

A System for Distributed Graph-Parallel Machine Learning

Joseph Gonzalez Postdoc, UC Berkeley AMPLab PhD @ CMU

The Team:

Yucheng Low

Haijie Gu

Aapo Kyrola

Danny Bickson

Carlos Guestrin

Alex Smola

Guy Blelloch

About me ...

Scalable Big Machine Graphical Learning Models

BigLearning

Graphs are Essential to **Data-Mining** and **Machine Learning**

- Identify influential people and information
- Find communities
- Target ads and products
- Model complex data dependencies

Example: Estimate Political Bias

Collaborative Filtering: Exploiting Dependencies

Matrix Factorization Alternating Least Squares (ALS)

- Everyone starts with equal ranks
- Update ranks in parallel
- Iterate until convergence

How should we program graph-parallel algorithms? Low-level tools like MPI and Pthreads?

- Me, during my first years of grad school

Threads, Locks, and MPI

- Graduate students repeatedly solve the same parallel design challenges:
 - Implement and debug complex parallel system
 - Tune for a *single* parallel platform
 - Six months later the conference paper contains:

"We implemented ______ in parallel."

- The resulting code:
 - is difficult to maintain and extend
 - couples learning model and implementation

How *should* we program **graph-parallel** algorithms?

High-level Abstractions!

- Me, now

The Graph-Parallel Abstraction

- A user-defined Vertex-Program runs on each vertex
- Graph constrains interaction along edges
- "Through shared state (e.g., GraphLab [UAP10, VEDB 12])
- Parallelism: run multiple_Mratewiezaet al. [\$1GMOD'10]

Graph-parallel Abstractions

The GraphLab Vertex Program

Vertex Programs directly access adjacent vertices and edges

```
GraphLab_PageRank(i)
```

// Compute sum over neighbors
total = 0
foreach(j in neighbors(i)):
 total = total + R[j] * w_{ji}

// Update the PageRank
R[i] = 0.15 + total

// Trigger neighbors to run again
priority = |R[i] - oldR[i]|
if R[i] not converged then
signal neighborsOf(i) with priority

Benefit of Dynamic PageRank

GraphLab Asynchronous Execution

The scheduler determines the order that vertices are executed

Scheduler can prioritize vertices.

Asynchronous Belief Propagation

Challenge = Boundaries

Synthetic Noisy Image

Cumulative Vertex Updates

Graphical Model

Algorithm identifies and focuses on hidden sequential structure

GraphLab Ensures a Serializable Execution

• Enables: Gauss-Seidel iterations, Gibbs Sampling, Graph Coloring, ...

Never Ending Learner Project (CoEM)

• Language modeling: named entity recognition

Hadoop (BSP)	95 Cores	7.5 hrs
GraphLab	16 Cores	30 min
Distributed GraphLab	32 EC2 machines	80 secs
	0.3% of	Hadoop time

Thus far...

GraphLab provided a powerful new abstraction

But...

We couldn't scale up to Altavista Webgraph from 2002 1.4B vertices, 6.6B edges

Natural Graphs Graphs derived from natural phenomena

Properties of Natural Graphs

Regular Mesh

Natural Graph

Power-Law Degree Distribution

Power-Law Degree Distribution

Challenges of High-Degree Vertices

Sequentially process edges

Sends many messages (Pregel)

Touches a large fraction of graph (GraphLab)

Edge meta-data too large for single machine

Asynchronous Execution requires heavy locking (GraphLab)

Synchronous Execution prone to stragglers (Pregel)

Graph Partitioning

- Graph parallel abstractions rely on partitioning:
 - Minimize communication
 - Balance computation and storage

Power-Law Graphs are Difficult to Partition

- Power-Law graphs do not have **low-cost** balanced cuts [Leskovec et al. 08, Lang 04]
- Traditional graph-partitioning algorithms perform poorly on Power-Law Graphs.
 [Abou-Rjeili et al. 06]

Random Partitioning

 GraphLab resorts to random (hashed) partitioning on natural graphs

- Split High-Degree vertices
- New Abstraction → Equivalence on Split Vertices

A Common Pattern for Vertex-Programs

<pre>GraphLab_PageRank(i) // Compute sum over neighbors total = 0 foreach(i in neighbors(i));</pre>	Gather Information
total = total + R[j] * W _{ji}	About Neighborhood
<pre>// Update the PageRank R[i] = total</pre>	Update Vertex
<pre>// Trigger neighbors to run again priority = R[i] - oldR[i] if R[i] not converged then signal neighbors(i) with priority</pre>	Signal Neighbors & Modify Edge Data

Formal GraphLab2 Semantics

Gather(SrcV, Edge, DstV) → A

Collect information from neighbors

• Sum(A, A) \rightarrow A

Commutative associative Sum

• Apply(V, A) \rightarrow V

Update the vertex

Scatter(SrcV, Edge, DstV) → (Edge, signal)

- Update edges and signal neighbors

PageRank in GraphLab2

$$R[i] = 0.15 + \sum_{i \in \text{Nbrs}(i)} w_{ji} R[j]$$

GraphLab2_PageRank(i)

Gather($j \rightarrow i$): return $w_{ji} * R[j]$ **sum**(a, b): return a + b;

Apply(i, Σ): R[i] = 0.15 + Σ

Scatter($i \rightarrow j$): if R[i] changed then trigger *j* to be **recomputed**

GAS Decomposition

Minimizing Communication in PowerGraph

New Theorem: For any edge-cut we can directly construct a vertex-cut which requires strictly less communication and storage.

Percolation theory suggests that power law graphs have **good vertex cuts**. [Albert et al. 2000]

Constructing Vertex-Cuts

• Evenly assign edges to machines

- Minimize machines spanned by each vertex

- Assign each edge as it is loaded
 - Touch each edge only once
- Propose two **distributed** approaches:
 - Random Vertex Cut
 - Greedy Vertex Cut

Random Vertex-Cut

• Randomly assign edges to machines

Random Vertex-Cuts vs. Edge-Cuts

• Expected improvement from vertex-cuts:

Streaming Greedy Vertex-Cuts

• Place edges on machines which already have the vertices in that edge.

Greedy Vertex-Cuts Improve Performance

System Design

- Implemented as C++ API
- Uses HDFS for Graph Input and Output
- Fault-tolerance is achieved by check-pointing

– Snapshot time < 5 seconds for twitter network</p>

Implemented Many Algorithms

• Collaborative Filtering

- Alternating Least Squares
- Stochastic Gradient
 Descent
- SVD
- Non-negative MF

• Statistical Inference

- Loopy Belief Propagation
- Max-Product Linear
 Programs
- Gibbs Sampling

- Graph Analytics
 - PageRank
 - Triangle Counting
 - Shortest Path
 - Graph Coloring
 - K-core Decomposition

• Computer Vision

Image stitching

Language Modeling – LDA

PageRank on the Twitter Follower Graph Natural Graph with 40M Users, 1.4 Billion Links Communication Runtime

PageRank on Twitter Follower Graph Natural Graph with 40M Users, 1.4 Billion Links

GraphLab2 is Scalable

Yahoo Altavista Web Graph (2002):

One of the largest publicly available web graphs **1.4 Billion Webpages, 6.6 Billion Links**

7 Seconds per lter. 18 links processed per second 30 lines of user4code 048 HT

Topic Modeling

English language Wikipedia

- 2.6M Documents, 8.3M Words, 500M Tokens
- Computationally intensive algorithm

Triangle Counting

 For each vertex in graph, count number of triangles containing it

 Measures both "popularity" of the vertex and "cohesiveness" of the vertex's community:

Fewer Triangles Weaker Community

More Triangles Stronger Community

Triangle Counting on The Twitter Graph

Identify individuals with strong communities.

Counted: 34.8 Billion Triangles

S. Suri and S. Vassilvitskii, "Counting triangles and the curse of the last reducer," WWW'11

Machine Learning and Data-Mining Toolkits

http://graphlab.org Apache 2 License

GraphChi: Going small with GraphLab

Solve huge problems on small or embedded devices?

Key: Exploit non-volatile memory (starting with SSDs and HDs)

GraphChi – disk-based GraphLab

Novel Parallel Sliding Windows algorithm

- Single-Machine
 - Parallel, asynchronous execution
- Solves big problems
 - That are normally solved in cloud
- Efficiently exploits disks
 - Optimized for stream acces
 - Efficient on *both* SSD and hard-drives

Apache 2 License

http://graphlab.org

Documentation... Code... Tutorials... (more on the way)

Active Work

- Cross language support (Python/Java)
- Support for incremental graph computation
- Integration with Graph Databases
- Declarative representations of GAS decomposition:
 - my.pr := nbrs.in.map(x => x.pr).reduce((a,b) => a + b)

Joseph E. Gonzalez Postdoc, UC Berkeley jegonzal@eecs.berkeley.edu jegonzal@cs.cmu.edu

Why not use *Map-Reduce* for **Graph Parallel** algorithms?

Data Dependencies are Difficult

- Difficult to express dependent data in Map Reduce
 - Substantial data transformations
 - User managed graph structure
 - Costly data replication

Iterative Computation is Difficult

• System is not optimized for iteration:

The Pregel Abstraction

Vertex-Programs interact by sending messages.

```
Pregel_PageRank(i, messages) :
    // Receive all the messages
    total = 0
    foreach( msg in messages) :
        total = total + msg
    // Update the rank of this vertex
    R[i] = total
    // Send new messages to neighbors
    foreach(j in out_neighbors[i]) :
        Send msg(R[i]) to vertex j
```


Pregel Synchronous Execution

Communication Overhead for High-Degree Vertices

Fan-In vs. Fan-Out

Pregel Message Combiners on Fan-In

• User defined **commutative associative** (+) message operation:

Pregel Struggles with Fan-Out

• **Broadcast** sends many copies of the same message to the same machine!

Fan-In and Fan-Out Performance

- PageRank on synthetic Power-Law Graphs
 - Piccolo was used to simulate Pregel with combiners

GraphLab Ghosting

• Changes to master are synced to ghosts

GraphLab Ghosting

• Changes to **neighbors** of **high degree vertices** creates substantial network traffic

Fan-In and Fan-Out Performance

- PageRank on synthetic Power-Law Graphs
- GraphLab is **undirected**

Comparison with GraphLab & Pregel

PageRank on Synthetic Power-Law Graphs:

GraphLab2 is robust to high-degree vertices.

#include <graphlab.hpp>

return EXIT SUCCESS;

```
struct vertex_data : public graphlab::IS_POD_TYPE { float rank;
 vertex_data() : rank(1) { }
};
typedef graphlab::empty edge_data;
typedef graphlab::distributed_graph<vertex_data, edge_data> graph_type;
class pagerank :
 public graphlab::ivertex_program<graph_type, float>,
  public graphlab::IS_POD_TYPE {
  float last change;
public:
 float gather(icontext type& context, const vertex type& vertex,
              edge_type& edge) const {
   return edge.source().data().rank / edge.source().num_out_edges();
  void apply(icontext type& context, vertex type& vertex,
             const gather_type& total) {
    const double newval = 0.15*total + 0.85;
   last change = std::fabs(newval - vertex.data().rank);
   vertex.data().rank = newval;
  void scatter(icontext_type& context, const vertex_type& vertex,
              edge type& edge) const {
   if (last_change > TOLERANCE) context.signal(edge.target());
};
```

```
struct pagerank writer {
  std::string save_vertex(graph_type::vertex_type v) {
   std::stringstream strm;
   strm << v.id() << "\t" << v.data() << "\n";</pre>
   return strm.str();
  std::string save_edge(graph_type::edge_type e) { return ""; }
};
int main(int argc, char** argv) {
  graphlab::mpi tools::init(argc, argv);
  graphlab::distributed_control dc;
  graphlab::command_line_options clopts("PageRank algorithm.");
  graph_type graph(dc, clopts);
  graph.load_format("biggraph.tsv", "tsv");
  graphlab::omni_engine<pagerank> engine(dc, graph, clopts);
  engine.signal_all();
  engine.start();
  graph.save(saveprefix, pagerank_writer(), false, true false);
  graphlab::mpi_tools::finalize();
```

GraphLab on Spark

import spark.graphlab._

val sc = spark.SparkContext(master, "pagerank")

```
val graph = Graph.textFile("bigGraph.tsv")
val vertices = graph.outDegree().mapValues((_, 1.0, 1.0))
```

```
val pr = Graph(vertices, graph.edges).iterate(
  (meId, e) => e.source.data._2 / e.source.data._1,
  (a: Double, b: Double) => a + b,
  (v, accum) => (v.data._1, (0.15 + 0.85*a), v.data._2),
  (meId, e) => abs(e.source.data._2-e.source.data._1)>0.01)
```

pr.vertices.saveAsTextFile("results")

Interactive!