-Seidel iterations, Gibbs
Sampling, Graph Coloring, …

Never Ending Learner Project (CoEM)

• Language modeling: named entity recognition

18

GraphLab 16 Cores 30 min

15x Faster!6x fewer CPUs!

Hadoop (BSP) 95 Cores 7.5 hrs

Distributed
GraphLab

32 EC2
machines

80 secs

0.3% of Hadoop time

GraphLab provided a
powerful new abstraction

But…

Thus far…

We couldn’t scale up to
Altavista Webgraph from 2002

1.4B vertices, 6.6B edges

20

Natural Graphs
Graphs derived from natural

phenomena

Properties of Natural Graphs

21

Power-Law Degree Distribution

Regular Mesh Natural Graph

Power-Law Degree Distribution

100 102 104 106 108100

102

104

106

108

1010

degree

co
un

t

Top 1% of vertices are
adjacent to

50% of the edges!

High-Degree
Vertices

22

N
um

be
r o

f V
er

tic
es

AltaVista WebGraph
1.4B Vertices, 6.6B Edges

Degree

More than 108 vertices
have one neighbor.

Power-Law Degree Distribution

23

“Star Like” Motif

President
Obama Followers

Asynchronous Execution
requires heavy locking (GraphLab)

Challenges of High-Degree Vertices

Touches a large
fraction of graph

(GraphLab)

Sequentially process
edges

Sends many
messages
(Pregel)

Edge meta-data
too large for single

machine

Synchronous Execution
prone to stragglers (Pregel)

24

Graph Partitioning
• Graph parallel abstractions rely on partitioning:

– Minimize communication
– Balance computation and storage

25

Machine 1 Machine 2

Comm. Cost
O(# cut edges)

Power-Law Graphs are
Difficult to Partition

• Power-Law graphs do not have low-cost balanced
cuts [Leskovec et al. 08, Lang 04]

• Traditional graph-partitioning algorithms perform
poorly on Power-Law Graphs.
[Abou-Rjeili et al. 06]

26

CPU 1 CPU 2

Machine 1 Machine 2

Random Partitioning

• GraphLab resorts to random (hashed)
partitioning on natural graphs

10 Machines  90% of edges cut
100 Machines  99% of edges cut!

27

Machine 1 Machine 2

• Split High-Degree vertices
• New Abstraction Equivalence on Split Vertices

28

Program
For This

Run on This

Gather Information
About Neighborhood

Update Vertex

Signal Neighbors &
Modify Edge Data

A Common Pattern for
Vertex-Programs

GraphLab_PageRank(i)
// Compute sum over neighbors
total = 0
foreach(j in neighbors(i)):

total = total + R[j] * wji

// Update the PageRank
R[i] = total

// Trigger neighbors to run again
priority = |R[i] – oldR[i]|
if R[i] not converged then

signal neighbors(i) with priority

29

Formal GraphLab2 Semantics

• Gather(SrcV, Edge, DstV)  A
– Collect information from neighbors

• Sum(A, A)  A
– Commutative associative Sum

• Apply(V, A)  V
– Update the vertex

• Scatter(SrcV, Edge, DstV)  (Edge, signal)
– Update edges and signal neighbors

30

GraphLab2_PageRank(i)

Gather(j  i) : return wji * R[j]
sum(a, b) : return a + b;

Apply(i, Σ) : R[i] = 0.15 + Σ

Scatter(i j) :
if R[i] changed then trigger j to be recomputed

PageRank in GraphLab2

31

Machine 2Machine 1

Machine 4Machine 3

GAS Decomposition

Σ1 Σ2

Σ3 Σ4

+ + +

YYYY

Y’

Σ
Y’Y’Y’Gather

Apply

Scatter

32

Master

Mirror

Mirror
Mirror

Minimizing Communication in PowerGraph

YYY

A vertex-cut minimizes
machines each vertex spans

Percolation theory suggests that power law graphs
have good vertex cuts. [Albert et al. 2000]

Communication is linear in
the number of machines

each vertex spans

33

New Theorem:
For any edge-cut we can directly
construct a vertex-cut which requires
strictly less communication and storage.

Constructing Vertex-Cuts

• Evenly assign edges to machines
– Minimize machines spanned by each vertex

• Assign each edge as it is loaded
– Touch each edge only once

• Propose two distributed approaches:
– Random Vertex Cut
– Greedy Vertex Cut

34

Machine 2Machine 1 Machine 3

Random Vertex-Cut
• Randomly assign edges to machines

YYYY ZYYYY ZY ZY Spans 3 Machines

Z Spans 2 Machines

Balanced Vertex-Cut

Not cut!

35

Random Vertex-Cuts vs. Edge-Cuts

• Expected improvement from vertex-cuts:

1

10

100

0 50 100 150

Re
du

ct
io

n
in

Co
m

m
. a

nd
 S

to
ra

ge

Number of Machines
36

Order of Magnitude
Improvement

Streaming Greedy Vertex-Cuts

• Place edges on machines which already have
the vertices in that edge.

Machine1 Machine 2

BA CB

DA EB
37

Greedy Vertex-Cuts Improve Performance

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

PageRank Collaborative
Filtering

Shortest Path

Ru
nt

im
e

Re
la

tiv
e

to
 R

an
do

m

Random

Greedy

Greedy partitioning improves
computation performance. 38

System Design

• Implemented as C++ API
• Uses HDFS for Graph Input and Output
• Fault-tolerance is achieved by check-pointing

– Snapshot time < 5 seconds for twitter network
39

EC2 HPC Nodes

MPI/TCP-IP PThreads HDFS

PowerGraph (GraphLab2) System

Implemented Many Algorithms

• Collaborative Filtering
– Alternating Least Squares
– Stochastic Gradient

Descent
– SVD
– Non-negative MF

• Statistical Inference
– Loopy Belief Propagation
– Max-Product Linear

Programs
– Gibbs Sampling

• Graph Analytics
– PageRank
– Triangle Counting
– Shortest Path
– Graph Coloring
– K-core Decomposition

• Computer Vision
– Image stitching

• Language Modeling
– LDA

40

PageRank on the Twitter Follower Graph

0

10

20

30

40

50

60

70

GraphLab Pregel
(Piccolo)

PowerGraph

41

0
5

10
15
20
25
30
35
40

GraphLab Pregel
(Piccolo)

PowerGraph

To
ta

l N
et

w
or

k
(G

B)

Se
co

nd
s

Communication Runtime
Natural Graph with 40M Users, 1.4 Billion Links

Reduces Communication Runs Faster
32 Nodes x 8 Cores (EC2 HPC cc1.4x)

PageRank on Twitter Follower Graph
Natural Graph with 40M Users, 1.4 Billion Links

Hadoop results from [Kang et al. '11]
Twister (in-memory MapReduce) [Ekanayake et al. ‘10]

42

0 50 100 150 200

Hadoop

GraphLab

Twister

Piccolo

PowerGraph

Runtime Per Iteration

Order of magnitude by
exploiting properties

of Natural Graphs

GraphLab2 is Scalable
Yahoo Altavista Web Graph (2002):

One of the largest publicly available web graphs
1.4 Billion Webpages, 6.6 Billion Links

1024 Cores (2048 HT)
64 HPC Nodes

7 Seconds per Iter.
1B links processed per second

30 lines of user code

43

Topic Modeling
• English language Wikipedia

– 2.6M Documents, 8.3M Words, 500M Tokens

– Computationally intensive algorithm

44

0 20 40 60 80 100 120 140 160

Smola et al.

PowerGraph

Million Tokens Per Second

100 Yahoo! Machines
Specifically engineered for this task

64 cc2.8xlarge EC2 Nodes
200 lines of code & 4 human hours

Triangle Counting

• For each vertex in graph, count
number of triangles containing it

• Measures both “popularity” of the vertex and
“cohesiveness” of the vertex’s community:

More Triangles
Stronger Community

Fewer Triangles
Weaker Community

Counted: 34.8 Billion Triangles

46

Triangle Counting on The Twitter Graph
Identify individuals with strong communities.

64 Machines
1.5 Minutes

1536 Machines
423 Minutes

Hadoop
[WWW’11]

S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11

282 x Faster

Why? Wrong Abstraction 
Broadcast O(degree2) messages per Vertex

EC2 HPC Nodes

MPI/TCP-IP PThreads HDFS

GraphLab2 System

Graph
Analytics

Graphical
Models

Computer
Vision Clustering Topic

Modeling
Collaborative

Filtering

Machine Learning and Data-Mining
Toolkits

Apache 2 License

http://graphlab.org

GraphChi: Going small with GraphLab

Solve huge problems on
small or embedded

devices?

Key: Exploit non-volatile memory
(starting with SSDs and HDs)

GraphChi – disk-based GraphLab

Novel Parallel Sliding
Windows algorithm

• Single-Machine
– Parallel, asynchronous execution

• Solves big problems
– That are normally solved in cloud

• Efficiently exploits disks
– Optimized for stream acces

– Efficient on both SSD and
hard-drives

Triangle Counting in Twitter Graph

40M Users
1.2B Edges

Total: 34.8 Billion Triangles

Hadoop results from [Suri & Vassilvitskii '11]

64 Machines, 1024 Cores
1.5 Minutes

PowerGraph

GraphChi

Hadoop

1536 Machines
423 Minutes

59 Minutes, 1 Mac Mini!

Apache 2 License

http://graphlab.org
Documentation… Code… Tutorials… (more on the way)

Active Work

• Cross language support (Python/Java)
• Support for incremental graph computation
• Integration with Graph Databases
• Declarative representations of GAS

decomposition:
– my.pr := nbrs.in.map(x => x.pr).reduce((a,b) => a + b)

52

Joseph E. Gonzalez
Postdoc, UC Berkeley
jegonzal@eecs.berkeley.edu
jegonzal@cs.cmu.eduhttp://graphlab.org

Why not use Map-Reduce
for

Graph Parallel algorithms?

Data Dependencies are Difficult
• Difficult to express dependent data in Map

Reduce
– Substantial data transformations
– User managed graph structure
– Costly data replication

In
de

pe
nd

en
t D

at
a

Re
co

rd
s

Iterative Computation is Difficult
• System is not optimized for iteration:

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Iterations

D
isk Penalty

D
isk Penalty

D
isk Penalty

Startup Penalty

Startup Penalty

Startup Penalty

The Pregel Abstraction
Vertex-Programs interact by sending messages.

iiPregel_PageRank(i, messages) :
// Receive all the messages
total = 0
foreach(msg in messages) :

total = total + msg

// Update the rank of this vertex
R[i] = total

// Send new messages to neighbors
foreach(j in out_neighbors[i]) :

Send msg(R[i]) to vertex j

56Malewicz et al. [PODC’09, SIGMOD’10]

Barrier
Pregel Synchronous Execution

Compute Communicate

Communication Overhead
for High-Degree Vertices

Fan-In vs. Fan-Out

58

Pregel Message Combiners on Fan-In

Machine 1 Machine 2

++B

A

C

D
Sum

• User defined commutative associative (+)
message operation:

59

Pregel Struggles with Fan-Out

Machine 1 Machine 2

B

A

C

D

• Broadcast sends many copies of the same
message to the same machine!

60

Fan-In and Fan-Out Performance

• PageRank on synthetic Power-Law Graphs
– Piccolo was used to simulate Pregel with combiners

0
2
4
6
8

10

1.8 1.9 2 2.1 2.2

To
ta

l C
om

m
. (

GB
)

Power-Law Constant α

More high-degree vertices 61

GraphLab Ghosting

• Changes to master are synced to ghosts

Machine 1

A

B

C

Machine 2

DD

A

B

CGhost

62

GraphLab Ghosting

• Changes to neighbors of high degree vertices
creates substantial network traffic

Machine 1

A

B

C

Machine 2

DD

A

B

C Ghost

63

Fan-In and Fan-Out Performance

• PageRank on synthetic Power-Law Graphs
• GraphLab is undirected

0
2
4
6
8

10

1.8 1.9 2 2.1 2.2

To
ta

l C
om

m
. (

GB
)

Power-Law Constant alpha
More high-degree vertices 64

Comparison with GraphLab & Pregel
• PageRank on Synthetic Power-Law Graphs:

RuntimeCommunication

0
2
4
6
8

10

1.8

To
ta

l N
et

w
or

k
(G

B)

Power-Law Constant α

0
5

10
15
20
25
30

1.8
Se

co
nd

s

Power-Law Constant α

Pregel (Piccolo)

GraphLab

Pregel (Piccolo)

GraphLab

65

High-degree vertices High-degree vertices

GraphLab2 is robust to high-degree vertices.

GraphLab on Spark

66

#include <graphlab.hpp>

struct vertex_data : public graphlab::IS_POD_TYPE { float rank;
vertex_data() : rank(1) { }

};

typedef graphlab::empty edge_data;
typedef graphlab::distributed_graph<vertex_data, edge_data> graph_type;
class pagerank :
public graphlab::ivertex_program<graph_type, float>,
public graphlab::IS_POD_TYPE {
float last_change;

public:
float gather(icontext_type& context, const vertex_type& vertex,

edge_type& edge) const {
return edge.source().data().rank / edge.source().num_out_edges();

}

void apply(icontext_type& context, vertex_type& vertex,
const gather_type& total) {

const double newval = 0.15*total + 0.85;
last_change = std::fabs(newval - vertex.data().rank);
vertex.data().rank = newval;

}

void scatter(icontext_type& context, const vertex_type& vertex,
edge_type& edge) const {

if (last_change > TOLERANCE) context.signal(edge.target());
}

};

struct pagerank_writer {
std::string save_vertex(graph_type::vertex_type v) {
std::stringstream strm;
strm << v.id() << "\t" << v.data() << "\n";
return strm.str();

}
std::string save_edge(graph_type::edge_type e) { return ""; }

};

int main(int argc, char** argv) {
graphlab::mpi_tools::init(argc, argv);
graphlab::distributed_control dc;

graphlab::command_line_options clopts("PageRank algorithm.");
graph_type graph(dc, clopts);
graph.load_format(“biggraph.tsv”, "tsv");

graphlab::omni_engine<pagerank> engine(dc, graph, clopts);
engine.signal_all();
engine.start();

graph.save(saveprefix, pagerank_writer(), false, true false);

graphlab::mpi_tools::finalize();
return EXIT_SUCCESS;

}

import spark.graphlab._

val sc = spark.SparkContext(master, “pagerank”)

val graph = Graph.textFile(“bigGraph.tsv”)
val vertices = graph.outDegree().mapValues((_, 1.0, 1.0))

val pr = Graph(vertices, graph.edges).iterate(
(meId, e) => e.source.data._2 / e.source.data._1,
(a: Double, b: Double) => a + b,
(v, accum) => (v.data._1, (0.15 + 0.85*a), v.data._2),
(meId, e) => abs(e.source.data._2-e.source.data._1)>0.01)

pr.vertices.saveAsTextFile(“results”)

Interactive!

