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Talk outline

Dynamic networks – an overview

Applications

Representations

Measures
Connectivity measures

Mesoscale measures

Information spread

Challenges

References
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Dynamic networks
Dynamic graphs

Abstract graph representations used to capture 
dynamical systems

Evolving networks
Vertices and edges can be added/removed

Multi-stage, time-varying (temporal)
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Dynamic vs. Static Networks

• Dynamic networks are different from static 
networks in multiple ways
– Edge transitivity

• Contact sequence

– Structural properties
may evolve
• e.g., random to structured
• Variable resolution needed

– Goal is to study and track the network, to make 
inferences about an underlying dynamical system
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Two Types of Dynamic Graphs

• (topology) Links persist
• (contact) Link traffic 

varies over time 
– Active vs. Idle

• E.g., internet
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Two Types of Dynamic Graphs

• (topology) Links persist
• (contact) Link traffic 

varies over time 
– Active vs. Idle

• E.g., internet

• Topology changes with 
time and contact

• Time-varying networks
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Applications: Digital Communication

• Nodes: People/Users

• Edges: Person-person communication
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Applications: Contagion Networks

• Infectious disease epidemics can be modeled 
with a human contact network

• Nodes: human (+ other species)
• Edges: contact

10

Infection spread
= 
f(
Sequence of contact,
Duration of contact,
Type of contact,
Burstiness of contact
)

Outbreak prediction, HAIs (e.g., MRSA), Host-Pathogen exchanges



Applications: Biological Networks

• Molecules and cells interact to form complexes and 
bioproducts

• Nodes: proteins/metabolites/cells/organisms

• Edges: molecular/cellular interaction and exchanges
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Applications: Brain Networks

• Brain imaging (EEG, fMRI) captures neuron 
activities in different regions of the brain 
(spatio-temporal networks)

• Nodes: brain voxels

• Edges: neuron signaling, functional correlation

• Other examples:
– Ecological networks

– Transportation networks

– Power grid
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Image credits: Patric Hagmann, CHUV-UNIL, Lausanne, Switzerland



Dynamic Graph Representations
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Image credits: Holme, P. and Saramäki, J., 2012. Temporal networks. Physics reports, 519(3), pp.97-125.

a) Contact sequence a) Interval graph

c) Graphs at different time slices



Structural Measures
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• Path enumeration methods need to be time-
respecting
– Identification of time-respecting paths (Kempe et al. 

2000)
– Identification of strongly and weakly connected 

components (Nicosia et al. 2012)

• Distance measures
– Shortest path computations have a connotation in 

time (latency, time steps required for message 
propagation)

– Identification of temporally shortest paths (Pan, 
Saramaki, 2011)



Centrality and Random Walk

• Time-dependent centrality of an edge (or vertex) 
is related to the temporal role of that edge 
(vertex)

– Notion of time-dependent centrality (Moody, 2002)

– Reduciblity to a static network with directed flow 
problem (Kim, Anderson, 2012)

• Random walk explorations are known to be 
slower on temporal networks (Starnini et al. 
2012, Avin et al. 2008) 
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Mesoscale Properties

• Small-world properties of temporal networks 
defined based on links being clustered in time 
(Tang et al. 2010)

• Dynamic community detection

– Community tracking

– Merges, Splits, Exchanges

– Birth, Death, Resurgence

• Algorithms and modularity measures redefined

– Mucha et al. 2010, Berger-Wolf et al. 2010

16



Community Detection for Dynamic 
Graphs

 Parallel clustering frameworks 
(seeded vs. unseeded analysis)

Generation of synthetic benchmarks
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Joint work with M. Halappanavar, A. Sathanur, H. Lu
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Community Detection

• Application benchmarks 
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Joint work with R. Marculescu, C. Lo and H. Lu

Capturing biofilm community dynamics



Challenges

• Generative models
– Contact probability in time

– Application context

• Benchmarks

• Persistence properties and metrics

• Scalability

• Visualization

• Real world applications
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