Exceptional service in the national interest

Performance Portable Sparse Matrix-Matrix Multiplication for Modern Many-core Architectures Mehmet Deveci, Erik Boman, Siva Rajamanickam

Performance Portability

- Portability: Being able to run same code across various architectures
 - CPU, GPU, KNL
 - Performance portability
- Shift in architectures:
 - Threaded multi-core architectures
 - Many-core machines
 - GPUs: threads cannot be replaced by MPI ranks
 - More heterogeneity & diversity
 - Problem: \$\$\$ spent on re-writing existing application codes
- Portable programming models
 - OpenCL, OpenACC, Kokkos
 - eliminate/separate the concerns of future architectures

Performance Portability

- Kokkos:
 - Layered collection of template C++ libraries
 - Manages data access patterns
 - Execution spaces, Memory spaces
- Kokkos provides tools for portability
 - Performance portability does not come for free.
 - Not trivial for sparse matrix and graph algorithms

- KokkosKernels:
 - Layer of performanceportable kernels
- We study design decisions for achieving portability for sparse matrix algorithms
 - In this work our application problem: SPGEMM

Sparse Matrix Matrix Multiplication

- SPGEMM: fundamental block for
 - Algebraic multigrid R x A_{fine} x P = A_{coarse}
 - Various graph analytics problems: clustering, betweenness centrality...
- More complex than most of the other sparse BLAS and graph problems:
 - Extra irregularity: nnz of C is unknown beforehand.
 - Requires thread private data structures

Sequential Algorithms: 1D [Gustavson 78]

 $A(i,*) \times B = C(i,*)$

Sequential Algorithms: 1D [Gustavson 78]

Sandia National Laboratories

- Distributed memory algorithms:
 - 1D Trilinos, 2D CombBLAS, 3D [Azad 15], Hypergraphbased: [Akbudak 14], [Ballard 16]
- Shared memory algorithms: based on 1D Gustavson algorithm
 - Differ in the data structure they use for accumulation
- Multi-threaded algorithms:
 - Dense Accumulator [Patwary 15]
 - Sparse Heap accumulators: ViennaCL, CommBlass
 - Sparse accumulators: MKL
- GPUs:
 - CUSP: Expand Sort Collapse
 - AmgX, cuSPARSE, bhSparse [Liu 14]

Portable SPGEMM: KKMEM

- Variety in architectures
 - Tens/Hundreds/thousands of threads
 - CPUs/lightweight-cores/streaming multiprocessors (SPMD/ SIMD)
 - Shared / high bandwidth / DDR memory
- Native multi-threaded algorithms
 - Fewer threads, more memory & more work per thread
- GPU algorithms
 - Thousands of threads, less memory & less work per thread
- Design decisions
 - Work distribution to threads
 - Scalable data structures
 - Limitations of specific architectures

Thread Mapping

- Each team works on a bunch of rows of C (or A)
 - Team: Thread block (GPU) group of hyper-threads in a core (CPU)
- Each worker in team works on consecutive rows of C
 - Worker: Warp (GPUs), hyperthread (CPU)
 - More coalesced access on GPUs,
 - Better L1-cache usage on CPUs.
- Each vectorlane in a worker works on a different multiplications within a row:
 - Vectorlane: Threads in a Warp (GPUs), vector units (CPU)

Data Structures

- Two-level Hashmap Accumulator:
 - 1st level accumulator: GPUs shared memory or a small memory that will fit in L1 cache
 - 2nd level goes to global memory
- Memory Pool: Only some of the workers need 2nd level hash map. They request memory from memory pool.
 - Allows threads scalable dynamic allocation on GPUs

```
• Fixed size, fixed alignment
#pragma omp parallel
{
    data_type *my_data = new data_type[m];
    //initialize my_data ---> 0(m)
    //once 0(m) per thread
#pragma omp for
    for (i = 1...n){
        //work on my_data ---> 0(k) and k << m
        //re-initialize my_data ---> 0(k)
    }
}
```

Architecture Limitations

- Size and structure of rows are unknown at the beginning
 - over-allocation: expensive
 - dynamically increase: not suitable to GPUs
 - Estimation methods: not cheaper than calculating the actual size in practice
- Two-phase:
 - symbolic calculate #nnz
 - then numeric actual flops
- Repetitive multiplications for different numeric values with same symbolic structure

Require: A representing the input mesh, b right handside vector 1: //time step 2: for $timestep \in [0, n]$ do $X_0 \leftarrow \text{initial quess}$ 3: //nonlinear solve 4: for $k \in [0, ...]$ until X_0 converges do 5: $A^k \leftarrow \text{assemble}_\text{matrix} (A, X_k) //\text{linear matrix}$ 6: //calculate residual 7: $r_k \leftarrow b - A^k \times X_k$ 8: //solve problem - using multigrid 9: $\Delta_{X_k} \leftarrow solve(A^k, r_k)$ 10: //update the solution 11: 12: $X_{k+1} \leftarrow X_k + \Delta_{X_k}$

Two-Phase SpGEMM

- Doubles the amount of work performed
- Symbolic phase: works on the symbolic structure no floating values
 - performs unions on rows to find the structure/size of the output row
 - compression method to speedup first phase and reduce its memory requirements
- Compression: Compress the rows of B: O(nnz(B)) using 2 integers.
 - Column Set Index (CSI): represents column set index
 - Column Set (CS): the bits represent the existence of a column
- Advantages:
 - Symbolic complexity: O(FLOPS) ->
 on average ~O(avgdeg(A)x nnz(B))
 - How much memory we need is unknown and locally-overestimated as max row flops

Experiments

- Experiments on Haswell CPUs, KNLs, GPUs
 - Haswell: 2 sockets x 16 cores x 2 hyperthreads 2:30 GHz
 - KNL: 68 cores x 4 hyperthreads 1.40 GHz
 - 16 Gb HBW MCDRAM (476.2 GB/s)
 - 96 GB DDR4 (84.3 GB/s)
 - GPUs: Pascal P100 CC 6.0
- Multigrid multiplications $\rightarrow A_{\text{coarse}} = R_{\text{restriction}} \times A_{\text{fine}} \times P_{\text{prolongation}}$

Some matrices used in the literature for AxA

Haswell

- Geometric mean of 20 multiplications: 8 AxA, 12 multigrid
- Compared against 2 OpenMP methods in MKL and 1 in ViennaCL

KKMEM uses less memory \rightarrow data is more localized \rightarrow less likely to have memory bandwidth problems \rightarrow better thread scalability.

KNL – DDR4

MKL has issues with bandwitdh/latency earlier. KKMEM becomes faster after 64 threads.

KNL - MCDRAM

More bandwidth improves MKL's performance, but still hits bandwidth bound on 128 threads. KKMEM scales there.

Pascal P100 GPUs

- Compared against CUSP, bhSPARSE, ViennaCL, cuSPARSE
- Best performance on 17 matrices
- CUSP, bhSPARSE, ViennaCL runs out of memory 19, 8, and 4 matrices.

	CUSP	bhSPARSE	ViennaCL	cuSPARSE
2cubes_sphere	4.54	1.20	1.06	3.62
cage12	3.13	0.75	1.22	2.74
webbase	0.66	0.54	5.18	2.30
offshore	5.25	1.33	1.21	7.08
filter3D	5.78	0.83	1.47	4.30
hugebubbles20_0	4.99	4.81	1.94	12.14
Europe	3.41	5.57	2.57	2.50
cant	12.83	1.05	1.42	0.77
hood	14.22	0.97	1.77	1.72
pwtk	17.88	1.13	2.06	1.53
Empire_R_AP		0.89	0.65	0.88
Empire_RA_P		1.03	0.41	0.68
Laplace_R_A		0.68	0.73	2.71
Laplace_A_P		2.57	1.00	11.65
Laplace_R_AP		2.36	1.24	5.24
Laplace_RA_P		1.67	0.65	3.32
Brick_R_A		1.16	1.82	4.91
Empire_R_A		1.09	1.06	1.11
Empire_A_P		3.60	1.05	1.48
Brick_RA_P		1.26	0.43	1.14
ldoor		1.09	1.88	1.76
delaunay_n24			1.74	1.12
Brick_R_AP			0.76	1.91
channel			1.51	3.10
Brick_AP			0.95	4.54
cage15				4.86
Bump				1.58
audi				1.54
dielFilterV3real				1.85
Geomean:	5.25	1.36	1.22	2.43

Compression & Overall Results

- Memory required by accumulators
 - Average: by 53 %
 - Max : by 96 %
- # Insertions
 - Average: by 59 %
 - Max : by 91 %
- Overall geometric mean of the execution times

	KNL-DDR4	KNL-MCDRAM	Haswell	Pascal
Best Method	0.790	0.477	0.362	0.342
KKMEM	0.676	0.480	0.455	0.328
	1.17x	99%	80%	1.04x

Conclusions & Future Work

- How much performance will be sacrificed for portability?
 - We do not sacrifice much in terms of performance on highly-threaded architectures
- The key to performance portability:
 - thread scalable data structures
 - efficient memory (locality) use
 - correct thread hierarchy mapping
- The data structures and compression: major in performance and robustness
- Designing for application use cases such as the reuse
 - significantly better performance than past methods

For more information

- KokkosKernels:
 - Download through Trilinos: <u>http://trilinos.org</u>
 - Public git repository: <u>http://github.com/trilinos</u>
 - Public git repository: <u>http://github.com/kokkos</u>
- For more information:
 - mndevec@sandia.gov
- Thanks to:
 - NNSA ASC program
 - DOE ASCR SciDAC FASTMath Institute
 - ATDM

References

- F. G. Gustavson, "Two fast algorithms for sparse matrices: Multiplication and permuted transposition," ACM Transactions on Mathematical Software (TOMS), vol. 4, no. 3, pp. 250{269, 1978.
- Buluç, Aydin, and John R. Gilbert. "Parallel sparse matrix-matrix multiplication and indexing: Implementation and experiments." *SIAM Journal on Scientific Computing* 34.4 (2012): C170-C191.
- Azad, Ariful, et al. "Exploiting multiple levels of parallelism in sparse matrix-matrix multiplication." *arXiv* preprint arXiv:1510.00844 (2015).
- Akbudak, Kadir, and Cevdet Aykanat. "Simultaneous Input and Output Matrix Partitioning for Outer-Product--Parallel Sparse Matrix-Matrix Multiplication." *SIAM Journal on Scientific Computing* 36.5 (2014): C568-C590.
- Ballard, Grey, et al. "Brief announcement: Hypergraph partitioning for parallel sparse matrix-matrix multiplication." *Proceedings of the 27th ACM symposium on Parallelism in Algorithms and Architectures*. ACM, 2015.
- Patwary, Md Mostofa Ali, et al. "Parallel efficient sparse matrix-matrix multiplication on multicore platforms." *International Conference on High Performance Computing*. Springer International Publishing, 2015.
- Liu, Weifeng, and Brian Vinter. "An efficient GPU general sparse matrix-matrix multiplication for irregular data." *Parallel and Distributed Processing Symposium, 2014 IEEE 28th International*. IEEE, 2014.