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Motivation

Scheduling for task-based runtime systems by Ç et al.

Characterization of the Data Movement Complexity of
Algorithms by
P. Sadayappan, A. Rountev, L-N. Pouchet, A. Sidiropoulos, N.
Fauzia, V. Elango, and M. Ravishankar, The Ohio State University
J. Ramanujam, Louisiana State University
F. Rastello, INRIA-Grenoble
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Motivation

Data movement is much more expensive in computer systems than
arithmetic operations (Flops)

Performance: latency as well as throughput
Energy

Computational complexity alone (number of ops executed) cannot be
sole (or even primary) criterion of algorithm choice
But what is the inherent data movement complexity of an alg.?

Computational complexity well understood; invariant to transforms
Data access complexity is not well characterized today: cost is affected
by code transformations and also capacity of registers/caches

Understanding data movement complexity is important:
Algorithm choice between alternatives e.g., will Krylov subspace
solvers and FFTs continue to be as popular in the future?
Arch. parameters: minimum cache capacity and/or bus bw. needed to
support inherent data movement needs of an alg.
Assessing manual/compiler optimizations: How much further
improvement potential is there, beyond current optmizations?
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Data Movement Cost: Energy TrendsData Movement Cost: Energy Trends 

Source: Jim Demmel, John Shalf 
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Computational vs Data Move Complexity
Computational vs. Data Movement Complexity  

for (i=1; i<N-1; i++) 
  for (j=1;j<N-1; j++) 
    A[i][j] = A[i][j-1] + A[i-1][j]; 

for(it = 1; it<N−1; it +=B) 
  for(jt = 1; jt<N−1; jt +=B) 
    for(i = it; i < min(it+B, N−1); i++) 
      for(j = jt; j < min(jt+B, N−1); j++)  
        A[i][j] = A[i−1][j] + A[i][j−1]; Untiled version  

Tiled Version 
Comp. complexity: (N-1)2 Ops 

◆  Data movement cost different for 
two versions 

◆  Also depends on cache size 

Question: Can we achieve lower 
cache misses than this tiled version? 
How can we know when much 
further improvement is not possible? 
 

Question: What is the lowest 
achievable data movement cost 
among all possible equivalent 
versions of a computation? 
Current performance tools and 
methodologies do not address this 
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Modeling Data Movement Complexity: CDAG  
0:7

Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.
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Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in
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Data Movement Upper Bounds

Perform acyclic partitioning of the
CDAG

Assign each node in a single acyclic part

Acyclic partitioning of a CDAG ≈ Tiling
the iteration space

Each part is acyclic

Can be executed atomically
No cyclic data dependence among
parts

Topologically sorted order of the acyclic
parts ⇒ a valid execution order

To Do: Develop scalable distributed
acyclic partitioning algorithm for
CDAGs.

Data	Movement	Upper	Bounds	
•  Perform	convex	par44oning	of	

the	CDAG		
•  Assign	each	node	in	a	single	

convex	component	
•  Convex	par##oning	of	a	CDAG	≈	

Tiling	the	itera#on	space	
•  Each	component	is	convex	

–  Can	be	executed	atomically	
–  No	cyclic	data	dependence	among	

components	
•  Topologically	sorted	order	of	the	

convex	components	
	 	=>	a	valid	execu#on	order	

•  To	Do:	Develop	scalable	
distributed	convex	par##oning	
algorithm	for	CDAGs	
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3 Directed Multilevel Graph Partitioning

4 Experimental Results

Multilevel Acyclic Partitioning of Directed Acyclic Graphs for Enhancing Data Locality 11/ 28
SIAM CSE February 28th, 2017



Balanced Acyclic Partitioning

Minimal edge cut:

Undirected
graph: 2

Directed
graph: 3
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Objective Function

Objective 1

Minimize the edge cut between parts

Objective 2

Minimize the total volume of communication between parts (edge cut
counting edges coming from the same node only once)

Objective 3

At the application level:

Maximize the performance

Minimize the cache miss count

· · ·
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Partition Constraint

Constraint 1

Upper bound on the weights of each part.

Constraint 2

Upper bound on the weight of each part plus the sum of weights of the
boundary vertices that are sources of the part’s incoming edges.

Constraint 3

There should exist a traversal of the graph such that alive data fit into the
cache at any moment.
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Fauzia et al. Algorithm

Vertices are traversed in a topological order with tunable depth and
breadth priorities.

Vertices are assigned to the current partition set until the maximum
number of vertices that would be active during the computation of
the partition set reaches a specified cache size.

Partition sizes can be larger than the size of the cache (Constraint 3).

This differs from our problem (Constraint 1).
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Multilevel scheme

Three phases

Coarsening: obtain smaller and similar graphs to the original, until either a
minimum vertex count is reached or reduction on number of vertices is lower
than a threshold.

Initial Partitioning: find a solution for the smallest graph.

Uncoarsening: Project the initial solution to the coarser graphs and refine
it iteratively until a solution for the original graph obtained.

Coarsening
Refinement/

Uncoarsening

Initial/Coarse Partitioning
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Coarsening

Make sure not to create any cycle
when matching

Find optimal matching ⇒ too
costly.

Matching Restriction

Let G = (V ,E ) be a CDAG and
M = {(u1, v1), ..., (uk , vk)} a matching
such that:

(ui , vj) ∈ M,
top level(vi ) = top level(ui ) + 1

any pair of (ui , vi ) and (uj , vj) ∈ M,
either

(ui , vj) not in E or
top level(ui ) 6= top level(vj) + 1

Then, the coarse graph is acyclic.
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Initial partitioning

Kernighan’s Algorithm (1971)

Given a total order of vertices, vertex weights, edge costs, an upper
bound on part weights,

..finds a cut so that part weights respect the upper bound and
minimizes the edge cut, where the parts are contiguous.

We find a topological order with an attempt to reduce the maximum edge
cut at a point (heuristically).

Then, feed this to Kernighan’s algorithm.
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Kernighan’s Algorithm: Dynamic Programing

T (x) = min
y

{T (y) + C(x, y)}

x � 1 xyy`

T (x): the best cost of cutting right before x.

C(x, y): the additional cut edges at x,
given the previous cut was at y. Do not count twice.

y`: the weight of the part y`, . . . , x � 1 is acceptable,
but y`�1, . . . , x � 1 is not.

Multilevel Acyclic Partitioning of Directed Acyclic Graphs for Enhancing Data Locality 20/ 28
SIAM CSE February 28th, 2017



Uncoarsening

Moving a node to another partition set
can violate acyclicity

Refinement Restriction

Define a topological order among parts.

A node can only be moved to the part of
its incoming nodes with the highest rank
in the topological order or the part of its
outgoing nodes with the smallest rank in
the topological order.

Then, the refinement does not violate
acyclicity.

Nodes are moved as long as balance
constraints are matched and edge cut is
improving.
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Coarsening quality: Graph Jacobi-1d
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Coarsening ratios of Metis and dMLGP are very similar.

Directed coarsening does not seem to be too restrictive.
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Graphs Properties

Instances from the Polyhedral Benchmark Suite.

Graph Parameters #vertex #edge out-deg. deg.
2mm P=10, Q=20, R=30, 36,500 62,200 40 1.704

S=40
3mm P=10, Q=20, R=30, 111,900 214,600 40 1.918

S=40, T=50
adi T=20, N=30 596,695 1,059,590 109,760 1.776
atax M=210, N=230 241,730 385,960 230 1.597
covariance M=50, N=70 191,600 368,775 70 1.925
doitgen P=10, Q=15, R=20 123,400 237,000 150 1.921
durbin N=250 126,246 250,993 252 1.988
fdtd-2d T=20, X=30, Y=40 256,479 436,580 60 1.702
gemm P=60, Q=70, R=80 1,026,800 1,684,200 70 1.640
gemver N=120 159,480 259,440 120 1.627
gesummv N=250 376,000 500,500 500 1.331
heat-3d T=40, N=20 308,480 491,520 20 1.593
jacobi-1d T=100, N=400 239,202 398,000 100 1.664
jacobi-2d T=20, N=30 157,808 282,240 20 1.789
lu N=80 344,520 676,240 79 1.963
ludcmp N=80 357,320 701,680 80 1.964
mvt N=200 200,800 320,000 200 1.594
seidel-2d M=20, N=40 261,520 490,960 60 1.877
symm M=40, N=60 254,020 440,400 120 1.734
syr2k M=20, N=30 111,000 180,900 60 1.630
syrk M=60, N=80 594,480 975,240 81 1.640
trisolv N=400 240,600 320,000 399 1.330
trmm M=60, N=80 294,570 571,200 80 1.939
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Experimental Results

Average results on 100 runs.
Imbalance ratio of 3%.
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dagP has a better edge-cut and is faster than Kernighan and Fauzia
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Results

Inter-partitions edges have a weight of 11 nanoseconds to model L3
cache latency.
Intra-partitions edges have a weight of 1 nanoseconds to model L1
cache latency.
Vertices have a latency of 1 nanoseconds to model task execution.
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Summary and Ongoing/Future Work

Data Movement

Data movement costs will be increasingly dominant over computation
costs, for both performance and energy/power

Important to understand inherent constraints on minimal possible data
movement for an algorithm as a function of storage capacity

Need advances in theory and software tools for modeling data
movement complexity, and methodologies for application to algorithm
analysis and algorithm-architecture co-design

Significant benefit of lower bounds analysis: schedule-independent,
unlike standard performance modeling; especially powerful for analysis
of composite applications
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Directed Graph Partitioning

Implement agglomerative matching, i.e., clustering.

Use directed graph partitioning to automaticly improve data locality
for compiler optimizations.
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Thanks

Thanks

To P. Sadayappan for sharing his motivation slides.

More information

contact : umit@gatech.edu
visit: http://cc.gatech.edu/~umit
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