Sandia

Exceptional service in the national interest @ National
Laboratories

Performance Portable
Sparse Matrix-Matrix Multiplication for

Modern Many-core Architectures
Mehmet Deveci,

Erik Boman, Siva Rajamanickam

Sandia
National _
Laboratories

Performance Portability T

Portability: Being able to run same code across various architectures
= CPU, GPU, KNL

= Performance portability

= Shift in architectures:
= Threaded multi-core architectures
= Many-core machines
= GPUs: threads cannot be replaced by MPI ranks
= More heterogeneity & diversity

= Problem: SSS spent on re-writing existing application codes
= Portable programming models

= OpenCL, OpenACC, Kokkos

= eliminate/separate the concerns of future architectures

Sandia
"1 National
Laboratories

Performance Portability

= Kokkos: | | =

= Layered collection of template C++
libraries

K

= Manages data access patterns —
R

| |
[
‘ll .
oS

Multi-Core Many-Core APU CPU + GPU

Il
=
IE%I |

= Execution spaces, Memory spaces

= Kokkos provides tools for
portability

= Performance portability does not
come for free.

 KokkosKernels:

— Layer of performance-
portable kernels

We study design decisions
for achieving portability for
sparse matrix algorithms

— In this work our application
problem: SPGEMM

= Not trivial for sparse matrix and
graph algorithms

A

Sparse Matrix Matrix Multiplication

B

= SPGEMM: fundamental block for
= Algebraic multigrid Rx Aq . X P =A

C

coarse

i\

Sandia
National _
Laboratories

= Various graph analytics problems: clustering, betweenness

centrality...

= More complex than most of the other sparse BLAS and graph

problems:

= Extrairregularity: nnz of Cis unknown beforehand.

= Requires thread private data structures

Background) g,

5 [2] X

= Sequential Algorithms: 1D [Gustavson 78]

A(i,*)x B = C(i,*)

Sandia
National

Background) g,

15

|
[
1O

= Sequential Algorithms: 1D [Gustavson 78]

Background

m

25

Sandia
’11 National
Laboratories

Background

= Distributed memory algorithms:

= 1D Trilinos, 2D CombBLAS, 3D [Azad 15], Hypergraph-
based: [Akbudak 14], [Ballard 16]

= Shared memory algorithms: based on 1D Gustavson algorithm
= Differ in the data structure they use for accumulation
= Multi-threaded algorithms:
= Dense Accumulator [Patwary 15]
= Sparse Heap accumulators: ViennaCL, CommBlass
= Sparse accumulators: MKL
= GPUs:
= CUSP: Expand — Sort — Collapse
= AmgX, cuSPARSE, bhSparse [Liu 14]

Sandia

"1 National _
Laboratories

Portable SPGEMM: KKMEM

= Variety in architectures
= Tens/Hundreds/thousands of threads
= CPUs/lightweight-cores/streaming multiprocessors (SPMD/

SIMD)
= Shared / high bandwidth / DDR memory

= Native multi-threaded algorithms
= Fewer threads, more memory & more work per thread

= GPU algorithms
= Thousands of threads, less memory & less work per thread

= Design decisions [T
= Work distribution to threads o 1 aaa
|bpR 1

= Scalable data structures
Multi-Core Many-Core
= Limitations of seeciﬁc architectures
9

Thread Mapping

thread-1

thread-2

team-2

v2

v3

v4

team-3

team-4

team-5

= Each team works on a bunch of rows of C (or A)

Sandia
National _
Laboratories

= Team: Thread block (GPU) group of hyper-threads in a core (CPU)

= Each worker in team works on consecutive rows of C

= Worker: Warp (GPUs), hyperthread (CPU)

= More coalesced access on GPUs,
= Better L1-cache usage on CPUs.

= Each vectorlane in a worker works on a different multiplications within a

Frow:

= Vectorlane: Threads in a Warp (GPUs), vector units (CPU)

10

National

Data Structures L

= Two-level Hashmap Accumulator:

= 15t]level accumulator: GPUs shared memory or a small
memory that will fit in L1 cache

= 2nd Jevel goes to global memory

= Memory Pool: Only some of the workers need 2" level hash
map. They request memory from memory pool.

= Allows threads scalable dynamic allocation on GPUs

= Fixed size, fixed alignment| #pragma omp parallel

data_type *my_data = new data_type[m];
//initialize my_data ---> 0O(m)
//once O(m) per thread
#pragma omp for
for (1 = 1.n){
//work on my_data ---> 0(k) and k << m
//re-initialize my_data ----> 0Ck)

¥
}

- ___
11

National

Architecture Limitations),

= Size and structure of rows

are unknown at the Require: A representing the input mesh, b right handside vector
. . I: //time step
beglnnlng 2: for timestep € [0,n] do
. 3: Xo < initial guess
= over-allocation: 4 //nonlinear solve
i 5 for £ € [0,...] until Xy converges do
EXpensive 6 AF « assemble_matrix (A, X}) //linear matrix
. : : . 7 //calculate residual
dynamically increase: . AR Y X,
not suitable to GPUs 0: //solve problem - using multigrid
10 Ax, < solve(A*, ry)
= EStimatiOn methOdS: 11 //update the solution
12 Xk+1 (—Xk-i-AXk

not cheaper than

calculating the actual
Size in practice
= Two-phase:

= symbolic - calculate #nnz
= then numeric - actual flops

= Repetitive multiplications for different numeric values with same symbolic
structure

12

Two-Phase SpGEMM .

Doubles the amount of work performed
Symbolic phase: works on the symbolic structure — no floating values
= performs unions on rows to find the structure/size of the output row

= compression method to speedup first phase and reduce its memory
requirements

Compression: Compress the rows of B: O(nnz(B)) using 2 integers.
= Column Set Index (CSI): represents column set index
= Column Set (CS): the bits represent the existence of a column

AdvantageS: row | 6 | 7|8 | 9|10]33]34]35|36]37
= Symbolic complexity: O(FLOPS) ->

CSl o |1

on average ~O(avgdeg(A)x nnz(B))

CS [1984 62

= How much memory we need is unknown ‘L/l s e s s 7 s e 10 . . o

and locally-overestimated as max row flops o Jo[ololo o RN - - - |

13

Sandia
"1 National
Laboratories

Experiments

= Experiments on Haswell CPUs, KNLs, GPUs
= Haswell: 2 sockets x 16 cores x 2 hyperthreads - 2:30 GHz
= KNL: 68 cores x 4 hyperthreads - 1.40 GHz
= 16 Gb HBW MCDRAM (476.2 GB/s)
= 96 GB DDR4 (84.3 GB/s)
= GPUs: Pascal P100 CC 6.0
= Multigrid multiplications =2 A R XAs X P

coarse ~ prolongation

restriction

= Some matrices used in the literature for AxA

14

Sandia
I Natonal
Laboratories

Haswell

= Geometric mean of 20 multiplications: 8 AxA, 12 multigrid
= Compared against 2 OpenMP methods in MKL and 1 in ViennaCL

(9,]
o
51.29 |

O KKMEM
40 — HOMKL1
O MKL2
OViennaCL

29.87
28.44
40.37 |

30 -

20

Speedup w.r.t. Sequential KKMEM
[y
(=)

o
1

NoReuse ‘ Reuse

symbolic + numeric numeric

KKMEM uses less memory - data is more localized - less likely to have
memory bandwidth problems - better thread scalability.

KNL-DDR4) .

§ 140
a B B
- 120 O KKMEM 0)} 0
] N ~
2 O MKL1 S - -
L 100 — >
s 0O MKL2 " ° |_|
= 80 —] ~ <
5 BViennaCL o < © ~
c ;n O o © o (<)}
g ©g = © -
[(o] (o]
40 @ s
2
S
T 20 T ow P N o <8
] on o © N [N
Q. - i -
(7]
1 4 64 128 256 1 4 64 128 256
NoReuse Reuse
symbolic + numeric numeric

MKL has issues with bandwitdh/latency earlier. KKMEM becomes faster
after 64 threads.

KNL - MCDRAM) .

200
180 - OKKMEM

|| 156,95

186.74 |

160 - EMKL1
140 ~— OMKL2

OViennaCL

120

88.24
101.70

100

80

60

40

Speedup w.r.t. Sequential KKMEM on DDR4

20

NoReuse Reuse

symbolic + numeric numeric

More bandwidth improves MKL'’s performance, but still hits bandwidth
bound on 128 threads. KKMEM scales there.

Pascal P100 GPUs T

CUSP | bhSPARSE | ViennaCL | cuSPARSE

2cubes_sphere 4.54 1.20 1.06 3.62

m i cagel2 3.13 0.75 1.22 2.74

Compared agamSt CUSP' webbase 0.66 0.54 5.18 2.30

1 offshore 5.25 1.33 1.21
thPARSE' VlennaCL' filter3D 5.78 0.83 1.47 4.30
hugebubbles20_0 4.99 4.81 1.94

CUSPARSE Europe 3.41 5.57 2.57 2.50

cant 1.05 1.42 0.77

= Best performance on 17 hood 0.97 1.7 72

. pwtk 1.13 2.06 1.53

matrices Empire_R_AP 0.89 0.65 0.83

Empire_RA_P 1.03 0.41 0.68

- i Laplace_R_A 0.68 0.73 2.71
CUSP, bhSPARSE, ViennaCL Laplace B2 0.68 i —

Laplace_R_AP 2.36 1.24 5.24

runs out Of memory 19' 8' Laplace_RA_P 1.67 0.65 3.32

1 Brick_ R_A 1.16 1.82 4.91

and 4 matrlces Empire_R_A 1.09 1.06 1.11

Empire_A_P 3.60 1.05 1.48

Brick_RA_P 1.26 0.43 1.14

Idoor 1.09 1.88 1.76

delaunay_n24 1.74 1.12

Brick_R_AP 0.76 1.91

channel 1.51 3.10

Brick_AP 0.95 4.54

cagel5 4.86

Bump 1.58

audi 1.54

dielFilterV3real 1.85

Geomean: 5.25 1.36 1.22 2.43

- ___
18

Sandia
’11 National
Laboratories

Compression & Overall Results

= Memory required by accumulators
= Average: by 53 %
= Max :by96 %
= H# Insertions
= Average: by 59 %
= Max :by91%
= QOverall geometric mean of the execution times

KNL-DDR4 KNL-MCDRAM Haswell Pascal

Best Method 0.790 0.477 0.362 0.342
KKMEM 0.676 0.480 0.455 0.328

1.17x 99% 80% 1.04x

19

Conclusions & Future Work h

How much performance will be sacrificed for portability?

= We do not sacrifice much in terms of performance on
highly-threaded architectures

The key to performance portability:
= thread scalable data structures
= efficient memory (locality) use
= correct thread hierarchy mapping

The data structures and compression: major in performance
and robustness

Designing for application use cases such as the reuse
= significantly better performance than past methods

Sandia
National _
Laboratories

20

Sandia
I Natonal
Laboratories

For more information

= KokkosKernels:
= Download through Trilinos: http://trilinos.org
= Public git repository: http://github.com/trilinos
= Public git repository: http://github.com/kokkos

= For more information:
= mndevec@sandia.gov

= Thanks to:
= NNSA ASC program \
= DOE ASCR SciDAC FASTMath Institute /‘ -
L N
= ATDM ASsSC FASTMATH

Sandia
’11 National
Laboratories

References

= F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplication and permuted transposition," ACM
Transactions on Mathematical Software (TOMS), vol. 4, no. 3, pp. 250{269, 1978.

= Bulug, Aydin, and John R. Gilbert. "Parallel sparse matrix-matrix multiplication and indexing:
Implementation and experiments." SIAM Journal on Scientific Computing 34.4 (2012): C170-C191.

= Azad, Ariful, et al. "Exploiting multiple levels of parallelism in sparse matrix-matrix multiplication." arXiv
preprint arXiv:1510.00844 (2015).

= Akbudak, Kadir, and Cevdet Aykanat. "Simultaneous Input and Output Matrix Partitioning for Outer-
Product--Parallel Sparse Matrix-Matrix Multiplication." SIAM Journal on Scientific Computing 36.5 (2014):
C568-C590.

= Ballard, Grey, et al. "Brief announcement: Hypergraph partitioning for parallel sparse matrix-matrix
multiplication." Proceedings of the 27th ACM symposium on Parallelism in Algorithms and Architectures.
ACM, 2015.

= Patwary, Md Mostofa Ali, et al. "Parallel efficient sparse matrix-matrix multiplication on multicore
platforms." International Conference on High Performance Computing. Springer International Publishing,
2015.

= Liu, Weifeng, and Brian Vinter. "An efficient GPU general sparse matrix-matrix multiplication for irregular
data." Parallel and Distributed Processing Symposium, 2014 IEEE 28th International. |IEEE, 2014.

22

