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Neural systems are complex networks

Inherently multiscale: Multiple modes of coupling
= Micro (neurons, synapses) = Anatomical (physical projections)
= Macro (regions, projections) = Functional (dynamic interactions)
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Betzel & Bassett (2016). Multi-scale brain networks. Neuroimage.



Constructing Brain Networks
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Bullmore & Sporns (2009) Nature Rev Neurosci 10, 186.



Time-varying functional brain networks

Long-time averaged FC

Brain regions

Brain regions

= Neural processes play out at a sub-second scale.
= Cognitive processes at timescales shorter than that of an entire scan session.
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Hutchinson et al (2011). Neuroimage, 80, 360.



Multi-layer network model

How to analyze a set of networks?

1. Treat each observation as a layer.

2. Link each node to itself (identity links) across
layers to form a multi-layer network.
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Kivela et al. (2014). Journal of complex networks, 2, 203.

Multilayer network

AN




Multi-layer network model in neuroscience

multilayer network

Multi-frequency networks: Layers

represent frequency-specific FC
= De Domenico et al (2016). FINS.
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Multi-layer modularity and network flexibility

Community detection algorithms partition network nodes based on topology:

Observed matrix (A) Anticipated (P) Modularity matrix (B=A-P)
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For a review of community detection and brain networks: Sporns & Betzel (2016). Annual Review of Psychology
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Network flexibility in learning, executive function, disease

Varies day to day
Associated with cognitive performance
What exogenous factors influence flexibility?




MyConnectome Project

» Analyze resting fMRI and guestionnaire data separately.
= Estimate network flexibility and test for affect-based correlates.




Quotidian variability in mood questionnaire responses

= 60 questions about mood (PANAS-X)
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Betzel et al (2016). Scientific Reports.



Analysis of resting fMRI data

Analyze 73 recording sessions.

Extract fMRI BOLD time series from 630 parcels

Divide into 14 non-overlapping windows (37 TR)

Construct wavelet coherence matrices within each window
ldentify communities using multi-layer modularity maximization
Compute regional and global flexibility
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Quotidian variability in regional flexibility

Across scan sessions...

Mean regional flexibility St. dev. regional flexibility

Betzel et al (2016). Scientific Reports.



Quotidian variability in regional and global flexibility

Are flexibility patterns uniform or region/system specific?
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Betzel et al (2016). Scientific Reports.



Relating mood indices to flexibility

Test linear relationship of mood indices with global flexibility (regional average).
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= Self reported positivity implies increased network flexibility
= Self reported surprise implies decreased network flexibility

Betzel et al (2016). Scientific Reports.




Relating mood indices to flexibility

Relationship is driven by the regional flexibility of somatomotor network.
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Relating mood indices to flexibility

Possible confounds:
In-scanner head motion
Outlying scans/responses
Non-parametric correlations
Other psycho-physiological measurements (e.g. sleep, diet, tinnitus,
weather)
Frequency-band specific
Community detection parameters
Window length

Self-reported fatigue, however, was correlated with positivity but not surprise.
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Summary and outlook

Interested in whether day-to-day variation in flexibility could be
explained by behavior/lifestyle.

Remember... N=1

= Suggests a network-level correlate of positive affect and surprise
(state of arousal?)

= Flexibility has been associated with NMDA receptor function —
suggests pharmacological pathway for modulating mood.

= Flexibility has been associated with learning — suggests that
alterations to mood/fatigue/surprise can enhance learning.

Remember... N =1

Betzel et al (2016). Scientific Reports.



Acknowledgements

(P;g:].n[))anielle Bassett MaCArthur
Foundation

Prof. Ted Satterthwaite

frg®) ALFRED P. SLOAN

(Penn) 2 FOUNDATION
National Institute
of Mental Health
: a8 & Prof. lan Gold
(Penn)

é}mjm L/i/ﬂj‘zw(ﬂg& @Zﬂﬂﬁ'

NICHD

National Institute of Child Health
& Human Development




