Scalable Algorithms for Graph Matching and Edge Cover Computations

Arif Khan¹, Alex Pothen¹, Mostofa Patwary² & Pradeep Dubey²

¹Computer Science, Purdue ²Intel Parallel Computing Labs

March 1, 2017

PURDUE UNIVERSITY

The MATCHING problem in graphs is well-studied, but this is not true of $b\text{-}\mathrm{MATCHING}\text{:}$

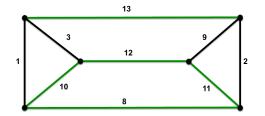
- ▶ We discuss approximation algorithms that have high concurrency.
- We design the most efficient 1/2-approximation algorithm, *b*-SUITOR.
- ► We parallelize *b*-SUITOR for shared memory and distributed memory machines.

Other than the Greedy algorithm, there is little work on approximation algorithms for b-EDGE COVER.

- We design two new approximation algorithms: 3/2-approximate Locally Subdominant Edge (LSE) and 2-approximate Static-LSE (S-LSE).
- ► We establish the relationship between *b*-EDGE COVER and *b*-MATCHING in the context of approximation algorithms.
- ► Using *b*-MATCHING, we design the most efficient algorithm MCE, a 2-approximation algorithm.

b-MATCHING

- A b-MATCHING is a set of edges M such that at most b(v) edges in M are incident on each vertex v ∈ V.
- ► The weight of a *b*-MATCHING is the sum of the weights of the matched edges.
- ▶ Max. weight *b*-MATCHING : a matching with maximum weight.
- Standard Matching is a special case of b-MATCHING with b = 1.



- Mesh refinement. [Hannemann et al, JEA, 1999]
- Spectral clustering. [Jebara et al, ECML, 2006]
- Semi supervised learning. [Jebara et al, ICML, 2009]
- Overlay network. [Georgiadis et al, IPDPS, 2010]
- Data Privacy. [Choromanski et al, NIPS, 2013]
- ▶ *b*-EDGE COVER. [Khan et al, CSC, 2016]

$$G = (V, E, w, b), n = |V|, m = |E|,$$

$$\beta = \max_{v \in V} b(v), \text{ and } B = \sum_{v \in V} b(v).$$

Exact Algorithms

- O(Bm log n) [Gabow, 1983]
- ▶ Finds the solution of maximum weight *b*-MATCHING.
- Hard to implement, not amenable to parallelize and not suitable for solving large problems.

			Exact		1/2-Approx.	
Graph	Vertices	Edges	time	weight	time	% opt. wt./
IG5-16	37K	588K	10 s	1.4 e4	1.6e-2 s	98.7 %
Image-interp	360K	712K	1.2 s	1.5 e8	3.5e-2 s	96.5 %
LargeRegFile	2.9M	4.9M	6.9 s	9.7 e8	0.2 s	98.9 %
Rucci1	2.1M	7.8M	4 h 36 m	1.6 e8	1.3 s	99.7 %
GL7d16	1.5M	14.5M	9 h 50 m	5.8 e8	1.3 s	94.5 %
GL7d20	3.3M	29.9M	> 100 h	NA	4.8 s	NA
GL7d18	3.5M	35.6M	> 100 h	NA	5.5 s	NA
GL7d19	3.9M	37.3M	> 100 h	NA	6.3 s	NA

*Ahmed Al-Herz (CS, Purdue)

Matching & Cover

$$G = (V, E, w, b), n = |V|, m = |E|,$$

$$\beta = \max_{v \in V} b(v), \text{ and } B = \sum_{v \in V} b(v).$$

Heuristic Algorithms:

- Heavy Edge Matching (HEM), $O(m \log \Delta)$
- Easy to implement and parallelize.
- Does not have any solution quality guarantee.
- Solution depends on vertex processing order.

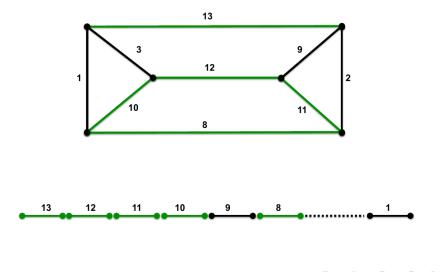
$$G = (V, E, w, b), n = |V|, m = |E|,$$

$$\beta = \max_{v \in V} b(v), \text{ and } B = \sum_{v \in V} b(v).$$

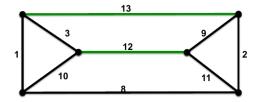
Approximation Algorithms:

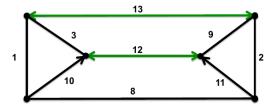
- *b*-SUITOR, $O(m \log \beta)$
- 1/2-approximation algorithms: Solution weight is guaranteed to be 1/2 of the optimal weight.
- Approximation guarantee is independent of vertex processing order.

Strategy	Ratio	Matching	b- Matching
Greedy	1/2	Avis	Mestre
Path growing	1/2	Drake et al: PGA, PGA' Maue et al: GPA	Mestre
Local. Dom.	1/2	Preis, Manne et al : LD Birn et al: Local Max	Georgiadis et al: LD
Suitor	1/2 Manne & Halappanavar		Khan et al.
Aug Path	$2/3$ - ϵ	Pettie & Sanders	Mestre



Locally Dominant Edges (LD)



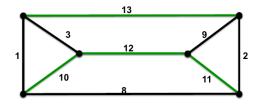


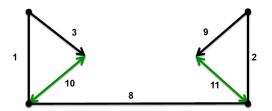
Arif Khan (Purdue)

Matching & Cover

March 1, 2017 12 / 41

Locally Dominant Edges (LD)





Arif Khan (Purdue)

Matching & Cover

March 1, 2017 13 / 41

Locally Dominant Edges (LD)



Arif Khan (Purdue)

March 1, 2017 14 / 41

Core concept:

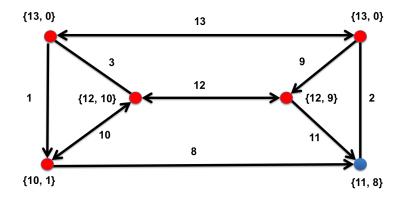
Each unmatched vertex, u, proposes to its heaviest remaining neighbor v if v does not have better offer already.

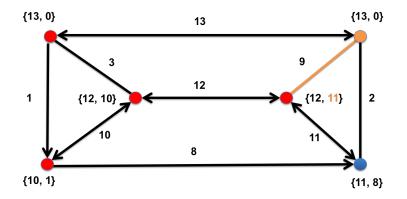
Data structure:

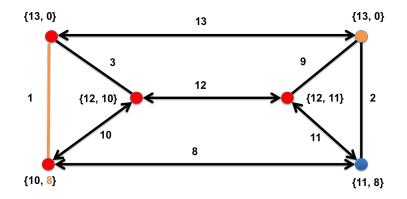
- A min priority heap, S(v) of size b(v) for each vertex v.
- If *u* proposes to *v* then $u \in S(v)$.

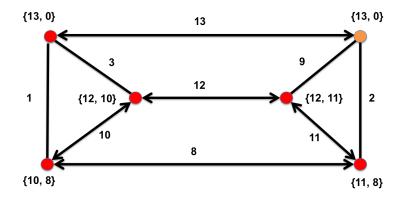
At termination:

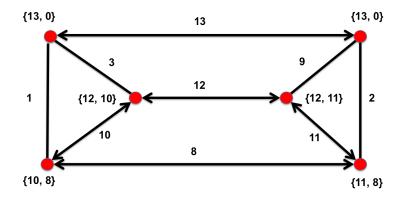
$$v \in S(u) \iff u \in S(v)$$

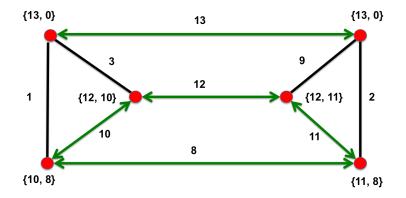












- ▶ GREEDY, LD and *b*-SUITOR all compute exactly same matching!!
- Employing a global, local and *no ordering* respectively.
- ► For GREEDY and LD: Once an edge is chosen, it enters in to the final solution.
- ► For *b*-SUITOR: Proposals are made only based on **local information** and can be **annulled**. That is, *b*-SUITOR is suitable for dynamic graphs.

- ▶ *b*-SUITOR is the fastest known serial algorithm: ($\beta << \Delta << n$)
 - GREEDY: $O(m \log n)$, LD: $O(m \log \Delta)$ and b-SUITOR: $O(m \log \beta)$
- **b**-SUITOR has more concurrency than LD.
- ► The number of proposals is bounded by $O(B \log n)$ if the weights are randomly distributed.
 - ► This is obtained from the relationship of the *b*-MATCHING problem to the "Stable Fixtures" problem (generalization of Stable Matching).

Practice: *b*-SUITOR vs Other Approximation Algorithms

[Khan et. al, SISC'15]: Intel Xeon, 2.6 GHz, 16 Cores, 256 GB memory

- ► Serial Performance w.r.t *b*-SUITOR.
 - GREEDY: $16 \times$ slower.
 - ▶ $PGA: 14 \times slower$
 - LD: 6× slower
- Shared Memory Performance:
 - ▶ LD (16 cores): only 1.1× faster than *b*-SUITOR (serial).
 - *b*-SUITOR scales up to $13 \times$ with 16 Xeon cores.
 - *b*-SUITOR scales up to $50 \times$ with 60 Xeon Phi (KNC) cores.
- ▶ *b*-SUITOR requires 7× fewer edge traversals than LD.

Practice: *b*-SUITOR vs Other Approximation Algorithms

[Khan et. al, SISC'15]: Intel Xeon, 2.6 GHz, 16 Cores, 256 GB memory

- ► Serial Performance w.r.t *b*-SUITOR.
 - GREEDY: $16 \times$ slower.
 - ▶ $PGA: 14 \times slower$
 - LD: 6× slower
- Shared Memory Performance:
 - ▶ LD (16 cores): only 1.1× faster than *b*-SUITOR (serial).
 - *b*-SUITOR scales up to $13 \times$ with 16 Xeon cores.
 - ▶ *b*-SUITOR scales up to 50× with 60 Xeon Phi (KNC) cores.

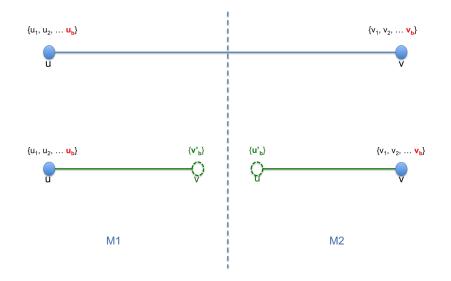
▶ *b*-SUITOR requires 7× fewer edge traversals than LD.

Practice: *b*-SUITOR vs Other Approximation Algorithms

[Khan et. al, SISC'15]: Intel Xeon, 2.6 GHz, 16 Cores, 256 GB memory

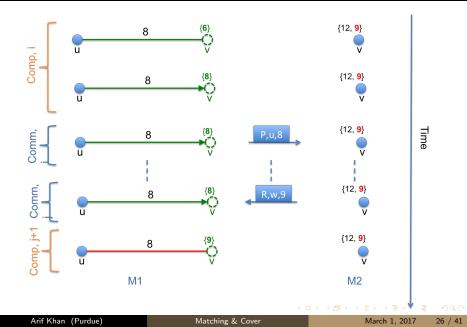
- ► Serial Performance w.r.t *b*-SUITOR.
 - GREEDY: $16 \times$ slower.
 - ▶ $PGA: 14 \times slower$
 - LD: 6× slower
- Shared Memory Performance:
 - ▶ LD (16 cores): only 1.1× faster than *b*-SUITOR (serial).
 - *b*-SUITOR scales up to $13 \times$ with 16 Xeon cores.
 - ▶ *b*-SUITOR scales up to 50× with 60 Xeon Phi (KNC) cores.
- ▶ *b*-SUITOR requires 7× fewer edge traversals than LD.

Distributed Memory *b*-SUITOR



Arif Khan	(Purdue)
-----------	----------

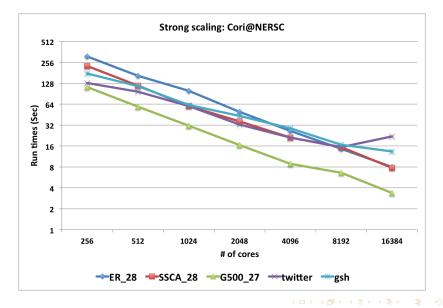
Distributed *b*-SUITOR



- Subsetting the b(v) values: $b' = \{1, 2, ..., 1/2b(v), ..., b(v)\}$.
- Subsetting the vertices on a compute node: $\{1, 2, \ldots\}$ -way subsetting.
- Sorting the vertices on a compute node, based on their heaviest weight edges.

Problems	Vertices	Edges	Avg. deg
ER_28	268,434,430	2,147,483,648	8
ER_27	134,217,028	1,073,741,824	8
ER_26	67,107,760	530,160,025	8
SSCA_28	268,435,154	2,136,323,325	8
SSCA_27	134,217,728	1,066,851,217	8
SSCA_26	67,107,987	534,179,576	8
G500_27	134,217,726	2,111,641,641	16
G500_26	67,108,089	1,073,058,343	16
G500_25	33,554,330	532,507,217	16
twitter	41,652,230	1,468,365,182	36
gsh-2015-host	68,680,142	1,802,747,600	27

Strong Scaling: *b*-SUITOR

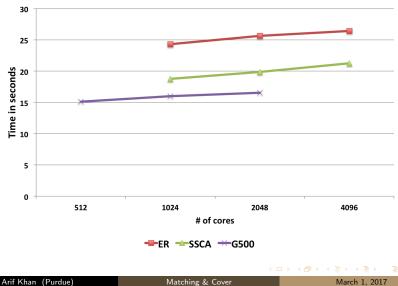


Arif Khan (Purdue)

Matching & Cover

March 1, 2017 29 / 41

Weak Scaling: *b*-SUITOR

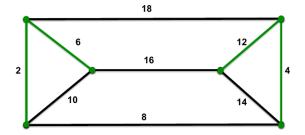


30 / 41

Weak Scaling: Cori@NERSC

- ► A new 1/2- approximate *b*-MATCHING algorithm: *b*-SUITOR.
- b-SUITOR computes weights that are > 97% of the optimal weights, for the (smaller) problems for which we can compute optimal weights.
- ► *b*-SUITOR outperforms the GREEDY and the LD algorithm w.r.t. to run time, and they all compute the same matching.
- ► The *b*-SUITOR algorithm scales on shared memory machines as well as on distributed memory machines with ten-thousands of processors.

A min. weight b-EDGE COVER is a set of edges C such that at least b(v) edges in C are incident on each vertex v ∈ V and sum of the edge weights is minimized. For example, 1-Edge Cover:



Strategy	Approx. Ratio	Complexity	Parallelizable	Algorithm
Lightest Edge	Δ	$O(\beta m)$	Yes	* Hall & Hochbaum: Delta
Effective Weight	3/2	$O(m \log n)$	No	* Dobson: Greedy
Effective Weight & Local Sub Dom	3/2	O(βm)	Yes	Khan et al: LSE
Local Sub Dom	2	$O(\beta m)$	Yes	Khan et al: S-LSE
b-Matching	2	$O(m \log eta')$	Yes	Khan et al: MCE

* Proposed for Set Multi-cover problem.

Optimal *b*-Edge Cover using *b*-MATCHING [Schrijver]

- Compute $b'(v) = \delta(v) b(v)$, for each $v \in V$
- ▶ Optimally solve *Max. Weight b'*-Matching, $M_{opt} \in E$.
- ▶ Optimal Min. Weight b-EDGE COVER, $C_{opt} = E \setminus M_{opt}$

What happens with approximate b-MATCHING ?

- Compute $b'(v) = \delta(v) b(v)$, for each $v \in V$
- Approximately solve *Max. Weight b'*-Matching, $M' \in E$
- ▶ ?? Min. Weight b-EDGE COVER, $C' = E \setminus M'$

- ▶ If approximate *b*-MATCHING solution edges have *locally dominant* property then the complemented *b*-EDGE COVER solution will have approximation guarantee.
- b-SUITOR (a 1/2- approximate b'-Matching) will give a
 2-approximate b-EDGE COVER we call it MCE algorithm.

Problems	b=1	b=5
Fault_639	3.56%	1.13%
mouse_gene	12.12%	6.55%
Serena	4.65%	1.51%
bone010	2.00%	0.96%
dielFilterV3real	1.88%	0.11%
Flan_1565	9.33%	4.41%
kron_g500-logn21	16.42%	13.53%
hollywood-2011	5.52%	1.74%
G500_21	8.88%	3.26%
SSA21	12.30%	4.89%
eu-2015	6.78%	2.33%
Geo. Mean	6.15%	2.14%

Table: Solution quality of 2-approximation algorithms w.r.t 3/2-approximation algorithms.

Arif Khan (Purdue)

Run times: Approximation algorithms for b-EDGE COVER

Intel Xeon (Haswell), 2.4 GHz, 36 Cores, 128 GB memory

- ▶ Serial Performance: w.r.t. MCE.
 - Greedy: $21 \times$ slower,
 - LSE: 9× slower
 - \blacktriangleright S-LSE: 5×.
- ▶ Shared Memory Performance, w.r.t. serial MCE:
 - ▶ LSE (36 cores): only 3.7× faster than MCE (serial)
 - MCE scales up to $30 \times$ with 36 Intel Xeon (Haswell).
 - MCE scales up to $49 \times$ with 68 Intel Xeon Phi (KNL) cores.

- ► A new 3/2-approximate *b*-EDGE COVER algorithm: LSE.
- Showed that approximate b-MATCHING could be used to compute approximate b-EDGE COVER. This leads to the fastest and scalable approximation algorithm, called MCE.

- Adaptive anonymity. (Google Research, NY)
- Graph sparsification and Community Detection. (PNNL)
- Recommender system and k-partite matching. (Netflix, Columbia)
- Resource allocation in Data Centers. (Microsoft Research)

Publications

- Arif Khan, Alex Pothen, Mostofa Patwary, Mahantesh Halappanavar, Nadathur Satish, Narayanan Sundaram, Pradeep Dubey. Computing b-Matchings to Scale on Distributed Memory Multiprocessors by Approximation. Supercomputing, 2016.
- Arif Khan, Alex Pothen. A new 3/2-Approximation Algorithm for the b-Edge Cover Problem. SIAM CSC, 2016.
- Arif Khan, Alex Pothen, Mostofa Patwary, Nadathur Satish, Narayanan Sundaram, Fredrik Manne, Mahantesh Halappanavar, Pradeep Dubey. *Efficient approximation algorithms for weighted b-Matching*. SIAM SISC, 2016.
- Arif Khan, David Gleich, Mahantesh Halappanavar & Alex Pothen. A Multithreaded Algorithm for Network Alignment via Approximate Matching. The International Conference for High Performance computing, Network, Storage and Analysis (Supercomputing), 2012.
- Mahantesh Halappanavar, Alex Pothen, Fredrik Manne, Ariful Azad, Johannes Langguth & Arif Khan, Codesign Lessons Learned from Implementing Graph Matching Algorithms on Multithreaded Architectures, IEEE Computer, pp. 46-55, August 2015.
- Ariful Azad, Mahantesh Halappanavar, Sivasankaran Rajamanickam, Erik G. Boman, Arif Khan & Alex Pothen. *Multithreaded Algorithms for Maximum Matching in Bipartite Graphs*. 26th IEEE International Parallel & Distributed Processing Symposium (IPDPS), 2012.